
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.02 PAGE 1

Published: 08/25/67

Identification

GECOS master-mode entry simulator
gecos_mme
D. B. Wagner

Purpose

The procedure gecos_mme is used to simulate master mode
functions called by a 635 program jobbed into Multics
using the gecos_seg command (see BX.17.01). It simulates
most GECOS functions and allows the user to handle any
which it cannot simulate.

Usege

Before passing control to the 11 jobbed over" 635 procedure
segment, the user must make several initialization calls.
The first is:

call gecos_mme$init;

Then calls may be made to specify how various file-codes
should be treated by the simulated IO functions; these
are described later.

Then any GECOS functions which the user may wish to handle
himself are specified through calls of the form:

call gecos_mme$callme (name, routine);

where nam(is a character-string giving the name of the
function e.g. "GETIME") and routine is an entry to be
called to handle the function. The call to routine has
the form:

call routine (P);

where Q is a pointer to machine conditions at the time of
the fault.

finally calls may be made to activate some simple debugging
mechanisms inside gecos_mme.

MUL TICS SYSTEM-PROGRA~'MERS" MANUAL SECTION BX.17.02 PAGE 2

Easy GECOS Functions

The following GECOS functions seem reasonably easy to do
in terms of Multics and need not be discussed further here:

GEFAOD

GEFINI
GEBORT
GESETS
GERETS
GET IME
GEMORE
GEENOC
GEFCON
GEROAO
GERELC
GEMREL
GELOOP
GESYOT

(Physical file address: return nonsense·since
it makes no difference)

(do a siqnpl finish)
(do a signal error)

(for memory requests only - no problem)
(Used with 11 cou rtest ca 11 s11 in GE INOS: see 1 ater)

(Simply accept and ignore the call)

GECOS functions not Simulated

The following are hard to do and will not be simulated
unless a good reason presents itself. GECALL is used
in one or two places to call the loader to load special
things from libraries (GMAP. for example. loads system
macro definitions this way). It should be special-cased
by any user who needs it.

GESNAP
GELAPS
GEMORE (other than memory requests)
GERELS
RECALL
GESAVE
GERSTR
GECHEK
GEROUT

GECOS Input - Output Functions

GECOS I/0 will be simulated initially only for the files known
as "1 inked". that is. disk. drum. and tape files which
can be treated as linear sequences of records. like tape.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.02

The user must specify what segments are to be read or
written when various GECOS file codes are operated on.
He does this through calls of the form:

call gecos_mme$linked_file (code, segp, length);

The parameters are declared,

del code char (2), segp ptr, length fixed bin;

PAGE 3

Here code is the 2-character file code, ~points to the
base of the segment, and length is the length in bits of
the segment.

If gecos mme is updated to provide for simulation of random
access devices, card equipment, the printer, or the on-line
console, initialization entries must be provided as follows:

call gecos_mme$drum (code, segp, length);
call gecos_mme$disk (code, segp, length);
call gecos_mme$typed_input (stream);
call gecos_mme$typed_output (stream);
call gecos_mme$printer (segp);
call gecos_mme$card_reader (segp, length);
call gecos~me$card_punch (segp);

Most of these calls should be reasonably clear, and will not
be discussed further. Stream is a Multics I/O-system stream
name.

Whenever a file is written in "decimal'' (BCD) mode~ it
is converted to ASCII before transmission. Similarly,
when a file is read in decimal mode, the segment specified
is converted from ASCII lines to 80-column GE-Hollerith
card images.

Some programs now in use (EPLBSA and TMG) read and write
ASCII input out of and into 28-word column-binary card
images. For these programs, the following calls are provided:

call gecos_mme$ascii_input (code)·
call gecos_mme$ascii_output (code);

Each specifies that the necessary conversion from (to)
ASCII lines must be made to (from) binary card images.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.02

If the user would rather handle a file himself, he may
simply fail to tell gecos_mme about it. When a call is
made to operate on a file which gecos_mme does not know,
it does a

ca 11 s i g n a 1 (code, 11 1" b , p) ;

(see BD.9.04 for t~e signal procedure) where £QQg is the
file code and£ points to the machine conditions at the
fault. Thus if the user has earlier called condition
he will catch all calls for this file.

Fault Simulation

PAGE 4

GECOS allows a user to specify his own fault handlers for:

1. Memory (Multi~s out-of-bounds fault)
2. Divide check
3. Overflow
4. Command
5. I llega 1 op-code
6. Fault tag (Multics fault tag 1)
7. Derail
8. Connect

Gecos_mme, at initialization, sets up fault-handlers for
all of these except command and connect, and when they
occur makes the appropriate transfer of control to the
635 program.

tiSndling Qf GEINOS

After a pointer, p, to the faulting instruction has been
obtained, as discussed elsewhere, we find that it normally
points to something like this

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.02 PAGE 5

MME instruction

operation word

courtesy call

____ , ~ ... ·

I word-~
count-i scatter/

,_ ' ;:::: gather k-- : list

~§_~ I ~~___!_1-!::::~~~:~~t~

-==ri-· ata a
addre.§JL__ _ c

status return block

The call for disk or drum I/O is slightly different, and
can be seen in the GECOS manual. The basic principles
discussed here still apply.

The operation word is described in some detail in CPB-1195,
PP. 145-147. Briefly, it looks as follows:

0 E 18 23 30 35 I device
connnand

unused I roc
connnand

control count

Device Command is a number meaning such things as 11 Request
status" (REOS), 11 Write card binary11 (WCB), etc.

lQ£ Command is rather peculiar, and appears to be more-or-less
irrelevant to gecos_mme. See CPB-1195, p. 147.

Control is zero except in a call to write an end-of-file
mark. Since gecos mme accepts and ignores such calls,
this field is irreTevant.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.02 PAGE 6

Count serves several purposes:

1. In calls to backspace or forwardspace records,
it indicates the number of records to be spaced
over.

2.

3.

In any other non-data-transfer operations, it is
required to be 1.

For disc or drum l/0, a seek operation word contains
the value 2 in the count-rfeld. This indicates
that another operation word follows.

The scatter/gather list, also called the DCW list, is
a not-necessarily-contiguous list of the blocks of locations
involved in a read or write operation. The list is described
in CPB-1195, pp. 148-149. Briefly, each word (DCW) in
the list has the form:

0
data
address

22

unused action
code

Action~ is a 2-bit number indicating:

00 Transmit [read or write] and disconnect [end of list]

01 Transmit and proceed [go to next DCW]

10 Transfer to DCW

11 Non-transit [skip] and proceed.

gata address and word count have [obvious] meanings determined
y he action code. See CPB-1195, p. 149.

The File Code Word is described in CPB-1195, p. 148. Briefly
i t 1 ook s 1i ke :

18 24

(PAT pointer !unusual I !!!: J
Here f8l pointer is a user-supplied place that GECOS uses
for its own purposes. Gecos mme ignores it. File~
is two 6-bit GE-Hollerith characters.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.02 PAGE 7

The Status Return Block is two words of bits giving miscellaneous
information about the IO, including all manner of interesting
stat is 1 ike "card .. punch chad box full". See CPB-1195
pp. 150-151, 175-215. Most of the status information
is irrelevant to gecos_mme, of course. The following
is what gecos_mme needs to know.

The status block can be returned as follows:

2 6 12 30
major sub- 0

record
0 status status count

r~sin11~

data address char R action word
count w code count

residue
18 21 22 24

MAJ..Q..r Status and ~y~-Status are the only really important parts.
"SS'ii"Ce gecos_mme w accept input-output only on "linked"
files, those which look like tapes, only the following are
ever returned:

Major status = 0000 Substatus = 0001xx

(All OK. Not clear what xx should be.)

Major status = 0100 Substatus = Single data
character ~ 77(8)

(End of file. Substatus gives the identity of the
end-of-file. Since end-files are hand-waved by
gecos_mme, we will have to choose a code to return.
(Zero should do.)

If card-equipment and printer simulation is ever added to
gecos_mme, the following additional status returns will be
relevant.

Major status = 0000, Substatus = 000000

(A 11 OK)

Major status = 0100, Substatus = 000000

(End-of-file on card reader.)

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BX.17.02 PAGE 8

If drum and disk simulation is ever added to gecos_mme, the
following addi tiona 1 status returns wi 11 be relevant:

Major status = 0000 Substatus = OXXXXX

(All OK on drum. XXXXX =block address at this instant.
Gecos_mme should return a random number, like 6.)

Major status = 0000 Substatus = 000000

(A 11 OK on disk.)

If console typewriter simulation is ever added to gecos_mme,
the status returns can be seen in CPB-1195, pp. 212-215:
"Channe 1 ready", ''Message length alert", and "Operator
distracted" seem to be the only pertinent returns.

~ecord Count Besidue applies only to backspacing and
onwardspacJng operations, and gives the number of records

not passed over because one end or the other of the tape
has been reached.

The second status word gives the condition of the last DCW
word processed. It is clearly described in CPB-1195, p. 151.

The Courtesy ~ Addres§ is the address of a place to
be called when the operation is completed. It is not
clear from the GECOS manual what form a courtesy call
takes but it seems to be a simple transfer. The user
program then returns by doing a MME GEENDC (see CPB-1195,
PP. 113).

Working with the Fault Data

A fault-handler 1 ike gecos_mme is called by signfl with
an argument 2 which is a pointer to machine cond tions
at the time of the fault. The machine conditions are
stored in a block of 23 words as follows:

words 0-7
8-15

16-22

stored bases
stored registers
stored control unit.

r

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BX.17.02

This can be expressed in the following EPL declaration:

del 1 mach based (p),
2 stb (0:7) bit (36)
2 sreg (0:7) bit (36~,
2 scu,

3 tb r b i t (1 8) ,
3 appending_status bit (18),
3 computed_address bit (18),
3 control frame status 1 bit (18),
3 pbr bit-(18),- -
3 fault data bit (18),
3 let bTt (18),
3 indicators .bit (12),
3 control frame status 2 bit (6),
3 even instructTon bit-(36),
3 odd_Tnstruction bit {36),
3 ring_no bit (18)J

PAGE 9

There are several documents which give information on the
stored control unit. The best ares

645 EPS MS0£800107 pp. A49-A54
CU format G0046

Then the following EPL statement will fish out a pointer
to the faulting instruction:

q • pt r (ptr$baseptr (p~ mach. scu .pbr), P-+mach. scu .let) J

(See BY.14.00 for the pointer-manipulation routines used here.)

In order to return control to the faulting program ln
the proper place, a small modification must be made to
the stored control unit. Gecos mme fabricates a transfer
to the desired return location and puts it into either
of:

p~mach.scu.even instruction
p~mach.scu.odd_Tnstruction

depending on the "odd" bit in the •tappending unit status11 ,

bit 23 of the second word of the SCU data. This bit can
be gotten at bya

b • substr (p-+mach.scu.appending_unit_status_l, 6,1)J

