
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.B.OO PAGE 1

Published: 01/27/67
(Supersedes: BX.8.00 1 01/14/66)

Identification

Overview of File System Commands
C. A. Cushing~ C. Garman 1 E. Q. Bjorkman

Purpo~

The file system commands and procedures are designed as
an interface between the Multics user and the· Basic File
System (Section BG): they provide frequently-used sequences
of manipulations upon segments which reside in the file
system hierarchy~ as well as service functions such as
the formatting and printing of segment status information.

Similarly~ the file system procedures provide a more flexible
interface between a user's programs and the 11 primitives11

of the Basic File System~ as well as error handling by
means of the standard error procedures (BY.11). For further
information see BY.2.00 1 • 9verview of File System Librar~
Procedures.

Introduction

A file is a linear sequence of data elements; an element
ma'Ybe a machine ~r>Jord 1 an ASCI I character~ or a bit 1 or
multiples of each of these~ depending upon the context
of a particular reference. In Multics~ a file is generally
found as a segment somewhere in the hierarchy of directories
maintained~· manipulated~ and massaged by the Basic File
System. A segment may be known to a user or his procedures
by its ,2egment name, which may include information on
its location-In the directory hierarchy~ or by its (hardware)
segment number~ which provides a shorthand method for
accesSing the ·data of the segment in core memory.

A Multics user may create, modify, or delete segments
only through the use of the Basic File System: directly,
by programmed calls to user-accessible entries in the
Basic File System and hardvJare segment addressing of data,
and indirectly, by using the file system commands and
subroutines. The first group is covered in MSPM section
BG 1 The Basic File S~stem, and BD.3, Segment Housekeeping
Module, while the latter-group is the subject of sections
BX.8 1 file System Commands~ and BY.2, File_2ystem Library
Procedures.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 2

Files, Branches and Entries

A directory is a special segment maintained by the Basic
File System~ which contains a list of entries. To the
user~ an entry appears to be a segment which is accessed
in terms of one or more symbolic entry names. The names
are composed of strings of ASCII characters~ whose syntax
is discussed below. An entry name need be unique only
in the directory in which it occurs.

There are two types of entries each containing a "pointer":

If the entry is a branch~ the pointer defines the location
of the contents of the segment somewhere in the secondary
storage hierarchy; this segment may or may not be a directory.

If the entry is a link~ the pointer describes~ symbolically~
another entry in the same or another directory. A link
may point to a link~ etc, 1 to a reasonpble depth of nesting~
but once a link points to a branch~ the segment pointed
to by that branch is accessible as if the original entry
had been the branch poin~ing to the segment.

Each branch contains a description of the way the segment
it points to may be used or referenced~ which is termed
its access control information;· a link does not contain
this 1nformat1on~ but instead derives its access privileges
from the branch to which it ultimately points.

File System Hierarchy

The Basic File System works with a basic tree hierarchy
of segments across which links may be added to facilitate
simple access to segments elsewhere in the hierarchy, ·
With one exception each segment (e.g.~ directory) finds
itself directly pointed to by a branch in exactly one
directory; the exception is the root directory at the
root of the tree~ whose location is known to the Basic
File System~ but which does not appear in any directory,

A segment pointed to by a branch in some directory is
immediately inferior to that directory and the directory
is immediately superior to the segment. The master directory

·has level zero~ and segments immediately inferior to it
have level one. By extension~ inferiority (or superiority)
is defined for any number of levels of separation via
a chain of immediately inferior (superior) segments.

Links are considered superimposed upon~ but independent
of~ the tree hierarchy.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 3

At any one time# a user is considered to be operating
in some one directory, called his working director~ (wdir).
He may access a segment simply by specifying the entry
name in his working directory which effectively points
to that segment. An entry name is meaningful only with
respect to the directory in which it occurs# and may or
may not be unique outside that directory. In order to
refer to an entry which is not in the working directory,
it is necessary to have a symbolic name which unambiguously
defines an entry in the hierarchy as a whole. Such a
name is a path name. It consists of the chain of entries
(branches or links) required to reach the desired entry
from the root directory or from the working directory.
A number of abbreviations may be used for the special
directories at each Multics installation, e.g. the Multics
Command and Subroutine Library, the Local Command and
Subroutine Library, or the Process Directory (see BD.6
System Skeleton# and BD.4 6 the Search Module).

Names: Formation and Syntax

A file-system-name is a ~tring of ASCII graphic characters
which plays a role corresponding to that of an identifier
in a programming language. Names are further classed
as ~n)ry names, path names, and access-control names (~
names . .

Five punctuation characters (" " ''>'' ''<" "-;':" and ''=") • , # , ,

are reserved and receive special interpretation when encountered
in names in the context of the Basic File System and the
file-system commands and subroutines. While the other
punctuation characters and the ASCII control characters
are not specifically excluded, most names will in fact
consist of only the upper- and lower-case alphabetic characters,
the digits, the underscore character"_", and appropriate
usages of the five special characters named above.

An ~ntry ~ is composed of one or more graphic components
(not conta1n1ng the reserved characters), separated by
"."; the components may be referred to (in order, left-to
right) as the primary. secondary. etc., components of
an entry name. Certain commands attach particular significance
to various components of an entry name; thus the command

p 11 my _seg

directs the PL/I compiler to attempt the compilation of
the (ASCII) file,

my_seg.pl1

(See also BB.5.01, Reserved Segment Name Suffixes.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.B.OO PAGE 4

A successful compilation would produce the following new
segments in the user's working directory:

my seg
my:seg. 1 ink
my_seg.symbol

[note no secondary component]
[linkage segment]
[symbol table and binding information]

and if the "1 ist 11 option was "on"

my_seg.list [listing segment].

A component may be null or empty~ if necessary to preserve
the sequence of components~ or for other reasons. The
following are examples of null co~ponents:

a.~ a .• c
.b

[null secondary component]
[null primary component]
[primary and secondary components both null]

To provide a shorthand notation for referring to several
segments at once in a command invocation~ ~pecial meanings
are attached to the cha r_?c te r strings 11 '1,11 ~ ""ib'(11 ~ and "=11 ~

In the discussion.below ~ntry-name argument refers to
the character str1ng used as an argument to one of the
file system commands. The entry-name argument defines
the entry name(s) in a particular directory with which
the command is to concern itself.

·In general~ when an entry-name argument is supplied in
the argument list of a command~ a comparison is implied
between the argument and one or more entries in a particular
directory~ to find which entries match the given entry-name
argument. For a simple entry-name argument (one without
the character strings '*' and '**')~ the test for a match
is simply a character-by-character comparison of the entry
name argument with _individual entries in a directory.

If a single asterisk (*) appears as the sole accupant
of a component position in an entry-name argument, it
permits a match against any character string (possibly
null), in that component position of an entry name in
a directory.

If the character string '**' appears as the contents of
a component position in an entry-name argument~ it permi1s
a match against any integral number of components of an
entry name in·a directory. Non-** components of an entry-name
argument must match exactly with corresponding components
of an entry name, e.g.~ components to the right of the
last '**' in an entry-name argument must match exactly
with those components on the end of an entry name.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 5

Note that certain commands (e.g.~ link- BX.8.04) 9£ DQ!
observe these conventions; they do~ however~ check for
entry-name arguments with '*' and '**' and ask suitable
questions before attempting to perform their duties.

Thus~ using the names from the previous example~

my_seg

as an entry-name argument matches the single segment by
that name;

my_ seg • -ld:

matches the five segments whose first component is "my_seg":

my_seg .pl 1
my seg
my:seg. 1 ink
my seg.symbol
my:seg. list

while

-
stands for "all files"~ including the files named above.

Note~ however~ that

my _seg. -I:

does .!J.21 include

my_seg

·since the match is to a two-component name.

The single character 11 =11 as a component denotes "the component
occurring in the corresponding position of the preceding
entry name"; thus~ the command

delete (my_seg.~ink =.symbol)

would remove the entries and segments named

my_seg. link

and

my_seg.symbol

MULTICS SYSTEM-PROGRAMt-1ERS' MANUAL SECTION BX.8.00 PAGE 6

The "=" as a component is interpreted by each command
individually; the command descriptions discuss particular
aspects or restrictions.

An access control name (or~ name) is constructed similarly
to an entry name; however, it always contains a fixed
number of components (this number may vary from installation
to installation) separated again by".". The character
strings '*' and·'**' are defined as for entry-name arguments;
since the number of components is fixed, however, missing
components on the ri~ht are assumed to be '*'· The sin~le
character user name ·k' denotes "a 11 users of this Mu 1 t 1cs
installation'•.

A~ name is written symbolically as a chain of entry
names, each name separated by ">11 • If the first character
of the path name is">", the path name is an absolute
path name; that is, it is fixed with respect to the root
directory. If the first character is not 11 >", then the
path name is relative to the working directory or one
of the special system directories. For example, the path
name of the directory corresponding to the box marked
1 in Figure 1 is >Z>H. If >Z>H is now the working directory,
then a path name of the directory corresponding to the
box marked 2 is L. The symbol '<' is the shorthand notation
for the path name of the directory which contains the
1 ink or branch that "'1as used to access the current "'Jerking
directory. Using this notation and considering the path
taken to directory 2 as >Z>H>L, a path name for directory
3 relative to directory 2 is <<A. Considering another
path to directory 2 as >Z>A>B>C, a path nam~ for directory
3 relative to directory 2 is << .

. 4ccess Control

In attempting to access a segment a user may or may not
be successful depending upon his implicit intentions and
his permissions with respect to the segment. The set
of permissions with-which a given user may access the
segment pointed to by a particular branch is called the
mode of the branch for that user. The permissions given
the user of a particular branch are specified by an access
control list for that branch. This list is a list of
users (i.e., of sets of users) along with the corresponding
mode associated with each user. The access control list
is ordered according to the weights of the user names.
The weight of a user name is equal to the sum of the weights
of its components "'Jhere the weight of the i th component
(reading from left-to-riaht) is 2"''''i. The components
designated by '*' have weight 0. The ordering is from
the highest to the lowest weighted user name. User names
with the same weight have no ordering with respect to
one another. For example, the following user names

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.S.OO

M1416.Smith.*
* T1 04. ·k

..aa
M1416."(.aa

would be ordered

M1416.*.aa
..aa
M1416.Smith.*
T104.*·
* [equivalent to ··'· •'- ·'· J "" "" "" . .

PAGE 7

The list is scanned from the top to discover the mode
of a user. If all access control information required
for the use of every segment in a particular directory
is the same for certain users, this access control information
may be put in the common access control list of the directory.
If a user's name or class 1s not on the access control
list of the branch pointing to the se~ment he wishes to
use, then the common access control l1st is searched for
this user's name or class, to determine his mode of access
to the segment.

The mode consists of five attributes, named Trap, Read,
Execute, Write, and Append, (sometimes abbreviated TREWA)
each of which is either on or off. Collectively they
9efine !he ap~arent mode of the segment. The.trap attribute
1s exam1ned f1rst. It has the power to overnde the other
four attributes called !d_?age attributes. The usage attributes
indicate permission to perform the g1ven ativity only
if the attribute is on.

~ATTRIBUTE. When a branch has the Trap attribute
on for a g1ven user, a trap occurs on any reference using
that branch by that user. That is, the procedure whose
name is given as the tra~ procedure is called. A list
of parameters may be def1ned with this procedure name
and are passed as arguments to the called procedure.
The return from the trap procedure specifies the effective
values of the four usage attributes, which may override
the original values. A user can inhibit the trap mechanism,
in which case all references to a branch by the user with
the Trap attribute on will cause an error return to the
calling procedure. (For further information see BX.8.02,
Access Control Commands, BG.8, Directory Control, and
BG.9, Access Control.)

USAGE ATTRIBUTES. Every op~ration on a given segment
implies one of four intents, namely, read, execute write
or append. The interpretation of the intent depends upon

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 8

whether the accessed branch points to a directory or a
non-directory segment.

Attribute

Read

Write

Append

Execute

Directory

can "read" a directory
to get information about
any or all of the entries,
including access control
lists

can delete or rename
specifically named entries
and change access control
lists of specifically named
entries.

can add entries without
changing existing entries

caQ search for specifi
cally named entries in
the directory in order
to use them or to get
information about them,
excluding access control
lists.

Non-directory branch

can read the segment

can truncate or rewrite
existing contents of
the segment without
adding to its length.

can add to segment
without changing origi
nal contents of file.

can execute the con
tents of the segment
as a procedure.

EXAMPLE: Consider the request to delete all entries whose
names contain the secondary component GAMMA in a particular
directory. The user issuing this request must have the
Write attribute on in the access control list of the branch
pointing to the directory in order to delete each of the
entries in the set described. The user must also be able
to Read the directory in order to find all the entries
with this secondary component, GAMMA.

Organization of the File System Commands

The file system commands are described in the section
which followi the calling sequence for these commands
(with examples of the kind of arguments expected) is generally
"command entry args". (See also BX.,.OO, The Command
Language, and BX.2.00, The Shell.) ---

command is simply the name of a command

MULTI CS SYSTEM- PR OGRAt~t~ERS ' MANUAL SECTION BX.8.00 Page 9

entry

(list)

is an entry-name argument as discussed earlier#
and defines the group of entries to be considered
by command; entrv may be a name defining a group
of entries in the current working directory; or
entry may be a path name with an entry name appended
to it defining a set of entries in the directory
pointed to by the preceding path# e.g.

<A

f:1.>"'''. ep 1 bsa

<<T>U>TEST .• pl1

[entry A in the directory immediately
superior to· the working directory]

[all 2 component entries with
secondary component "eplbsa11 in
directory A which is immediately
inferior to the working directory]

[all entries in directory B which
is inferior to the root]

[This one is left as an exercise
to the reader]

are all correct entrv arguments. When the entrv
argument can be a list of these arguments~ (entries)
appears in the calling sequence. The arguments are
separated by blanks and the list is enclosed in
parentheses.

are arg11ments ':Jhich vary from command to command.
T\'JO types which are common to many f i 1 e s ys ter11
command calling sequc,lce are path and (1 ist).

is a series of entry namc:.::s separated by ">" or ''<''
which defines a directory different from the working
directory. (See the previous discussion of path
names in this section.)

is simply a list of items separated by blanks and
surrounded by parentheses.

In addition~ one system option is specifically provided
for use vJith the file system c:or:1mands~ v'Jhere applicable:
11 omit ~~~ may be set "''i th an interjected command (see
BX.1 .00# The Command Langua~L to affect the operation
of a particular command. For example# the command sequenc~

1 ist [omit dir]

vvould direct the i ~st command (BX.8.01) to :i.ter,lize and
l 0 1 " .L ' r- th , I

0 d 0
' a 1 s ::> a y t n e con Len •: s o T , e u s e r s v'Io rr<:). n g J. r e c-c or y ~

excluding directory entries. ·

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BX.B.OO PAGE 10

R 0 0 T

D I R E C T 0 R Y

H 0
z

~z I
J J
L D """ "' H "\

A

0 "\.
A

'\
'\

F \
B B \

F I

D I
c

c G)

F
F

D
Figure 1

MU.L TICS S YS TEfv1-PROGRAMfv1ERS' MANUAL SECTION BX.8.00 PAGE 11

L;J...---_.;._-SHE-LL-BX-.2 --, .---'1
File System Commands

list BX.8.01

setacl 1

delacl lBx.s.o2

set_ trap

set priviledge - -
listacl BX.8.03

link BX.8.04

make dir } BX.8.05
make branch

rename } add name BX.8.06

del name

delete BX.8.07

truncate BX.8.08

move_ entry BX.8.09

move file BX.8.10

map_dir BX.8.11

Basic File System

=->

BG

Working Directory Commands

change wdir }

restore_wdir BX.B.l2
get_wdir

default wdir

Working Directory Procedure

wdir

File System Library

Procedures BY.2

BY. 2. 02

Figure 2: Schematic Diagram of Interactions Between File System

Commands and Library Procedures, and the Basic File System

I

\

'

