
MULTICS SYSTEM-PROGRAMMERS 1 MANUAL

I dent if ica t ion

SECTION BY.6.04 PAGE

Pub 1 i shed: 10 ;7 /66

Expression-evaluator for Interactive Debugging Programs

evaluate

D. B. Wagner, M.A. Padlipsky

Purpose

The two procedures parse and evaluate constitute the expression­
evaluating machinery used by the interactive debugging
aids. Parse is described in BY.6.03; briefly~ it takes
a symbolic expression as a character-string and returns
a pointer to an operator-operand tree representing the
expression.

Evaluate is given such a tree and evaluates the expression~
looking up symbols in the Combined Symbol Table (see BY,6,02).
It returns two pointers: one points to data representing
the value of the expression~ and the other points to an
indication of the interpretation to be placed upon this
data.

Usaoe

The call is

call evaluate (tree __ pointer 1 data_pointer, node_pointer 1

work_space);

The declaration associated with the arguments is:

del (tree_pointer, data_pointer~ node_pointer)
ptr~ work_space area ((*));

Tree_pointer is a pointer to the root of an operator-operand
tree produced by Qarse. Evaluate starts at the root and
works its v.Jay by recursive calls to itself to the end-points
of the tree. It places into data_pointer a pointer to
data representing the· value of the expression~ and places
into node_pointer a pointer to a ••node 11 similar to the
••nodes•• in the Combined Symbol Table (see BY.6.02). This
node and its associated 11 information block 11 contain all
information relevant to the interpretation of the value
of the expression. ·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.04

Node_pointer may in some cases point to a node which is
actually in the Combined Symbol Table~ but in general

PAGE 2

it points to a dummy created in work_space by evaluate.
This node contains a pointer to the special translator-name
"[internal]"~ and the format of the "information block''
associated with the node is an extension of the PL/I symbol
table format described in BD. 1.02.

Work_space is an area into which successively-called generations
of evaluate may place information for the caller; this
tactic is necessary to untangle problems arising from
the freeing of automatic storage in recursive routines.
Ultimately, the calculated value of the expression will
be placed into the lrvork_space of the original caller by
the final recursion of evaluate. See implementation discussion~
below, for details.

Conventions

The final version of evaluate will be able to handle any
expression of the debugging expression language, that
is any PL/I expression with any data-types allowed in
PL/I, and also any expression containing the special operators
"?" and "$" or having the special data-type "address".
See BX. 10.00 for details.

The initial implementation of evaluate allows all the
PL II operators except "." and "_,.". It recognizes the
"$" operator 1 the ,?Ubstr and unsp~~ functions from PL/I
and the f. and fL. ("contents" and "contents of register")
functions of the debugging language. It returns only
the following~~ata-types:

fixed binary (17)
float binary (27)
char
bit
"address"

Note that the PL/1 symbol table is not recognized by the
initial implementation of evaluate, so that the only data-type
which may be possessed by a symbol involved in an expression
is 11address". Hovvever constants in the expression (e.g.
2.3 or "O"b) may have the fixe.Q, .f_loat, character~ and
bit data-types according to the form of the constant,
and the built-in functions recognized by evaluate may
have values with any of these data-types.

MULTICS SYSTH1-PROGRAt~f·1ERS 1 MANUAL

Implementation

General

SECTION BY.6.04 PAGE 3

The overall structure of evaluate is quite straightforward.
An input argument named "tree_pointer'' points to a structure
called "pole"., generated by the parse routine (BY,6.03).
If the item "pole.type" pointed to is "O"b., the structure
at hand deals with an operand and evaluate immediately
calls £rg., a routine which will get the operand., allocate
it into storage accessible to the caller, and return pointers
to the operand and to descriptive information. Otherwise.,
the structure at hand deals with an operator and evaluate
calls the appropriate operator routine, according to the
value of the item "pole.name". (E.g., if pole.name equals
11+ 11 , add is called.) The operator routines perform their
particular operations on operands which reside in "pole"··
structures which are pointed to by members of an array
called "pole.arguments" in the structure at hand. Of
course, the pointed-to structures may themselves represent
operators (see, for an example, BY.6.03). Each operator
routine, then, begins by calling evaluate for each "pole"­
structure pointed·to by a "pole.arguments", and the recursion
will eventually (or immediately) lead to the value(s)
on which the particular operation will be performed.
An answer allocated into the "work_space" furnished as
an input argument, a "data_pointer" to the ans~rJer, and
a "node_pointer" to the description of the answer will
then be returned by the operator routine.

Operator Routines
"

There are two difficulties which must be coped with in
the operator routines:

1. With four possible data types (fixed., floating,
bit, and character) and legal mixing of types
for most operators, the handling of such mixing
requires rather space-consuming treatment in EPL.
That is, for example, the "less than" (lth) routine
must contain three EPL statements for each of the
sixteen possible permutations of operand types,
generating large amounts of machine-language code.
It seems likely that machine-language coding of the
operator routines could effect considerable savings
both of space and of execution time; nevertheless
the initial implementation will be in PL/1 for
clarity and maximum flexibility.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.04 PAGE 4

BL'OCK DIAGRAM

Choose

Operation

Perform

Operation

8

~No --t[Get 1~-------. 8etu.rn
_ Operand .

Call
Evaluate
for
Operands

Perform

Operation

Surprisingly enough, this is all there is to it- through the wonders of
recursion.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.04 PAGE 5

2. The highly recursive nature of evaluate makes the
- issue of generations of storage a tricky one. When

an operator routine calls evaluate in order to
"recurse" \oward an.operand, it is not sufficient
merely to return a pointer to the operand (from the
recursively-called generation(s) of evaluate), for
the storage space the operand occupies witt have
automatically been freed if it was "internal" to
the called ("descendant") routine. However, each
descendant generation can place its (intermediate
or final) result into storage belonging to the
routine which called it ("dynamic ancestor", perhaps).
Such storage (the "work_space" argument of the
calling sequence, as above) will be automatically
freed only on return from the calling (!'ancestor")
routine, and hence represents a solution to the
vanishing operands problem. (See also the example
below which presents a schematic version of add.)

Input and output arguments and declarations for the·several
operator routines are identical to those of evaluate.

E.g."

call add (tree_pointer,data_pointer,node_pointer,work_space);

In addition, each operator routine must declare working
space of its own for recursively-called "descendant" routines
to place their (intermediate) results into. E.g., schematically,

add: proc (tree_pointer,data_pointer,node_pointer,work_space);

.

del (p1,p2,np1, np2) ptr;

del space area ((f024));

call evaluate (tree_pointe~pole.arguments (1),p1,np1,space);

allocate answer in (work_spac.e) set (data_pointer);

datq_pointer-7answer = p1-7arg_1 + 2~arg_2

I* actual coding takes data types of arguments into account*/ ...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.04 PAGE 6

The operands generated by the recursion will be allocated
in to _"space", then, with p 1 and p2 as pointers to them;
the result of their addition, on the other hand, is allocated
"back" into "work_space" (belonging to the generation
of eva 1 uate wh :tch invoked add, or to the routine "'-'h ich
ori~inally invoked evaluate), \IIIith "data_pointer" pointing
to 1t. "Space'' will be automatically freed when add returns
to the generation of evaluate which called it; this is
safe--and desirable--as it contains only the intermediate
values, arg_1 and arg_2. (Responsibility for the size
and ultimate disposition of the original "work_space"
is, of course, left to the calling program.) The size
of "space" is at present arbitrary, and is, of course,
subject to revision in the light of future experience.

The operator routines fall into five categories:

a)

b)

c)

d)

Arithmetic: addition(add), subtraction (sub),
multiplication (mul), division (div), exponentiation
(exp--which will not be implemented in EPL), unary
negation (neg), and unary addition (uad);

Comparison: equal (egu), not equal (n)q), less
than (lth), less than or equal to (lgg , greater
than (glh), and greater than or equal to (ggg);

Bit: "and"-ing (and), "or"-ing (or), "not"-ing
(not), and concatenating (cat);

11Built-in": sin, .f..Q..§., and the like (not yet fully
enumerated, but in principle adaptable from EPL); and

e) "Debugging language special 11 : "?" (que) and "$" (dol)
(see BX.10.00). · .

Members of the first three categories are very similar
on a per-category basis; that is, for example, add is
just like SUQ except for the signs and the three letters
r'a,d,d" vs. the three letters "s,u,b".

Other necessary routines on the assumption that machine-language
coding is permitted, are data-type conversion (fltfix,
fixfl!, fixchr, etc.); these will be adapted from EPL
code.

The operator routines, of course, are only sensibly callable
from evaluatg.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.04 PAGE 7

Oper~nd Routine

''Ar.g"'s function is to call "search_tables" (see BY .6.02)
appropriately and then to return the desired operand.
Arg will subsequently allocate the operand into the "work_space"
it was given as an input ar~ument 1 with the output argument
11 data_pointer" pointing to lt 1 and return.

It is also likely that£££ is only sensibly callable from
evaluate.

