
,..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.4.01 PAGE 1

Published: 11/10/67

Identification

The Request Handler
D. B. Wagner~ K. J. Martin

Purpose

The Request Handler is a library procedure which performs
certain important primitive operations for programs which
work with the text of commands and requests. Among the
programs which use the Request Handler are the command
language macro facilitY 1 the debugging command tracer~
and the library procedure dispatch_request •. These are
described in BX.18, BX.10.02 1 and BY.6.01 respectively~
and the reader should refer to those sections for a better
view of the context of the Request Handler.

Introduction

The Request Handler is treated as an I/0 System pseudo-device.
That is 1 an input stream may be attached to it in the
same way that a stream is attached to a typewriter or
card reader. For each stream attached to it 1 the Request
Handler keeps two data bases~ the Request Queue and the
Substitution List. A procedure which wishes to use the
Request Handler attaches some stream to it and sets up
the two data bases to serve its needs. Subsequent calls
to read from that stream cause the Request Handler to
be invoked.

The Request Queue is essentially a list of ASCII lines
where the Request Handler pseudo-device looks for text
when it receives a"read" call. The user may place lines
at the head of a Request Queue through direct calls to
any of several entries described below. The Request Queue
is in fact a push-down list.

The Substitution List is a list of pairs of ASCII strings,
each specifying the name of a bound variable and the
substitution to be made for it. The Substitution List
is manipulated through calls to procedures described below.

When an I /0 system '' read11 call is executed upon a stream
attached to the Request Handler~ the Request Handler returns
the 1 i ne at the head of the Request Queue for that stream;
if the Request Queue is empty it reads a line from a default
stream (normally attached to the typewriter). If that

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.4.01 PAGE 2

default stream is also empty, this condition is reflected
to the 1/0 system read call, and status is returned to
the user indicating what has happened. In either case
before returnin~ this line it performs the bound-variable
substitutions l1sted in the Substitution List for the
stream.

Attaching to the Request Handler

See Section BF .1.01 for a discussion of attaching. The
Request Handler is known to the 1/0 system as a pseudo~device
for which local attachments may be made. (A local attachment
is one which applies only to the process in which the
attachment is made. A global attachment applies to every
process in a process group.) The user issues the following
call to attach a stream to the Request Handler: ·

ca 11 1 oca 1 attach (ioname, 11 reques t_hand 1 e r11 , defau 1 t_s t ream,
11 r' 1 , status); .

The ·1 /0 system attaches ioname to the pseudo-device 11 request_
hand 1 e r11 in read mode (the on 1 y v a 1i d mode for the Request
Handler). The 1/0 system calls the Request Handler at
the entry request_handler$1ocalattach. Upon receipt of
this attach call, the Request Handler sets up an empty
Request Queue and Substitution List for this stream if
these do not already exist. I't also establishes default_stream
as the stream to be read when the Request Queue is empty.
The I/0 system returns status to the user (see BF .1.21
on 1/0 status).

When the user issues a read call on stream the I/O Switch
calls the entry request_handler$read. Any calls to write
on stream are rejected.

Manipulation of a Request Queue

ASCII lines may be placed at the head of the Request Queue
through any one of several calls (these do not go through
the I/0 switch):

call request_handler$insert_line (stream, line);

call request_handler$insert_thread (stream, first, last);

call request_handler~insert_stream (stream, stream2);

call request_handler~insert_seg (stream, segname);

MULTICS SYSTEM-PROGRAMMERS' tJANUAL SECTION BY .4. 01

The arguments expected by these entries are declared:

del stream char(*),

line char(*)varying,

(first, last) ptr,

stream2 char(*L

segname char(*);

PAGE 3

Each of these procedures allocates and places what is
called a bunch of requests at the head of the Request
Queue for the stream indicated. In the case of insert_line
the bunch is the single request in line. In the case
of insert thread, first and last point to the beginning
and end of a threaded list of requests which constitutes
the bunch. Each item on this tl1read has the form of the
structure request_bead:

dtl 1 request_bead based(p);

2 back ptr initial (null);

2 forth ptr initial (null);

2 length fixed bin (17),

2 line char (p~request_bead.length);

Insert_stream places an item into the queue which indicates
that the stream stream2 is to be read when a request is
needed. This 11 bunch~'~ Is then indefinitely long, and depending
upon the nature of the stream may never end except through
a call to the entry revert_queue as described below.

Insert_seg places an item into the queue which indicates
that the ASCII se~ment named is to be read for requests.
In this case the 1 bunch11 is the contents of the segment.

The followin~ calls place an item at the head of a Request
Queue which 1ndicates that some action is to be performed
by the Request Handler before it accesses any bunch of
requests which the item precedes in the queue.

call request_handler~insert_command(stream,command);

call request_handler$insert_call(stream,call);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.4.01

The arguments expected are declared 1

del stream char(*) 1

command char(*)~

call entry;

PAGE 4

Command is a command 1 ine which wi 11 ·be given to the Shell
for execution when it is found at the top of the queue.
Call is a procedure which will be called directly by the
Request Handler (with no arguments) when it is found at
the top of the queue.

The following call causes the item at the head of the
Request Queue to be removed so that the next item in
the queue wi 11 be the next •' seen11 in the queue by the
Request Handler.

call request_handler$revert_queue(stream);

Manipulation of a Substitution List

The following calls are used in working with the Substitution
List for a stream.

call request_hand1er~push_subst(stream1 level);

call request_hand1er~pop_subst(stream1 level);

call request_handler~install_subst(stream1 a 1 b 1 i);

call request_handler~delete_subst(stream1 i);

ca-ll request_handler~count_subst(stream 1 n);

call request_handler~read_subst(stream1 a,b 1 i,deleted);

The arguments expected are declared,

del stream char(*),

level fixed bin (17),

(a,b) char(*) varying,

(i,n) fixed bin (17),

deleted bit(1);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.4.01 PAGE 5

The first two entries manage a push-down list of generations
of the Substitution List for a stream. The other entries
work only with the current generation of a Substitution
List (the one at the top of the push-down list).

Push_subst "pushes down" the Substitution List for the
indicated stream and stores into level a level number
for the pushed generation. Then if this same level number
is given to pop subst, the push-down list will be popped
to that level. -The level number mechanism provides some
assurance that errors in pushing and popping will not
propagate. A call to pop_subst indicating level 0 causes
one level only to be popped.

Install_subst adds the pair (a,b) to the current generation
of the Substitution List for the stream given, indicating
that~ is a string which may occur in a.reque~t (the name
of a "bound variableu) and that the stnng b lS to be
substituted for it wherever it occurs standing alone in
the stream. If any other substitution for ~ exists in
the current ~eneration, it is deleted. A serial number
(beginning w1th 1 and incremented by 1 for each call to
install_subst for the same ~eneration of a Substitution
List) is stored into i. Th1s serial number may be used
in deleting the substitution pair later.

Delete subst removes the i'th substitution installed in
the current generation of-the Substitution List for the
specified stream. This i'th position is not reused.

Count subst returns in n the number of calls to instal l_subst
which-have been made for the current generation of the
Substitution List for the specified stream. Given this
count, the calling procedure may use the entry read_subst
to find all the "current" substitutions. Note that this
count will be larger than the number of substitutions
currently in effect if any calls to delete_subst have
occurred.

Read_subst returns into~ and b the substitution corresponding
to the i'th call to install_subst for the current generation
of the Substitution List for the specified stream. If
this substitution pair has since been deleted using delete subst,
deleted is set to "1"b and~ and .Q. are meaningless. -

Specifying Special Characters

The Request Handler has an array of special characters
which it uses to find free-standing character strings
in order to do the appropriate substitutions for these
strings. Two of the special characters may be supplied

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BY.4.01 PAGE 6

by the user; if he does not supply them# their functions
are not performed. The two characters are a concatenation
character and a character to indicate that the Request
Handler should not substitute for the free-standing string
immediately following.

The following calls supply the concatenation character
and the don~t-substitute'character.

call request_handler~concat_char(stream# user_char);

call request_handler~no_subst(stream, user_char);

The arguments are declared

del stream char(*), user_char char(1);

The concatenate character concatenates the two free-standing
strings immediately on either side of it. The don't-substitute
character suppresses substitution for the free-standing
string immediately on its right. No other special character
may appear between the user-defined special character
and the free-standing strings on which the special character
is to act.

Reading through the Request Handler

A stream attached to the Request Handler is read through
the following I/0 system call:

call read(stream#elemno,workspace,nelem [,nelemt[,status]]);

See BF.1.12 for details of arguments; the Request Handler
makes every attempt to act like a console in the element
sizes allowed, status return# etc. It should not be necessary
for the calling procedure to be aware that the stream
may be attached to the Request Handler instead of where
it expects. (The user effects an I/0 read call by calling
read_in- see BY.4.02.)

The Request Handler, upon receipt of such a call as the
above, looks at the item at the head of the Request Queue
for the specified stream and takes action as follows:

1. If this item specifi·es a call or command (put there by
insert call or insert command) it removes the item from
the queue# executes the action specified, and looks at
the next item in the queue.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.4.01 PAGE 7

2. If on the other hand the i tern is a non-empty ''bunch''
(put there by insert_line, insert_thread, insert_stream,
or insert file), the Request Handler picks up a line
in the bunch. If this is the last line in the bunch,
the bunch is empty; however the bunch will not be
removed from the queue until the next time the Request
Handler looks in the Queue.

3. If the item at the head of the queue is an empty bunch,
the Request Handler removes it from the queue and goes
on to the next item in the queue.

4. If the queue itself is empty, the Request Handler reads
from the default stream which was indicated in the
attach call for the stream specified.

In any case at this point the Request Handler has a command
or request line gotten either from the Request Queue or
the default stream. It now does bound variable substitution,
as follows: A substring of the line is considered to
stand alone if it does not contain any special characters
but is bounded by special characters. (A special character
is any ASCII 9raphic, including a space, which is not
a letter, a d1git, or an underscore.) Each stand-alone
substring of the line is checked with the current generation
of the Substitution List for the stream and any matchin~
substitution is performed (unless the substring is expl1citly
not to be substituted for). The substituted string is
not rescanned.

Finally the Request Handler returns the line it has so
laboriously generated as the line read from the pseudo-device.

Implementation

The Request Handler is one procedure segment with umpteen
entries (where currently ump =seven). All of the entries
use one of the two data bases, the Request Queue and the
Substitution List. A copy of each data base exists for
each stream which the Request knows about. Each data
base is a separate segment and has a unique id (see BY.15.01)
as a segment name. In any one process the request handler
maintains one data structure to distinguish between the
different streams which it may know about. This data
structure is declared as:

del 1 road_sign (50), I* effectively a maximum of
50 streams *I

2 stream char (31), I* stream name *I

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BY.4.01 PAGE 8

2 queue ptr,

2 subs ptr,

2 default stream char
(31 h -

I* pointer to the appropriate
Request Queue *I

I* pointer to the appropriate
Substitution List *I

I* stream name of stream to read
from if the Request Queue is ·
empty *I

The Request Queue is declared as:

del 1 request_queue ~sed (q_ptr),

2 current bunch
. bit (18),

I* relative pointer to the current
bunch *I

2 space area ((131071));

Each bunch is allocated into q_ptr~request_queue.space
as it is specified by one of the calls to the Request
Handler, and freed (by the read or revert_queue entries)
when it is no longer needed. A bunch is declared as:

del 1 bunch based (b_ptr),

2 prev_bunch bit (18),

I* relative pointer to previous bunch in the queue
(the bunch which will be current when this bunch
is removed) *I

2 type fixed bin(17),

I* indicates what type the bunch isa

1 = line

2 = thread

3 ·= stream

4 = segment

5 = command

6 = ca 11 *I

rL

fvlJLTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BY .4.01

2 segment_ptr ptr~

I* points to the segment when type is segment
(only after the segment is initiated) *I

2 (thread_begin~ thread_end) ptr~

PAGE 9

I* if type is thread~ point to beginning and end
of threaded list of requests *I

2 call_entry bit(216)~

I* if type is call~ these six words contain the
entry as placed there by fake_entry (BY.10.01) *I

2 data_length fixed bin (17)~

I* length of following character string *I
2 data char (b_ptr-.bunch.data_length);

I* depending on type~ one of:

1) the line to be read~

2) the streamname to read from~

3) pathname of the segment to read~

4) command line to pass to shello *I
The Substitution List is conceptually~ a pushdown stack
of individual substitution lists determining whether a
string has a substitution and if so~ what that substitution
is. The Substitution List is hash coded. Since every
string 11 read" by the Request Handler must be checked~
a very simple and fast hash coding scheme is desirable.
The hash coding scheme used is simply the length of the
strin~, modulo 30. Thus, there are 30 hash buckets, each
point1ng to the first of a threaded list of substitutions.
The threaded lists are arranged such that all substitutions
of a given level are grouped together on the thread. ·
The current-level substitutions are first on the thread
followed by those of the next-previous level. Since
substitutions are made using only the current level~ when
the Request Handler reaches one of a lower level~ it has
exhausted all pertinent possibilities. Given a stand-alone
substring~ the Request Handler determines its length~
modulo 30. It then compares the substring against the
substitutions in the appropriate hash bucket until either
a match is found or a lower level is reached.

• MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .4.01 PAGE 10

The substitutions are also threaded by level to facilitate
popping of the substitution list. Figure 1 is a diagram
of the Substitution List.

Current
Level No. 5

Level
Array

level 1

'II

Sub __,

level 2 level 3 level 4 level 5

Jl

'~
Sub

1'- ~ h.. Hash Array

_!
,,

~~~ 

~~ I L 
Sub Sub _r-

' t,.. 

I l.t 
Sub r 

'"" EJ~ 
" 

Figure 1 : 

The current level is 5 which has one substitution with 
a length of 3 characters (mod 30). Levels 4 and 2 have 
no substitutions. Level 3 has two substitutions, of lengths 
1 and 2 characters (mod 30). Level 1 has 4 substitutions. 

There are two substitutions of 1 character (mod 30), three 
of 2 characters (mod 30), one of 3 characters (mod 30.) 
and one of 30 characters (mod 30). 

1 

2 

3 

. 

. 

. 

. 

- ·-

30 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .4.01 

The Substitution List is declared as: 

del 1 substitutions based (s_ptr), 

2 current_level fixed bin (17), 

2 leve l_ptr ptr, 

I* points to level_array declared 

2 level_size fixed bin (17), 

I* size of level_array *I 
2 hash_array (30) ptr, 

I* points to first substitution 
bucket, as declared below *I 

2 space area ((131071)); 

del 1 level_array (n) based (l_ptr), 

2 thread ptr, 

in 

below *I 

each hash 

PAGE 11 

I* points to first substitution on each ·level,. 
as declared below *I 

2 no_subs fixed bin (17); 

I* where n = s_ptr~substitutions.level_size 
and l_ptr = s_ptr~substitutions.level_ptr *I 

del 1 sub based (sub_ptr), 

I* pointed to by both an s_ptr~substitutions.hash_ 
array pointer and an l_ptr~level_array.thread 
pointer ·kl 

2 (level, hash_length, serial_no) fixed bin (17), 

2 (level_to, level_fro) ptr, 

2 sub_length ·fixed bin (17), 

2 compare_value char (sub_pt~sub.hash_length), 

2 sub_value char (sub_ptr~sub.sub_length); 



-~-

. ' 

MULTICS SYSTEM-PROGRAMMERS' MANUAL. SECTION BY.4.01 PAGE 12 

Level array is initially allocated in s_ptr~substitutions.space 
with n = 10. If the level increases to 11. the level 
array is re-allocated with n = 20. The size of the array 
is increased by 10 with each necessary increase in size. 
The sub structure is allocated in s_ptr~substitutions.space 
for each substitution installed. 

When determining whether a substitution is in order for 
a string the Request Handler first checks the count of. 
the number of substitutions at the current level. This 
count is in l_ptr~level_array (current_level).no_subs. 
If this count is o. no checking for substitutions is done. 
If there are any substitutions at this level. the Request 
Handler then determines the length (1) modulo 30 of the 
string. and checks s_ptr~substitutions.hash_array (1) 
for a null pointer (which would indicate no substitutions 
for strings of length (1). If this pointer is non-null. 
the Request Handler follows it and the hash thread (sub~ptr~ 
sub.hash_to) until either it ends. the level of a subst1tution 
is less thah the current level (no substitution to be 
made) or sub_ptr~sub.compare_value matches the string. 
If a match is found. the substitution is made. 

When a match has been found or eliminated the Request 
Handler moves on to the next free-standing string in the ~· 
input line (which was taken from the Request Queue). 
It is hoped that the design of the Substitution List will 
make the average search end quickly. It is probable that 
a relatively small number of substitutions (say. less · 
than 10) will be made at each level. However. every free-standing 
string of the input line must be processed. 


