
I

t·1Ul TICS SYSTn1- PROIJ RM·1P1E RS 1 r.1/',tWAL Section RX. 10. 0 2

Puhl ished:

lcicntlfication

Prograrr'\ tracing under Interactive control
tracer
D. B. Hagner

Puroose

6/7/66

PAGE 1

Use of tracer allows the execution of a program to be
monitored on-1 ine in as fine or coarse a manner as desired.

UsaP;e

To use tracF>r the. user inserts ::tt strategic points in his
program calls (us In~ the standard call sequence) to the
entry tracer$report in the tracF>r command. Some ways of
causing these calls to occur automatically on occurrence of
certain events will be provided, such as the breaker and
Monitor corrnanrls described in RX.10.03 and RX.10.04. There
may also he a dehug mode in the PL/1 compiler which causes
such calls to he Inserted between statements, g1v1n~ ful 1
information concernin~ variables changed, previous and new
values, etc. The tracer command Is then used to store up
actions to he performed whenever tracer$report is called
with certain arguments. Theie actions may include both
commands and requests to commands.

The format of the calls to tracer$report is essentially up
to the user, except that the first argument must he a
character-string name for the call which will he used to
identify the actions to he performed.

The c ommanrl

tracer

causes tracer to begin reading requests from the console.
The user may type any of the requests 1 isted below or any of
the "control'' requests (lf, els~, rio, Pnd) describerl in
BX.10,00. He may also type r1acro invocations (in the samP *
form as In the command 1 anguage: see P.X. 1 .• 01) wh lch expand
to sequences of these requests. If ·a I ine received by
tracer (after macro expansion) is not recognizable as a
request, it is treated as a com~anrl. The 1 ine is given to
the Shell, \•lhich gives an aporopriate dlngnostic if it is
not a command either.

lnrlem~ntnt ion

The following digression Is necessary to explain the
of the trncer comnanrl. See the diagram of Fig. 1.
command listener, the dehug~lng programs, and most

action
The

other

*

....

MULTICS SYSTEM-PROGRAMMERS' MA~UAL Section RX.10.02 PAGE: 2

tnteracttvP. programs read their requests throur;h a "request
handler" which acts as an interface to the 1/0 system. It
expands macros, handles the semicolon convention, etc. The
request handler keeps a special data basP. col led the request
guew:•, arid before the request handler rearis a line from the
console it checks to see if there are any 1 ines waiting in
the request queue. If there are it uses the fl rst 1 ine in
the queue Instead. (The macro procP.ssor will be one pro~ram
wht ch places 1 ines Into the request queue: the entire
first-level expansion of a macro invocation is simply put at
the head of the queue.)

When the setaction request described below specifies a name
and a 1 tst of commanris anri requests, these are stored in the
tracer riato basi':!. \-!hen eventually the user's program is
started an ri a c a 11 to t racer$ report occurs, the f f rs t
argument of the call is matched a~ainst all the stored-up
names. If a match is found the correspondlnp; 1 ist of
command anri request 1 ines Is placed at the head of the
request queue and the command 1 lstener is called. This
scheme provides a very r;eneral tracing facility.

Reg ue s t s to T r or. e r

Setactlon anri enrlaction are the basic requests: the
sequence

setact ton nar1e

act I on

enriaction

causes the action specified to be stored away in a data base
used by the trace entry. The name is a character-strin~
identifier, to be matched a~ainst the first argument of each
trace call. Action is a sequence of cor:r1ands and requests.
It is ston:~d up to be per-formed \·Jhenever a call to the trace
entry tracerSreport has the first argument equal to ~·
If more than one action has been specified by setaction
requests for a r;tven name, they will be performed in the
orrier given. ~lar1e May he"*", in \·thich case action is to be
performed on every cal 1 to tracer$repo~t.

The action specification May of course include conditional
(j..f. ••• thP.n , ••) requests \'lh lch nnrr0\'1 down the select ion
of action still further than the naming convention does.
Expressions may include the special function

tracearg(n)

whtch r;ets the n'th argument of the last trace call.

~.1ULTICS SYSTn~-PROGRAtH1ERS 1 ~ 1MIUAL Section 8X.10.02

The request

resetaction na~~

deletes all actions storerl up for the nane r,iven.

The requests

1 is taction
1 i stact ion ~

cause etther all currently speclflerl actions,
c u r r e n t 1 y spec i f I e d a c t i on s f o r t he e l v en c a 1 1 n a me ,
1 isterl in a convenient forMat.

The request

exit

PAGE 3

or all
to be

causes trAcer to return to Its caller, usually the Shell.

I/0
System

'

~

Request

Queue

'
Expression

Evaluator

.r

~------t~~~ Probe ~--
' /II . • Q • . • TT~r Request

Handler If--
Comnand H
Listener

Shell

.

0··
H Tracer

Tr cer • •
• • ··Data ~

.

~ Base J Trap ~ Breaker 1 J Handlers

e II • • • • • •

l._

~

Macro --' 0 • • • I Interpreter• • • •
Processor

Monitor . .

Monitor
Data
Base

Figure 1: Probe, tracer, breaker, and

monitor and their relation

to selected parts of Multics.

Arrows represent calls and

dotted lines represent data

paths.

'
L

User

Program-

and

Data

, .
•
~

• -
•
• -

~
~
C/.1

C/.1
...::
C/.1
t-3

~
"' ~

I
C/.1

~·
g:

C/.1
t:zl
n
t-3
H
@

~ .
1-'
0 .
0
N

~
+"'

'I

I ,.

