
r

r

MUL TICS SYSTEI'-'1- PROGRAIVIMERS" MANUAL SECTION BY.6.02 PAGE

Published: 01/13/67

Identification

Symbol table routines
Find_tables~ lose_tables~ search_tables~ search_root
M. A. Padlipsky

Purpose

Find_tables and lose_tables maintain Symbol Table Lists
for the debugging aids (see BD.1 .00~ BY.6.00). Find_tables
adds a pointer to a specified Segment Symbol Table into
a 11 master_node11 structure (see below~ and BY.6.00) which
it keeps in static storage; lose_tables removes the pointer
to a specified Segment Symbol Table from a master_node.

Search_tables is the symbol table searcher of the debugging
aids. It may also be used by other routines~ for searching
other tables~ provided the tables' .tree structures are
sufficiently similar to the Multics Symbol Table structure.
Search_root is analogous to search_tables and is provided
to all0\'\1 easy handling of a 11 logical 11 table such as the
Symbol Table List. The separation of the two routines
is intended to allo~tJ greater generality of application~
in that search_tables can be used independently of search_root
for searching trees which do not have a ·master_node structure.

Symbol Table Lists

As mentioned in BY.6.00~ the debugging aids employ the
notion of a Symbol Table List to allow debugging to be
performed on more than one segment (and more than one
Segment Symbol Table) at a time. The actual list is kept
in the branches array of the master_node structure~ discussed
below under Implementation. It should be pointed out
that the treatment of symbol tables here is essentially
one of tree-structuring.

The master_node structure may be regarded as the root
of the tree while the individual Segment Symbol Tables
may be regarded as sub-trees. The members of the branches
array in the master_node structure are absolute pointers;
the pointers in the standard symbol table entry (see BD. 1 .00)
are relative pointers. Thus~ the routines which search
Segment Symbol Tables must be designed separately from
those which search the Symbol Table List~ in order to
deal with the structure encountered.

r

,.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.02

. Find_tables 1 Lose_tables

Usage

The calling sequences are

call find tables (name 1 node pointer);
ca 11 1 ose:tab 1 es (name 1 node-pointer);

with declarations as follows:

del name char (*) varying~ node pointer ptr;

Name is the name of the segment whose symbol table is
to be "added11 to (or "deleted" from) the Symbol Table
List. What actually happens is that a pointer to the
segment symbol table is placed in (or removed from) the
master_node structure which represents the Symbol Table
List.

Node pointer is a pointer to the master node structure
in use: -

PAGE 2

a) On the initial call to find_tables (which is from probe 1

in the context of the debugging aids) 1 the calling
program must set node_pointer to ''null"; in this case 1

find_tables immediately allocates a master_node and
subsequently returns with node_pointer pointing to
it~ On later invocations of find_tables 1 node_pointer
is also returned; the calling program must be aware
of this fact~ as possible reallocation of larger
master node's can alter the value of node pointer.
Probe~-for example 1 will use node pointer-as the starting
node to be communicated to .erg when a search of an entire
Symbol Table List is desired (see below~ regarding
search_ tab 1 e s) •

b) On calls to lose_tables 1 node_pointer is strictly an
input argument~ and is~ of course 1 to be set to (or
retained at) the value received from the last call to
find_tables.

Implementation

Figures 1 and 2 present block diagrams of find_tables and
lose_tables.

"t•las te r _node'' is dec 1 a red as fo 11 ows:

r

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .6.02 PAGE 3

del 1 master_node ctl (p)., 2 n fixed, 2 m fixed,
2 branches (p+master_node.n)ptr, 2 info_pointer

ptr, 2 back_pointer ptr;

where n is the length of the branches array, ffi is the
number of branches currently in use, branches is an array
of pointers to Segment Symbol Tables, and info_pointer
and back_pointer are not used by the debugging aids, but
are provided for possible generality and for compatibility
with the symbol table nodes.

The logic of find_tables is as follows: if the node_pointer
passed to the routine is null, a master_node structure
must be allocated; six slots are allowed for the branches
array, and the number of slots used is set to zero;
node_pointer is set to point to the structure. If node_pointer
is originally non-null, a check must be performed to determine
whether'the branches array is full; if so, a new master
node is allocated with an array six slots longer, and
the old information is set into the new structure (except
for the array length, of course); the old master_node
is freed, and node_pointer is set to point at the new
master_node. After questions of allocation have been
dealt with, a pointer to ~'s symbol table is generated
by calls to the tv1ultics equivalents of 1 inkmk and 1 ink
(see BE.8.01, BE.8.04), the number of slots used is updated
and the pointer is set into the branches array in the
first unused slot. (If the pointer cannot be generated
because of inability to find ~'s symbol table, condition
11 find_tables_001" is signalled; a return :..s provided in
the event that the signal returns.) The decision to allocate
the branches array six slots at a time is dictated by
the inefficiency of allocating; the choice of six is arbitrary.

Lose_tables is rather more straightforward: the symbol
table pointed at by each member of the branches array
is investigated until either ~'s symbol table is found
or all members of the array have been dealt with. If
the desired symbol table is found, the remaining members
of the branches array are rewritten into the next-lo~rJer-numbered
slots, the number of slots used is set to one less, and
the routine returns. If ~'s symbol table is not found,
cond!tion "lose_tables_001" is si~nalled; a return is
prov1ded, in the event that the s1gnal returns.

Search_tables, Search_root

General

The basic task of search_tables and search_root is the

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.02 PAGE 4

locating of a specified symbol in the tables comprising
a Symbol Table List. The intended caller for both routines
is the srg subroutine of evaluate (BY.6.04). If the search
is to cover the entire Symbol Table List, search_root
is invoked; it, in turn, invokes search_tables. If the
search is to cover a particular segment or "block" (in
the PL/I sense), search tables is invoked directly. The
calling sequences are -

call search_root (start_node, name, verify, no_name);
call search_tables (start_node, name, verify, no_name);

with declarations as follows:

del start_node ptr, name character (*) varying, verify
entry(ptr,ptr), no_name bit (1);

Start_no~e is a pointer to a node in a Symbol Table List
or in the tables comprising the List. In the initial
invocation of search_root, the node at hand is the master_node
of a Symbol Table List. On the initial invocation of
search_tables, the node at hand may be the root node of
a particular segment or block. In the debugging aids,
the starting node and a switch indicating whether it is
a master node are communicated to srg via static storage;
~then passes the desired starting node to search_root
or search_tables (as appropriate) as the argument start_node.
The static variable may, for instance, have been set by
probe (BX.6.04), in response to the appearance in an expression
of the '' ?11 operator of the debugging language (BY .6.03,
BX.10.00).

Name is the symbol to be searched for. It is set by ELg
from the "pole"-structure at hand (see BY.6.03, BY.6.04).

Verify is an entry (probably an internal procedure in
the calling procedure) ~tJhere a "find'' in search tables
is checked for acceptability; e.g., the informaTion block
is interpreted and if a variable is desired but a "block"
(in the PL/I sense) has been found, the caller's verify
routine does a return, which indicates that search_tables
is continue searching. Otherwise, the verify routine
transfers to the appropriate location elsewhere in the
calling procedure. ("Appropriate" is meant to imply either
the calling procedure's return to its caller or the calling
procedure's further processing of the found symbol. Before
return, ~~ for example, must get the value associated

r

MUL TICS SYSTH1-PROGRAMMERS' MANUAL SECTION BY.6.02

with the symbol, once the symbol has been found by
search tables.) It should be noted that the mechanism

·of the-verify entry in the calling program is necessary
in order to relieve search tables of the onerous (and
unmodular) chore of interpreting translator-dependent
information blocks. The calling sequence for verify is

call verify (node_pointer, _info_pointer);

with declarations as follows:

del (node_pointer, info_pointer)ptr;

PAGE 5

Node_pointer is a pointer to the symbol table node whose
associated information block contains a name which matches
the ~argument; info_pointer is a pointer to the informa
tion block itself. Although it can be found on the basis
of node_)ointer, info_pointer is passed to verify in order
to save some execution time- as it is available to search tables
a 1 ready. -

No name is a switch included for the convenience of calling
programs which want to look at the symbol table per se
(caterpillarize the tree, perhaps?); if it is set to

11 111 b, search_tables does not compare on~ but traces
through the tree structure from the original start node,
calling verify and furnishing new node_ and info_pointers
at each recursion; if it is set to "011 b, search_tables
proceeds normally, comparing on~ and only calling
verify when a match is found. (8Lg always calls search_tables
with no_name set to 11 011 b.) In the no_name equal to 11 111 b
case, search tables returns to its caller when the remainder
of the tree (from start_node) has been traced through
(unless verify takes other action, of course). Such a
return where no_name was originally equal to 11 011 b, however,
indicates the 11 not found• condition, and the calling routine
must take appropriate action.

Strategy

The search is carried out as straightforwardly as possible.
Given a start node the name in its associated information
block (see BD~l.OO) is compared with the name being searched
for. If they are the same, the search is done. Otherwise,
search_tables looks at the next inferior node (inferior
to start_node, that is), the next inferior node to that,
and so on until the 11 limb11 of the tree is exhausted.
After exhausting a •• 1 imb 11 , search_ tab 1 es investigates
any offshoot limbs in a similar superior-to-inferior fashion
This approach may seem rather feudal, but it lends itself

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.02 PAGE 6

quite handily to recursive implementation. Figure 3 offers
an example of the search strategy. The numbers indicate
order of search 1 solid arrows indicate pointers, circles
are information blocks, rectangles containing nxn 's are
11 1 inks'• 1 in the sense of section BD. 1 .001 lettered boxes
indicate nodes, and broken arrows indicate back pointers
(for convenience1 they are shown in the case of terminal
nodes only).

Implementation of search tables

Figure 4 presents a block diagram of search_tables. Two
comments are perhaps in order. In the first place, the
decision not to search links is subject to change. For
while the evaluate-oriented application of search_tables
must not search links (by definition, 11 branches 11 contain
the information of interest to the debugger; see BD.1 .00)
it is po~sible that some non-debugging aids user of the
"no_name•• mode of searching might find a different policy
useful. At present, however, this does not appear to
be the case, and links are rejected out of hand. Second,
the ••node.n11 and ••node.branches(i) 11 notation assumes that
the entries in the symbol table (see BD.1 .00) can be treated
in PL/I by judicious use of declarations and unspec's,
or by a (currently proposed) built-in ability to handle
relative pointers directly in PL/I. Should this not prove
to be the case~ a machine lanquaqe subroutine will be
necessary to map the entry into a unode"-structure, with
"dere lat ivized11 pointers.

The logic is as follows: Check the no_name switch: if
it is on (' 1 111 b), set node_pointer equal to start_node,
set info_pointer equal to the information block pointer
of the node at hand, and call the verify entry. (A transfer
around the comparison on nsmg must be provided after the
call to verify, so that verify can return to search_tables
and allow the searching to continue.) If no_name is off
(11 0ubL compare the .Qilli)g argument with the name entry
in the information block associated with the node pointed
to by start_node. If they are the same, proceed as in
the no_name on case; note, however, that verify will return
only if the verification is not satisfactory. Other"V'Jise,
check to see if the node at hand has any branches and/or
"links 11 (start_node node.n>D); if not, return to caller;
if so, set up a noon loop for start_node node.n iterations
and proceed to call search_tables recursively with each
of the branches(i) as start_node. (The call is not made,
of course 1 if the branches (i) is a nlinkn.) lrJhen (actually,
"if11) the loop finishes, return to caller. The recursion

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.02 PAGE 7

is set up such that if any of the returns from search_tables
(or from search_tables 'Jia search_root) turns out to be

. the original caller instead of to a "dynamic ancestor''
(see BY.6.04), the search has been completed and a "not-found"
condition exists.

Implementation of search root

Figure 5 presents a block diagram of search root. It
is very straightforward. (Master_node is described above,
and in section BY .6.00). The issues of "derelativizing
pointers" and reading information blocks do not arise
at this level, as master_node is a PL/I structure with
11 real 11 pointers and an information block that is irrelevant
to the debugging aids.

r

r

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY. 6. 02

Figure 1.

master node
(n=6,-m=O)

Allocate
new master

node (n=n+6)-

~----------~ Adjust
~----~----~ node_pointer
Call linkmk

for name's
symbol table

call link
for link m"8:de

m=m+l

branch (m)
= pointer

made by link

PAGE 8

,.

r

MUL TICS SYSTEM- PROGRAMMERS" MANUAL

Increment

Figure 2

Set up for

m iterations

Set up for

m-i iteration

branch(i) =
branch(i+l)

m = m- 1

SECTION BY .6.02

error

PAGE 9

Increment
i

i -----· I
---~

r-~ULTICS SYSTEf'l-PROGR~HivlERS" JViANU.CI.L SECTIGN BY .6.02 PAGE 10

Figure 3 Search Order

Start node ?-
·\.. rl\
).~C.J ~l_~~r

X)<

\

,...

r

r

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL

No

I Increment No

Figure 4

Set up for

node.n

iterations

Yes

Call search
tables for
node.branch(i)
(derelativized)

SECTION BY .6.02

Set
Node_pointer,

info _pointer

Call verify

(node_pointer,

info _pointer)

PAGE 11

r --------

,..
t

r-~ ----------
·-...._. _ _..

MUL TICS SYSTEfv\-PRCGRAivif.JIERS" · HL\NUAL

Increli'.ent

Figure 5

Setupb
aster_node. n

iterations

Call search l
tables (r.1aster!
node, branch ~i) T

I

I
~es

.8

\.J_· --------;...;

1_______.

SECTION BY.6.02 PAGE 12

(Indicates symbol not fouc:.d)

