
}'ULTICS SYSTEM- PROGRAMMERS' ~;ANUAL SECTION BV. 9. 01 PAGE 1

=~denti ficat ion

~:ultics Segment Library On- Line Infonnation Base

t-:Ultics Segment List (MSL)

Edwin W. Meyer, Jr.

_!>~rpose

The Multics Segment List (MSI) is a data format for an on-line segment

conta.ining information about a segment library. The MSL is designed

for on-line user interrogation, for conversion to ascii for printing

~s a hard-copy library listing, and for use with automatic library up

date procedures. It is of sufficient scope os as to be useful under

a number of different mainter.ance philosophies.

Overview

An MSL is a set of segment information entr.ies referenced in two. ways:

(a) via a threaded list aphabetized by segment name; (b) via a hash

coded list keyed by segment name. Each entry contains information con

cerning one segment or other type of name.

The MSL uses LSM list structure format (MSPM BY.22) for speed and

efficiency in entry look-up and modification. It is not an ascii seg

ment, although it does contain ascii blocks. Thus it can not be directly

printed.

SECTION BV.9.0l ?AGE 2

~ach MSL entry consists of a 14 element node ar::ay plus various subsidiar:r

:~SM data blocks. (See MSPM :w.22. 01 for LSM da·:a organization.) In

c:he description below, all items are character ::tring blocks unless other··

'iise indicated.

::_,SM array
index

0

1

2

3

4

5

6

7

8

9

Item
Identificatilln

name

type_ code

source instal

object_ insta :~

system_id

who auth

who mod

area use

document

superior list

segment or other name

(binary) name type (see BV.9.02

for type_code list)

installetion date of source

for this segment

installation data of object for

this segment

id of system of installation

initials of author of segment

initials of latest modifier

of segment

basic area of use for this segment

MSPM BS abstract section

node address of top of threaded

list of superior MSL entries

(see below)

'1SPM

::..sM c>.rray
i!!.dex

lO

ll

1.2

Item
Identifica.ti~

inferior lis:

path_ list

proc_state

nxt_entry

SECTION BV.9~01 PAGE 3

node a.d~ress of top of threaded

list of inferior MSL entries

(see be'.mv)

rtode address of list of source

and object pathnames. (see below)

(binary '-used during update

process:_ng

(node address) pointer to next

entry in alphabetized list.

A superior/inferior list is R set of doubly threaded associative blocks

(one block per name combinat:Lon.) that link an entry to superior or

inferior entries. Each associative block is a 4 element node array of

the following format:

0 sup_ entry (node acdress) pointer to the

superior entry of the combination

1 inf_entry (node address) pointer to the

:Lnferior entry of the combination

2 nxt_sup_ blk (node address) pointer to the next

block in the superior list

3 next • -F
~n~ blk (node address) pointer to the next

block in the inferior list

t '"'\ i'1
\ . ~S_

~\) -~ .0\

\
__ l

J

\

-~---·

\

-.l. - -

\

1SPM SECTION BV.9.01 PAGE 4

\\Then properly threaded, for each entry (j) in the superior list· of an

1mtry (A), that entry (A) is part of the inferi,)r list of entry (j),

.tnd vice-versa. An example l.s illustrated in F·.gure 1. ·

':'he path list of an entry is a four element node array consisting of

the following paths:

0

1

2

3

source_path

object_path

old dir

info dir

path of source segment

path of object segment

path of directory containing

previoun source and object

path of info segment (currently

used for locating bound segment

bind mar·)

The entry type_code determines the interpretation of _each of these

paths in one of the followin.g ways:

(a) not used

(b) free segment - pathname of containing directory

(c) archived segment - pathname of archive

MSL List Structure

The root of the MSL list structure is a four node "root list":

0

1

Tdentification

alpha..:.... list

hash list

Description

(node address) pointer to the

top of the alphabetized list of

entries

(node address) pointer to the

hash list of entry names.

'1:8PM SECTION BV.9.01 PAGE 5

Identificati~ Descrip~

2 char hash (node aidress) pointer to a

hash li3t of character strings

other then entry names. (Ensures

that oniy one physical character

block i; created no matter how

many times it ts used.)

3 type_list (node address) pointer to a list

of items defining the various

type_codes.

I I d • II• 1' t" "type_ list" is a node array whose j th no e po:t.nts to an :t.tem l.S

defining type_code j.

"item .. '!:it">t~'is a 3-node array containing the following items:

0 type 2-char type code

1 source suffix suffix of source segment

2 path code 4-element fixed binary array

specifying the interpretation to

be given the paths in the corre-

spending array positions of "path_

list"

The following path codes are currently 4efined:

0 this position not used

1 free segment - pathname of containing directory

2 archived segment - pathname of containing archive

