
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.2.01 PAGE 1

Published: 10/21/68
(Supersedes: BY.2.01, 03/28/67)

Identification

Command, file system interface
ufo
R. J. Feiertag

Purpose

This routine has three main objectives:

1. Provide a set of file system primitives to accept both
fixed and varying character strings,

2. To handle the convention of using a trailing 11 >11 on a
name to indicate a directory branch,

3. To test the usefulness of proposed file system primitives
by simulating them in yfQ.

Usage

The reader should be familiar with the new command system
(BX.8.DD). Each of the entry points acts as a file system
primitive. They differ from the rin~ 0 primitives in
that they accept both fixed and vary1n~ character strings
as arguments. A name with a trai 1i ng ' >" is treated as
a directory branch name.

The entries are:

1. chname-change an entry name

call ufo~chname(dir, entry, oldname, newname, code);

del dir char(*),

entry char('l'c),

oldname char(*),

/*or char(*) varying,
symbolic pathname of
directory*/

j-;'cor char(*) varying,
symbo 1 ic name of
ent ry.,'c'j

/*or char(*) varying,
name to be deleted from
list of entry names*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.2.01 PAGE 2

newname char(*).

code fixed bin(17);

/*or char(*) varying.
name to be added to list
of entry names*/

/*if non-zero. it repre
sents the code of an error
detected by the file
system*/

oldname is deleted from and newname is added to the list
of entry names of the branch 1ndicated by dir and entrv.
If oldname is 1111 nothing is deleted and if newname is
1111 nothing is added. The write permission in Q.!.r. is needed
to change an entry name.

chname first calls the internal procedure off which removes
trailing blanks and a trailing ">" if they exist and converts
to fixed character strings by calls to cv_string (BY.10.03).
chname then calls hcs_~chname (BG.B.02) to perform the
name changes.

2. appendb-creates a branch

call ufo~appendb{dir. name, usermode. maxl, code);

del name char(*)."

usermode bit(S).

maxl bit(9);

/*or char(*) var. name
for new branch*/

/*access mode of current
user with respect to this
branch*/

/*maximum len~th of segment
to which th1s branch points
(in units of 1024 words)*/

The user needs the append permission in dir to create
a branch in dir. If so. a branch with entry name~
is created in dir.

appendb first calls off and then calls hcs~~appendb (BG.B.02).

3. appendl-create a link

call ufo~appendl(dir. name, pathname. code);

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BY.2.01 PAGE 3

del name char(*)-

pathname char(*);

!*or char(*) var_ name
for new 1 ink.,.<'/

!*or char(*) var, path
name of the entry to
which this new link
wi 11 point*/

The user needs append permission in dir to create a link
in it. If so, a link with entry name-name will be created
which points to the entry pathname. ----

appendl first calls off and then calls hcs_~appendl (BG.8.02).

4. chase-determine the entry to which a link effectively
points and distinguish between directory
branches and non-directory branches.

call ufo~chase(dir_ entry_ newdir, newentry_ nlinks_ code);

del newdir char(511) var,

newentry char(*)-

nlinks fixed bin(17);

/*directory containing
entry being chased*/

/*or char(*) var, name
of entry being chased*/

/*maximum number of
links to be gone through*/

Read permission is necessary in each directory containing
a branch or link to be chased. newdir and newentry specify
a branch effectively pointed to by dir and entry. If
newentry is a directory branch it wi 11 contain a trailing
">'•. If the number of links gone through in search of
newdir and newentry exceeds nlinks an error will be returned.
Whenever an error occurs the name of the link currently
being processed will be returned as the value of newdir
and newentry. If nlinks is 0 the maximum number of links
wi 11 be set to the system maximum (currently 10).

chase calls the internal entry chase_ with the same calling
sequence except that if nlinks is 0 it is changed to the
system maximum number of links. chase_ calls hcs_$status
(BG.8.02). If the entry is a non-directory branch then
its name is returned. If the entry is a directory branch
then its name is returned with a trailing">". If entry
is a link and nlinks is greater than 0 then chase_ is
called recursively with the pathname of the link_ and
nlinks reduced by one.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.2.01 PAGE 4

5. delentry-delete an entry

call ufo~delentry (dir, entry, csw, code);

del csw fixed bin(1); /*courtesy switch*/

Write permission is necessary in the directory of the
entry to be deleted and if the entry is a branch, write
permission is needed in the branch. The entry specified
by dir and entry is deleted. If the entry is a non-directory
branch the segment is deleted. If the entry is a directory
branch the directory and its subtree are deleted. If
the entire subtree cannot be deleted then as much is deleted
as is possible and an error code is returned. If ~
is 1 then the branch will be deleted only if it is not
in use.

delentry first calls off. If entry contains a trailing
''>" then hcs_~del_dir_tree (BG.9.06) is called to delete
the subtree. Then hcs_~delentry (BG.8.02) is called.

6. copier-create a copy of a segment

call ufo~copier(dir, entry, newdir, newentry, code);

A copy of the segment in the branch defined by dir and
entry is created in the directory newdir, with name newentry.
Read permission is necessary in dir and end[Y and write
and append permission are necessary in new 1r. The segment
defined by dir and entry can not be a directory.

First off is called to prepare the arguments for the file
system. Then initiate is called to get a pointer to the
segment to be copied. A new segment is created by a call
to make seq and a copy of the old segment is placed in
the new segment by a call to move.

7. movebr-move a branch

call uf~movebr(dir, entry, newdir, newentry, csw, code);

The branch indicated by dir and entry is moved to the
directory, newdir, and is given the name newentry. This
branch can not be a directory. The old branch indica·ted
by dir and entry will no longer exist. The access control
list is also moved. Read permission is necessary in dir
and entry and write permission is necessary in newdir.
If ~ is 1 and entry is being used then nothing is done
and an error code is returned.

•

MULTICS SVSTEM-PROGRA~ERS' MANUAL SECTION BY .2.01 PAGE 5

First ufo$copy is called to create a copy of entry in
newentry. ufo$readacl and ufo$writeacl are called to
move the ACL. Then ufo$delentry is called to delete entry.

8. readacl-get access control list

call ufo$readacl(dir, entry, user_area, aclptr, aclct, code);

de 1 user _a rea area((*)),

aclptr ptr,

aclct fixed bin(17);

/*an area provided by
the caller in which readacl
returns the acl informa
tion*/

/*pointer to a structure
allocated by Directory
Supervisor in user_area
which is filled with
the contents of the
requested acl*/

/*count of the number of
user names in the acl,
returned by Directory
Supervisor*/

The access control list of the entry effectively pointed
to is returned. If entry is the null string the common
access control list of the specified directory, dir, is
returned. Read permission is necessary in the directory
of the entry. The structure returned by readacl is:

del 1

2

2

acl (aclct) based (aclptr),

use rid,

3 name char(24),

3 project char(24),

3 instance~tag char(2),

packbits

3 mode bit(S),

3 pad13 bit(13),

3 (rb1, rb2, rb3) bit(6),

3 traprp bit(18),

3 pad18 bit(18);

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BY.2.01

del 1 trappoc based (tp),

2 size fixed bin(17),

2 string char (tp->trapproc.size);

PAGE 6

After calling off, ufo~readacl calls the primitive readacl
(BG.8.02).

9. writeacl-write access control list

call ufo~writeacl(dir, entry, aclptr, aclct, code);

The ACL of the entry effectively pointed to or CACL or
the specified directory dir, is replaced with the structure
pointed to by aclptr. Write permission is needed in the
directory of the entry pointed to. The structure of the
ACL or CACL is the same as that shown for readacl.

After calling off, ufo~writeacl calls the primitive writeacl
(BG.8.02).

10. status type-determine if entry is a non-directory
branch, directory branch, or link.

call ufo~status_type(dir, entry, chase, type, code);

del chase fixed bin(1),

type fixed bin(2);

/*switch to determine if
links are to be chased*/

/*indicates type of entry,
as returned by status_
type*/

~ is set to 0 if entry is a link, 1 if entry is a non-directory
branch, 2 if entry is a directory and 3 if there is an
error. If chase 1s non-zero then ~.will return values
for the branch effectively pointed to by entry. Read
permission is needed in the directory of the entry.

First off is called to prepare arguments for the file
system:-Fhen a call is made to entry_status~type (BY.2.10)
to determine the type of the entry.

