
MUL TICS SYSTH1-PROGRAMMERS 1 MANUAL

Identification

''Entry variables" in PL/I.
Fake_entry$create~ fake_entry$call.
D. B. Wagner

..E.urpose

SECTION BY .1 0. 01 PAGE 1

Published: 09/28/66

A problem with the PL/I language is that there is no
such thing as an "entry variable~" that is~ for example~
there is no equivalent to the MAD sequence.

FUNCTION NAf'v1E A

A= SIN.

B = A. (C)

This causes trouble in a number of places: in particular
in the Request Dispatcher (described in BY.6.01). The
most reasonable design for the Request Dispatcher involves
a calling argument which is an array of entries.

The library routines fake_entry$create and fake_entry$call
provide a way of getting around this difficulty.

Usage

The calling forms are:

a = fake_entry$create (q);

call fake_entry$call (a, ..•);

The ellipsis represents an arbitrary sequence of arguments.
~and~ are declared as follows:

del q entry,

a bit (216); /* 216=6*36 */

fake_entry$create bears a family resemblance to 1!..0.§.J2eC: it
takes an entry and returns a bit-string representation
of it. Fake_entry$call is used to call the entry represented
by such a bit-string~ giving any arguments the user desires.

Implementation

The bit-string£ above is 6 words long~ and these words are
used as follows. The first and second contain an ITS

. .

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BY.10.01 PAGE 2

pair pointing to the entry~ the third and fourth contain
an ITS pair representing a stack level (always present~
but not used unless Q is an internal procedure)~ and
the fifth and sixth contain validating information (not
yet specified). This is precisely the same form as a
PL/I label variable.

It should be noted that since a fake entry contains a
stack pointet~ one should be chary of putting it into
static or controlled storage.

