
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.06 PAGE 1 

Published: 07/27/67 

] dent i ficat ion 

The Wait Coordinator 
Michael J. Spier 

Purpose 

Within the life of a Multics process, the need arises 
at least once for some information to bE provided by another 
process. Unless this need be satisfied, the process cannot 
continue its execution. The traffic controller provides 
an entry point block to be called in such a case. The 
process that is awa1ting the information calls block, 
knowing that some other process will wake him up again 
as soon as the 5.nformation becomes available. 

The Wait Coordinator is a supervisor module which coordinates 
the process' calls to block with the event signals that 
it receives. It allows a procedure within that process 
to wait for a SP§Cific event to happen, momentarily ignoring 
all other signals which might have been received during 
the waiting period. Except· for a small ~umber of hardcore 
supervisor routines, no procedure within a process is 
allowed to call block directly, all such calls must go 
through the Wait Coordinator. 

The reader should be acquainted with the Interprocess 
Communication Facilities as described in MSPM sections 
BO. 6.00 - .os. 
I nt roduct ion 

The Wait Coordinator is the receiving end of Interprocess 
Communication. Normally, whenever a receiving process 
is blocked, it is blocked in the Wait Coordinator, and 
it is there that it wakes up as a result of some sending 
process' event_signalling. The Wait Coordinator knows 
for what specific kind of event the process is waiting, 
so whenever the process wakes up in the Wait Coordinator, 
a check is made to determine whether or not the wakeup 
was associated with the event that is currently waited 
for. If not, the Wait Coordinator calls block again. 
If it is, a return is made to the Wait Coordinator's caller. 

The Wait Coordinator may be called to wait for one of 
several different kinds of events to happen. It returns 
to its caller upon detection of the first of these events 
to have been signalled. 



~ 

MULT1CS SYSTEM PROGRAMMERS' ~NUAL SECTION BQ .6.06 PAGE 2 

Consider the following example. A procE!SS is engaged 
in reading punched cards, transcribing them onto magnetic 
tape and listing them on a printer. Eac.h 1/0 device has 
a Device Manager Process. Before our process may initiate 
a new !/0 operation, 1t must wait for an event- signalled 
by the device manager - indicat1ng that the previous I/O 
operation has successfully been terminated. In order 
to understand how the \I'Jait Coordinator functions, let 
us analyze the following 3 ways of writing such a 
card-transcription program. 

Solutioi"LJ...... 1 • read a card 

2. wait for card to be read 

3. write magnetic tape 

4. ~ for tape to finish 
w ing 

5. print a 1 i ne 

6. wait for printing 
finished 

to be 

7. go to step 1. 

Solution 1 is linear in its nature. By using a buffering 
system, 1/0 waiting times may be reduced: 

Solution 2. 1 • read first card 

2. wait for first card to be 
read 

3. read next card 

4. write previous card on 
magnetic tape 

s. print previous card on printer 

6. wait for card to be read 

7. wait for tape to finish writing 

8. wait for 
tTriTshed 

printing to be 

9. go to step 3. 

.. 



,., .. ,· 

MULTlCS SYSTEM-PROGRAMMERS' ML\NUAL SECTH)N BQ. 6,06 PAGE 3 

Even though the events relevant to steps 7 and 8 might 
have happened, no return will be made from the Wait Coordinator 
in step 6 before the card reader has finished reading. 
If, while the process is still blocked in step 6, event 
si'gnals associated with the magnetic tape drive or printer 
are received, these signals will be momentarily ignored 
by the Wait Coordinator. 

The nex;t soluti.on calls for very large 1/0 buffers. 

S·o lut ion 3. 1 • Wait for either card•reaaer 
or-tape drive or printer to 
be ava i 1 ab 1 e • 

2. If card reader is available 
read card into buffer . then 
go to step 1. 

" 

3. If tape drive is av~ilable 
and buffer not empty write 
magnetic tape then go to 
step 1. 

4. If printer is available and 
buffer not empty print a line 
then go to step 1. 

In step 1 we call the wait coordinator specifying 3 kinds 
of events to wait upon. A return will be. made from the 
wait coordinator as soon as any one of these 3 events 
has happened. It is up to the user,to;determine which. 
event it was. · 

Event channels used to be waited upon in the way described 
above are called.Event kLS..li Channels. The wait coordinator, 
when asked to wa1t upon such an event channel does not 
return to its caller nor take notice of other event wait 
channels until the specified event has been signalled, 

There is a second kind of event channel called an Event 
~ Cha':'nel. Such a cha':'nel is not waited on. The receiving 
process 1s always, imp1ic1tly, wait·ing for events to be 
signalled over event call channels and whenever such a 
signal is recelved, it causes the Wait Coordinator to 
automatically call.~ procedure which is associated with 
that event ca 11 channel. 

..,._~ ' ' 



i ,_ 
I MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BQ.6.06 PAGE 4 

Let us reconsider solution 3 of the example. Let us change 
steps 2 3 and 4 into subroutines, as follows 

SUB 2. Read card into buffer. RE~turn. 

SUB 3. If buffer not empty, writE~ magnetic tape. Return. 

SUB 4. If buffer not empty, print a line. Return. 

Step 1, and the conditions "is device available" in steps 
2, 3 and 4 may be dispensed with, simply by transforming 
the card reader, tape drive and printer event-wait-channels 
into event-call-channels and by associating them with 
SUB 2, SUB 3 and SUB 4 respectively. Whenever an event 
is received over an event call channel (and the receiving 
process is executing in the wait coordinator) a call will 
automatically be made by the wait coordinator to the event 
call channel's associated procedure. 

From the receiving process' point of view, the wait or 
call attributes of an event channel are mutuall~clusive, 
~correspond to the receiving process·· explic t or imp]ici t 
interest in an event. The reaction of the Wait Coordinator 
to a signal received over an event channel differs accordingly. 
An event signal received over an event-wait-channel will 
result in a return from the wait coordinator, whereas 
an event signal received over an event-call-channel will 
result in a call being issued by the wait coordinator. 

A user may make a call to the wait coordinator in order 
to be informed whether or not an event has been signalled 
over an event channel regardless of the event channel's 
wait/call attributes (test_event). 

Calls to the wait coordinator 

A process may inquire whether or not one or more events 
have happened by invoking: 

f=wc~test_event(chn_list,ev~ind,sts) 

declare (chn_list(n),ev_ind(3)) bit(70), sts bit(36),f bit(1); 

chn_l ist 

ev_ind 

is an array of event channel names corresponding 
to the event channels to be interrogated. 

is an event indicator as described in MSPM 
sections BQ.6.01,03,04. 



MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BQ .6.06 PAGE 5 

sts is a return status. 

Test_event returns to its caller as soon as 

a. 
b. 

An event indicator has been found (f="1"b)( or 
All the specified event channel5 (chn_list; have 
been tested (f~'a'b). 

A process may~ for an event to happen by calling 

call wcSwait(chn_list,ev_ind,sts) 

where the arguments are the same as those for test event. 
For both procedures, "sts" returns error status information 
such as channel access violation. 

The "wait" procedure wi 11 not return to its caller unless 
an event signal was received over one of the event channels 
specified in "chn_list". Chn_list is interrogated sequentially. 

Event call channels 

An event-wait-channel may be declared to be an event-call-channel 
by ca 1 ling 

call ec~decl_ev_call_chn(evTchn,proc_ptr(data_ptr, 
pr1or, level-stsJ 

An event-call-channel may be redeclared to be an 
event-w~it-channel by calling 

call ec~decl_ev_wait_chn(ev_chn,sts) 

(The arguments to these calls are defined in MSPM section 
BQ .6.04). 

An event-call-channel is associated with a procedure to 
be called by the wait coordinator whenever an event signal 
is received over the event-call-channel. The associated 
procedure may be any user's procedure and is invoked by 
the wait coordinator as follows 

call [associated procedure] (data_ptr,ev_ind) 

declare data_ptr pointer, ev_ind(3) bit(70)J 

where data_ptr points to a data base associated with 
the event-call-channel (more than one 
event-call-channel may be associated 
with the same procedure) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SEC:TI ON BQ. 6. 06 PAGE 6 

ev_ind is the event indicator read out of the 
event channe 1. 

Note: The associated procedure may freely call the wait 
coordinators entries "wait" and 11 test_event". 

The receiving process' event-call-channels are linked 
in a list structure called the event-call-channel-list, 
which is searched sequentially by the wait coordinator. 
A user may wish to assign a certain search priority value 
to decl ev call chn's ''prior" argument, which determines 
the event-call-channel's place in the list. The value 
of "prior" may be any arbitrary value and is determined 
by the user. 

Consider (figures 1-3 may be a helpful reference) the 
case in which event-call-channel X has several event indicators 
queued up. A certain procedure of the receiving process 
calls wait, a call that cannot be satisfied because the 
specified event has not yet happened. The Wait Coordinator 
therefore looks up the event-call-channel-list and reads 
one event indicator out of channel X whereupon it calls 
the associated procedure which in turn calls the Wait 
Coordinator's entry "wait" for event-wait-channel Y. 
Now, if channel Y has not been signaled over,the Wait 
Coordinator will once more look up the event-call-channel-list, 
read a second event indicator out of channel X and attempt 
to issue a recursive (and erroneous) call to the associated 
procedure. · 

In order to avoid such recursive calls, the Wait Coordinator 
possesses a special interlocking mechanism. When declaring 
an event-call-channel (see decl_ev_call_chn, MSPM section 
BQ.6.04), the caller specifies as argument a level number 
to be associated with the event-call-channel (and which 
is not associated with either of the channel's ring numbers). 
When calling the associated procedure, the Wait Coordinator 
memorizes this level number in the associated-procedure~cell 
(see MSPM section 80.6.03) and considers the procedure 
to be inhibited to any event-call-channel which has an 
equal or lower level number. The ori~inal contents of 
the associated-procedure-cell's inhib1t word is saved 
in the Wait Coordinator's current stack frame and restored 
upon return from the associated procedure. 

A second possible error condition may arise if a procedure, 
(especially the event call channel's associated procedure) 
calls wait for the event-call-channel. A convention was 
made by which such calls to wait will result in an error 
return from the Wait Coordinator, without having accessed 
the specified event-call-channel. 

I 

'I \, 

I. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.06 

The user who wishes to wait upon a channel declared to 
be an event-call-channel will first have to change the 
channel's type into an event-wait-channel (by calling 

PAGE 7 

decl ev wait chn) and upon return from the Wait Coordinator 
redeclare the channel to be an event-call-channel. 

Decl_ev_call_chn checks with the file system to make sure 
that its caller is not trying to circumvent the system's 
protection mechanism by declaring an event-call-channel 
so that he could indirectly call a procedure that is directly 
inaccessible to him. The call to decl ev call chn is 
rejected if it turns out that the associated procedure 
is not to be accessed from the caller's ring. 

When considering all the arguments, implied restrictions 
and possible error conditions associated with (ecch) 
event-call-channels, the reader must remember that, ~-once 
properly declared-- the event-call-channels and their , 
associated procedures are capable of performing 11off line"· 
tasks, thus exploiting more efficiently the processor 
time alloted to the receiving process. 

Event channel protection 

Event channels are protected by their ring number which 
determines from out of which rings they may be accessed. 
All the Event Channel Manager modules (but for set event . ! 

and read_event) check this ring number against their caller's 
validation ring number before accepting the call. Set_event, 
as described in MSPM section BQ.6.05, performs a similar 
validation check in conjunction with the event channel's · 
signaling ring number. Read_event is the only Event Channel 
Manager module to accept calls without any checks, because 
it is inaccessible to the user and can be called by the 
Wait Coordinator only. It is the Wait Coordinator who, 
when called, first checks to make sure that the caller 
resides in a ring from which he has access to the event 
channels he wishes to wait on. · 

The reason for taking this responsibility away from read_event 
and giving it to the Wart Coordinator i$ as follows: 
The caller may specify a list of event channels to wait 
on. The Wait Coordinator issues separate calls to read_event 
for each one of these event channels, and whether or not 
he calls read event for all thes.e channe·ls depends upon 
whether or not an event indicator was read (remember that 
the Wait Coordinator is satisfied with the first event 
indicator which read_event returns). Consequently, the 
illegal access condition may or may not be detected depending 
upon the way event_chn_list was specified and upon the 
arrival of specific event signals. 



',,-...... MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.6.06 PAGE 8 

The Wait Coordinator., when called (be it \IJait or test_event)., 
gets its caller~s validation ring number (sbl3) and compares 
it to the ring numbers of all the event channels to be 
interrogated. Any access violation causes an error status 
return from the Wait Coordinator. 

When the Wait Coordinator interrogates the event-call-channel­
list., no validation check is made because the channel 
is interrogated in behalf of a known user (the procedure 
that declared the channel to be an event-call-channel) 
and all checking was performed by decl_ev_call_chn. 

Description of the Wait Coordinator 

The wait coordinator has two functions 

a. 

b. 

Test the channels specified in the "chn_list". 

Test all of this process~ event call channels 
(the event-call-channel-list). 

As already stated., a positive result to the first check 
causes the wait coordinator to return to its caller., a 
positive result to the second check causes the wait coordinator 
to issue a call to the event call channel~s associated 
procedure. Both functions a and b are independent (and 
exclusive) of one another. The user may specify the order 
in which both functions are to be carried out by setting 
the wait_call_priority switch in the Event Channel Table 
Header. This is done by calling one of the following 
entries to the Event Channel Manager 

call set_wait_prior 

call set_call_prior 

The switch then remains set in the specified position 
until another such call. 

The attached figures 1-3 are general flow charts of the 
Wait Coordinator. Figure 1 shows the Wait Coordinator's 
main-program., its entries test.event and wait and the 
way the call_wait_priority switch is interrogated. Figures 
2 and 3 show the two primitives event wait and event call 
which are called by the Wait Coordinator~s main program. 

The Wait Coordinator invokes the Event Channel Manager 
function read event which returns either the "event indicator 
found" or the-"event indicator not found" conditions. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL 

wrt 

get caller's validation 
ring number 

check arguments 
for validity 

erroneous 
arguments? 

.. No 

get dev - -signal 

Yes 

call 

levent_call·, / event_wai t 

~event_wait I event call 

block 

Figure 1. The Wait Coordinator 

SECTlON 80.6.06 · PAGE 9 
I test_event 

I 
get caller's validation 

ring'number 

check argutllents 
for validity 

Yes 
erroneous 
arguments? 

Set 
error status 

Return 

No 

event_wait 

I 
Set 

"no results" 
status 

Return 

Note: The call to get_dev_signal is associated rl----.~~---­
with device signal channels and discussed 

in MSPM section BQ.6.07, 

it 
·I 

I 
! 

I .. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL 

Figure 2. 

event wait 

1
event wait 

Initialize lookup 
of event channel list 

es 

get next 
event channel name 

Yes 

No 

read event i 

No 

RETURN 

to caller of :r:or 

SECTION 80.6.06 

I 
set 

error 
sta us 

RETURN 
to caller of 

event_wait 

PAGE 10 



/"""" Figure 3. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.06 PAGE 11 

event call 

initialize lookup 
of event call channel list - - -

~x~~::ted? ~~~e-s-------------------, 
I No 

get next 
event call channel 

entry in 
Event C~ noel Table 

I 

Compare channels's 
level# to ass. procedure's 

inhibit word 

event indi­
.. ---------~--~ cater found? 

!Yes 

store inhibit word 
in stack 

put level# in 
inhibit word 

I 

restore inhibit word 
from stack 

Return to caller 
of 

event call 


