
MULTICS SYSTEM-PROGRAMMERS' MANUAL 

Identification 

SECTION BY.6.00 PAGE 1 

Published: 9/28/66 

Library Procedures Used by the Interactive Debugging Aids 
D. B. Wagner 

Purpose 

Section BY.6 describes a collection of procedures used 
in the implementation of the interactive debug~ing aids 
described in BX.10.00- .04, and as such const1tutes 
the bulk of a design specification for the debugging aids. 

The diagram of figure 1 shows the- interaction among the 
procedures described and their intended use in the debugging 
aids. It is to be hoped that these procedures will be 
useful in other areas as well, particularly in the construction 
of an interactive "desk calculator" command. 

Expression Evaluation 

The user wil 1 see the debugging aids primarily in terms 
of the expression language, so that expression-evaluation 
is the most sensitive area of the implementation. Such 
issues as the order in which symbol tables are searched 
(e.g., which swill be found when there exist more than 
one a) and the points where extra blanks may occur seem 
minor, but have a great effect upon the user - they determine 
the "personality" of the debugging aids. 

The work of expression-evaluation is done by three procedures -
parse, evaluate~ and setvalue (described in BY.6.03, 
BY.6.04 and BY.6.05 respectively). parse performs the 
syntactic analysis, yielding a tree-representation of 
an expression. Evaluate and setvalue perform, respectively, 
the two kinds of semantic expression-analysis, the so-cal led 
"right-hand-side 11 and 11 left-hand-side 11 evaluations, named 
for the two sides of an assignment statement. £valuat~ 
finds the value of an expression, and setvalue sets the 
value of an expression. 

For example if the request 

set c(a) = b+c 

(meaning set the contents of location s to the result 
of adding band~ together) is typed to probe, the following 
action takes place. Paxse is called by probe. It produces 
a tree-representation of the given expression as follows: 

/ 



MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BY.6.00 PAGE 2 

Then probe gives the 11 right-hand 11 subtree 

to evaluate, which looks up Q and & in the symbol table, adds 
their current values together, and returns the result. 
This result and the 11 left-hand 11 subtree 

c 
I 
a 

are given to setvalue, which actually changes the contents 
of location a.. 

Handling of Symbol Tables 

The standard format for the 11 segment symbol table 11 is 
specified in Section BD.1. What is important about this 
standard format is that it allows considerable latitude 
to the designer of a translator in the area of descriptions 
of symbols, but rigidly legislates enough about the symbol 
table to make it possible for a standard subroutine to 
search a table for a given symbol-name without reference 
to what translator produced the table. 

Since many translators (including PL/I and the standard 
assembler) use block-structuring to determine the 11 scope 11 

of symbols, the symbol-table format allows for tree-structuring. 
The scheme used allows for tree-structuring at a higher 
level as well: so that.all the individual symbol tables 
knmvn to the debugger are treated as subtrees of a single 
tree called the Combined Symbol Table. Two procedures 
are provided for maintenance of the Combined Symbol Table: 
find_table and lose_table (described in BY.6.02). Find_table 
locates the symbol table for a specified segment and 
makes it a part of the combined Symbol Table (makes the 
symbol table 11 known 11 ). Lose_table eliminates the symbol 
table (makes the symbol table. 11 unknown 11 ). 

The procedure Search_tables (described in BY.6.02) is 
used by evaluate and setvalue to search the Combined 
Symbol Table. It starts at a specified point and searches 
up and down in the tree according to certain rules which 
are discussed in BY.6.01. 

The Request Dispatcher 

The Request Dispatcher described in BY.6.01 does most of the 
work of reading and recognizing requests for the debugging 



MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BY.6.00 PAGE 3 

aids, and in this respect bears some resemblance to the 
Shell. It also handles the if,~~ QQ, and end requests, 
common to all.of the debugging programs, which provide 
conditional and replication facil}ties. 

To use the Request Dispatcher, an interactive program 
calls the entry dispatch_request with a list of expected 
request names and a corresponding list of procedure entry 
points telling what procedure is to perform each type 
of request. The Dispatcher calls the Request Handler 
(see BY.4.01) to obtain one request line, extracts the 
request name (the first identifier on the line) and looks 
it up among the request names given in the call. If 
the request name is found there, dispatch_request calls 
the routine specified to perform the request. When this 
routine returns, dispatch_request returns to its caller. 

If the request name is not found in the given list, it 
may be one of the special control requests if, ~~ 
QQ, and ~. If it is, the appropriate action is taken 
(this involves fiddling with the Request Queue, see BY.4.01 ). 
If not, the request is either a command or an error. 
The line is given to the Shell, which attempts to interpret 
it as a command. 

The Watchers 

The 11watchers 11 are the routines used by the breaker command 
to arrange for notification upon the occurence of events 
of interest to the user. Their use bears a family resemblance 
to the use of the on and sianal statements in PL/I: · 
a call to a watcher specifies an event to be watched 
for and gives an action to be performed when the event 
occurs, the 11action 11 in this case being simply a call 
to a procedure with a single 11 identification" argument 
plus any·arguments necessary to describe the event completely. 

Not very much can be said about the watchers right now 
since not very much is known about the System fault and 
interrupt handling machinery. 



1 
1 

Shell ~ 
' ,, 
Listener !""" 

l 
j~ 

.. ~ - . 

I -· ~-~ Probe 
r BX.lO.Ol 

I 
Request 

1--
Request I I/O 

Tracer IL 
tlandler Dispatchc · System 
tBY.4.01 

BY • 6. 0 1 r-·-- - -' BX.l0.02 . 
I 

I 

' 

I 
' Breaker 

0 Request 
BX.l0.03 Queue ·~ 

I I 
Insert L 
request t 

BY.4.01 
I 

\' 
\ 

r 
..- J Parse I ~"' Find-

I Table --- User I BY. 6. 03 ' 
BY. 6. 02 ' 

' Program 
I ----- ... ·--- ... - . .. ... .. '· . 

Data . I 
I 

~ ' 
Evaluate Search- ' Segment 

. 
I~ I 

Table ! r 
BY. 6. 04 BY.6.02 ' ' 

I 
I I ' 

' Tracer $. . 
I 

' t-

:_ ----- CJ_ -.:.:-~o-···Q·-· ].{eport --. 
BX.l0.02 

_f 

r--.. 
:..., 

_.._, Event-
, 

watcher 
BY. 6. 05 

personal 
data-base 

0 

. . Combined . Symbol - --- -- .. - - ... -
Table 

) 

e 
~ 
H 
(") 
(/.) 

(/.) 
......:: 
(/.) 

H 
t>:l 

T 
1-0 
:;d 

8 
~ 
-~ 
~ 

~ 
z 
~ 
t"' 

(/.) 

tx:l 
(") 
H 
H 
0 z 

~ . 
0'\ . 
0 
0 

~ 
0 
tx:l 

~ 


