
TO:
FROM:
SUBJECT:
DATE:

MSPM Distribution
N. I. Morris
BY. 14.00
12/13/67

been added to E!£.
set of an existing segment

..

,.. MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .14 PAGE 1

Published: 12/13/67
(Supersedes: BY.14, 01/06/67)

Identification

Relative Pointer Manipulation Procedures (PTR)
N. I. Morris

Purpose

Data bases exist which may be used by many different processes.
These data bases may contain pointer information. Since
the EPL pointer type variable is a standard 'its' pair,
pointer variables will contain a segment number. This
can lead to disastrous results if different processes
refer to the same data base by a different se~ment number.
For the above reason, it is desirable to prov1de a pointer
variable which is independent of segment number. This
pointer is called a 'relative pointer'; it contains no
se~ment number, only an offset. In generating a relative
po1nter from an 'its' pair, the segment number is discarded,
leaving only the offset portion of the 'its' pair. This
relative pointer is contained in a bit string of length
180 .

It is the purpose of the PTR procedures to convert 'its'
pairs to relative pointers in order to store them in conmon
data bases, and to convert relative pointers back to 'its'
pairs in order to use them.

Implementation

Due to the consideration of execution time and the ease
of coding, the PTR procedures have been machine-language-coded
in EPLBSA. At some time in the future, they should probably
be included in the EPL compiler as built-in functions.

Usage

1. ptrgrel

To generate a relative pointer from an 'its' pair:

relative_pointer = ptr~rel (its_pointer);

'its_pointer' is an EPL variable of type ptr.
'relative_pointer' is a bit string of length 18.
'relative_pointer' wi 11 contain the offset portion of the
'its' pair contained in 'its_pointer'.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BY.14.00 PAGE 2

2. ptr$ptr

To generate an 'its~ pair from a relative pointer:

its pointer =
relative_pointer);

ptr$ptr (segment_pointer,

'segment_pointer~ is any pointer to the same segment to
which 'its pointer~ will point. 'its pointer' will contain
the contents of 'segment_pointer~ with the offset part
replaced by the contents of 'relative_pointer~.

3. ptr$baseno

To extract the segment number from an 'its~ pair:

'segment_number~ = ptr$baseno (its_pointer);

'segment number~ is a bit string of length 18. It will
contain the segment number portion of the contents of
'its_pointer~.

4. ptr$baseptr

To generate an 'its' pair from a segment number:

its_pointer = ptr$baseptr (segment_number);

'its pointer~ will contain an 'its' pair pointing to the
segment specified by the contents of 'segment_number~.
The offset of the 'its~ pair in 'its pointer' will be
zero.

s. ptr$addrel

To add to the offset of an existing pointer:

its_po.inter = ptr$addrel (segment_pointer, relative_pointer);

'its pointer~ will contain on 'its~ pair derived from
'segment_pointer' by a logical additiqn of the offset portion of
'segment_pointer~ and 'relative_pointer'. The se~ment number of
'its_pointer~ is identical to the segment number 1n 'segment_
pointer~.

