
/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX. 18.01 PAGE 1

Published: 11/08/67

Identification

Macro Processor
K. J. Martin

Purpose

A macro is in fact a data segment prepared using the context
editor (BX.9.01). When a user invokes a macro a certain
amount of preparation is required to transform this data
se~ment into a usable form. The macro processor does
th1s preparation and arranges for the necessary cleanup
actions following the macro. See BX.18.00 for an overview
of command language macros.

Environment

The macro processor is called in at least three different
situations:

1) by the Shell after it recognizes that the command
invoked is actually a macro data segment;

2) by the interactive procedures, such as the debugging aids,
which wish to invoke macros,

3) as a procedure specifically called by the user.

In cases 1 and 3 the macro processor should not only set
up the macro, but should also call the listener (BX.2.02)
to start execution of the macro. In case 2 it should
return immediately after setting up the macro. A special
entry point to the macro processor exists solely for case
2. Case 3 is expected to occur relatively rarely, such
as when a user wants to execute a macro only once and
would prefer not to process it with the macro command
(BX.18.02).

Usage

where

call macro_processor (macro_name, argument_array);

macro_name is the name of the segment prepared using
the context editor. It consists of command
lines includin~ regular commands, macro control
commands (deta1led in BX.18.03 - BX.18.08),
and possibly requests to any interactive
commands included.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX. 1 B. 01 PAGE 2

argument_array is an array of th~ arguments to the macro.
· When the user is invok1ng a macro at command level~

he must type in the arguments of the macros as a
list which the Shell passes on as an array. A
list is necessary (rather than separate arguments)
because the procedure macro_processor must have
a known number of arguments.

The call for case 2 is:

call mac~o_processor$setup_only (macro_name, argument_array);

Implementation

The major jobs of the macro processor are

1) to insure that if the Listener.is called it will not
return to the macro processor until the macro is completed~

2) to cause the request handler (BY.4.01) to be called to read
input 1 ines~

3) to provide the request handler with a source of input
lines~ namely the macro data base~

4) to provide cleanup facilities when the macro is completed~

5) to store the arguments to the macro where the macro can
access them~

6) if execution as well as setup is wanted~ call the listener.

Insuring that the listener will not return until it is
appropriate is easier than it sounds. A quick reading
of BX.2.02 will reveal that if the user wants to housekeep
after each command~ the listener returns to its caller
after each command. Conversely~ if the user does not
want to housekeep the listener does not return~ but rather
calls to read another command line. Although the macro
is not operating at command level, we can use this feature
of the listener. We merely set the housekeep option to
off {default is no housekeeping at command level) after
pushing the options stack (to preserve previous option
values).

The calls involved are:

call push_opt; I* see BY.9.01 *I
call modopt (11 housekeep",O,"O"b," "): 1~-r see BY.9.03 *I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.18.01 PAGE 3

The next step is to alert the request handler to its imminent
role. The I/0 localattach call (BF .1.01) attaches an
ioname to the request handler and conveniently passes .
the attachment on to the request handler. The macro processor
wishes to attach the request handler to the ioname user_input,
and also remember the current user_input attachment in
order to restore it later. The macro processor calls
unique_chars (BY.15.01) to obtain a unique character string.
It then calls io_rename (BF .1 .01) to rename the ioname
of the current user input attachment to the unique character
string. Thus the ioname user_input is left free.

The macro processor can then safely issue the call:

call localattach (11 user _input" , 11 request_handler11 ,

defaU 1 t_S t ream, II r 1
1 StatUS);

to attach user_input to the request handler. The I/0
system calls request_handler~localattach to give the request
handler a chance to prepare itself. See BY.4.01 on the
request handler for further details.

The macro processor stashes away the unique character
string to use when the macro has finished. It will then
restore the ioname user_input to its previous attachment
by renaming the attachment of the unique character string
back to user_input.

Before providing the request handler with the macro text,
part of the future cleanup facility must be prepared.
The macro processor calls request_handler~insert_line
to place the command line

modopt 'housekeep' 0 1 ' ' <NL>

in the request queue. After the macro text has been exhausted,
this wi 11 be the next command line 11 read11 by the listener.
When the listener receives control following execution
of the command it will find the housekeeping option on
and will return to its caller the macro processor.

The macro processor places the macro text in the request
queue with a call to request_handler~insert_file.

The only task left before calling the listener is to store
the arguments to the macro where the macro can access
them. The macro ar~ control command uses these arguments
to set up the subs t 1 tut ion 1i s t used by the request handler.
The macro processor creates and initializes the segment
macro_arguments if it does not already exist. The segment
is a structure declared as:

MULTICS SYSTEM-PROGRAMMERS# MANUAL

.del 1 arguments based (a_ptr),
2 current_list bit (18),
2 space area ((131071));

SECTION BX. 18.01 PAGE 4

The macro processor then allocates the following structure into
a_ptr ~ arguments. space.

del 1 args based (arg ptr),
2 previous_list ptr,
2 n_args fixed bin (17),
2 arg_array (ar~ptr~args.n args), . ~·

3 !.;Jt._!.mldex f 1 xed bin (17), /* f naex .:1" P . .:a~t:·5:. ·.s:.;a'
stitution of th1s argu
ment in substitution
list ~"/

3 count fixed bin (17),
3 chars char (100)J

where arg_ptr~args.previous_list points to the previously
allocated set of arguments. (Argument lists are stacked
so that only one data base is needed even when macros
are nested.) arg_ptr~args.n args is the number of arguments
in the list of arguments where the count indicates how
many of the chars are meaningful. The third-level element
sub_index, is an index of the current substitution of
this argument in the substitution list of the Request
Handler (BY.4.01).

Having stashed away the arguments, the macro processor
calls the listener. When the listener returns, the macro
processor pops the option stack 1 frame:

call pop_opt (O)J

Note that this changes the housekeep option back to its
previous settings. The macro processor now pops the substitution
list by a call to request handler$pop subst (BY.4.01).
It also renames the ioname having the-unique character
string name to 11 user_input 11 , then returns. If the macro
processor was called at its $setup_only entry it returns
before calling the listener and depends on someone else
to pop the options stack.

