
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX 8.07 PAGE 1 

Published: 12/08/66 
(Supersedes: BX.8.04~ 01/14/65) 

Identification 

delete 
P. Smith~ E. Bjorkman 

Purpose 

delete (entries) 

Delete deletes each entry defined by the list (entries). 
The user must have the write attribute on for the directory 
containing (entries) as well as for each branch entry 
in the list. 

If an entry in (entries) is a link~ the entry is deleted. 
The segment pointed to by the link is not touched. 

If an entry in (entries) is a directory~ all segments 
listed in that directory are also deleted~ providing the 
user has the write attribute on for the directory as well 
as for all the segments inferior to it. If the user does 
not have the write attribute on for all the necessary 
entries~ delete deletes as many entries as possible. 
No directory may be deleted until all segments pointed 
to by branches in that directory are deleted. 

When an entry in (entries)· is a directory delete informs 
the user with the following comment: 

"Entry is a' directory. Do you want ~ntry and all, the 
segments in it deleted?11 

Delete then acts according to the 11 yes11 or 11 no11 answer 
typed by the user.· The above question may be stopped 
by the interjected command [no_quesJ~ or by turning on 
the no_questions option. 

V.Jhen there is no console attached to a proces.s~ or no_questions 
in on~ delete proceeds to delete the directory. 

Comment 

A message is printed when an entry cannot be deleted. 
If delete is called from a procedure and an entry cannot 
be deleted an error is signalled. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL 

Implementation 

delete (entries) 

SECTION BX.8.07 PAGE 2 

For each entry in the list (entries) a separate call must 
·be made to the Directory Supervisor. 

An entry is well defined to the file system by a path 
name which points to a directory and a name of an entry 
contained in this directory. A symbolic entry name in 
the list entries is converted to the strings dir and name 
by the library routine entryarg (BY.2.04) which locates 
this entry in the file system hierarchy. 

If any component of the name namg is denoted by '*~, the 
library routine star is called to obtain the entry names 
in dir defined by name. Each name returned by star must 
be treated separately and is stored in the string, name. 

An ·entry is deleted from dir by the library routine delete_entry 
(BY.2.01) which in turn simply calls Directory Supervisor 
primitive delentry. 

delete_entry can signal the following errors: 

1. Write attribute not on in the entry pointing to dir. 
Name then cannot be deleted. 

2. Write attribute not on for the entry name. Name 
cannot be deleted. 

3. Name points to a directory. Delete sends the following 
message to the user. 

"Entry is a directory. Do you want entry and all the segments 
in it deleted?" 

If the user types 11 no11 , delete processes the next entry 
in (entries) or returns to command status if there are 
no more entries to process. If the user types •• yes•• or 
there is no console associated with the process calling 
delete, then the file system library routine donode (see 
BY.2.04) is called as follows: 

donode (name, ln, d, 'go_away~, 1) 

Donod~ executes the routine go_away in the directory name 
and in all directories ln or fewer levels inferior to 
name. (See BY.2.04) ln is set to a large number to insure 
that all directories inferior to name are reached. Go_away 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.07 PAGE 3 

is a small piece of coding which calls delete-entry. 
Specifically, go_away handles error signals from delete-entry 
as follows: 

1. Write attribute is not on in 
entry pointing to dir. 

2. Write attribute not on for 
an entry in dir. 

3. Entry to be deleted points 
to a directory 

Dir and its contents cannot 
be deleted. A comment is 
sent to the user. A normal 
return is made to donode 
which then proceeds with 
the next directory. 

The entry cannot be deleted. 
Go_away proceeds with the 
next entry in dir. 

Since donod~ is working 
from the bottom of the 
hierarchy to the top, this 
directory has had as many of 
its entries deleted as 
possible. If the hierarchy 
contains no entries, this 
error return should not occur. 
Therefore, go_away assumes 
that it cannot be deleted 
bec~use it is not empty. A 
comment is sent to the user 
that this directory may not 
be del et1~d. Go_avJay proceeds 
with the next entry. 

Upon return from donode, delet~ makes another call to 
delete_entry to delete the entry name. If the directory 
~is still undeletab.le, delete will comment and proceed 
with the next entry in (entrie~). 


