
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Internal Representation of Declarations
R. Freiburghouse

1. Overvi~w

SECTION BZ.8.10 PAGE 1

Published: 07/23/69

This document describes the internal representation of
PL/I declarations during compilation. It does not discuss
the various intermediate steps which transform the ori~inal
declarations into the form shown here. These intermed1ate
states are internal to the declaration processor and are
discussed in BZ.8.04. The form described here is the
form of the declarations after the execution of the
declaration processor. No further transformations are
made on the declarations until the execution of the code
generator. _

The internal representation of declarations is a structure
consisting of various kinds of components (nodes) which
are linked to each other by pointers. The entire structure
is known as the Symbol Table. It represents all source
langua~e declarations and all compiler produced declarations
The maJor types of nodes in this structure are briefly
described belOJII:

block nodes - represent the block structure of the progrum~
they are created for each procedure~ begin block~ and
ON unit in the source program. Each block node points
to a list of executable statements and to symbol table
nodes each of which represents a declaration made in that
block. The block node is discussed more fully in BZ.B.09.

token tabl§ entries - each source program token (identifier~
constant~ or operator) is represented by an entry in this
table.

symbol table nodes - each declaration is represented by
a symbol table node which contains those attributes which
are common to all classes of declarations.

attribute blocks - each symbol table node contains a pointer
to an attribute block which provides attributes which
are unique to a particular class of declarations. Separate
attribute blocks exist for: variables~ entry names~ statement
labels~ and condition names.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8. 10 PAGE 2

constant blocks -each source program or compiler created
constant is represented by a constant node. All constant
nodes are threaded to form a uni-directional chain and
are not connected to any block node.

Additional nodes are used to represent descriptors, initial
values, and array attributes. Many nodes contain pointers
to expressions which represent sizes or addressing offsets.
All such expressions have the same representation as the
source program expressions discussed in Section BZ.8.09.

The relationship between these nodes is shown in the example
which follows. Note that the arrows represent pointers
and also that the example is somewhat simplified to retain
some measure of clarity.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 3

A Simplified Example of the Symbol Jable ~tructur~

sub: proc;

del (a,b,c) fixed, x entryJ

0

beg in;

0

de 1 a (5);

0

0

1: a(S) = a(3);
end;

0

end;

~sn(x)
~sn(c) ·~

tk(a) .§n(b) \.., ea(x)
~ / ' Oa(C)

sn (a) ~
.? ~ da(b)

bn(sub) ~

st 1 sn(l) ~ ~aa(a) .

1. sn (a)..:, "'ll
~~ la(l)

bn(begin) ~
stL ~ da(a)
~ sti -1,.
s t" .iJ aa (a) key

st·t

•
stn tk - token table entry

bn - block node
sn - symbol table node
da - data attribute block

ea - entry name attribute block
la - lable attribute block
st - statement node
aa - array block

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 4

2a Implementation

2a1 The Token Table Entri~s

Each source program token (identifier, constant, or operator)
is represented by an entry in this table. Each entry
contains the token, its length expressed in characters,
a pointer to a chain of context nodes, a pointer to a
chain of symbol table nodes, and a pointer to another
entry in the token table. All symbol table nodes which
represent separate declarations of an identifier contain
a pointer back to the appropriate token table entry.

A Definition of a Token Table Entry:

del 1 token table based (p),
2 node_ type fixed bin(15),
2 size f i xed b in (1 5) ,
2 context ptr,
2 dec la rat ion ptr,
2 next ptr,
2 type fixed bin(15),
2 string char (n) J

node tyR§ - is a constant 13 indicating that this is a
token table entryo

~ - is the length of the token in characters and is
equivalent to D.a

context - is a pointer used by the context recorder and
context processoro

declaration - is a pointer to a symbol table node representing
a declaration of the token.

next - is a pointer to another token table node.

~ - is an integer code which describes the lexical
type of the token. Its value is one of the codes listed
in Appendix A.

string - is the acutal token.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 5

2.2 Symbol Table Noge

A symbol table node is created for each distinct use (declaration)
of an identifier in the program. Each node contains only
that infonnation which is common to all declarations of
all identifiers. Symbol table nodes also contain several
pointers which point to other symbol table nodes and to
an attribute block.

Definition of a Symbol Table Node:

del 1
2
2
2
2
2
2
2
2

symbol_tab le
node_ type
de l_type
block node
refe renee 1 is t
token -
next
multi use
attributes

based(p)_
fixed bin (1 5).,
fixed bin(15),
ptr,
ptr,
ptr,
ptr,
ptr,
ptr;

node type - is a constant 6 which indicates that this
is a symbol table node.

del type- has one of the following values:

1. declare statement declaration
2. label constant or the entry name of an entry

in this program
3. contextual declaration other than above
4 • imp 1 i c i t dec 1 a rat ion
5. compiler created declaration

block node - is a pointer to the block node which repr~sents
the block to which this declaration belongs.

reference list - is a pointer to a chain of cross reference
nodes. Since this feature is not yet implemented the
reference_list pointer must be null.

token - is a pointer to the token table entry for the
Identifier to which this declaration applies.

~ - is a pointer to the next declaration which belongs
to this block. The pointer is null if no further declarations
exist in this block.

multi use - is a pointer to a symbol table node which
represents another declaration of this same identifier.
If no further multiple declarations exist this pointer
is nu 11 •

attributes - is a pointer to the attribute block for this
declaration.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 6

2.3 The Data Attribute Block

All declarations of variables are represented by a symbol
table node which contains a pointer to a data attribute
block. The data attribute block contains information
which is unique to declarations of variables.

Definition of a Data Atrribute Block:

del 1 data attribute based(p),
2 node-type fixed bin(15),
2 const_bit_size fixed bin(15),
2 statement fixed bin(31),
2 level fixed bin(15),
2 type fixed bin(15),
2 class fixed bin(15),
2 precision f i xed b in (1 5) ,
2 scale fixed bin(15),
2 position fixed bin(15),
2 size fixed bin(31),
2 unit size fixed bin(15),
2 boundary fixed bin(15),
2 allocation_units fixed bin(15),
2 const_storage fixed bin(31),
2 stora~e ptr,
2 de 1 s 1ze ptr,
2 back ptr,
2 father pt r,
2 brother ptr,
2 son ptr,
2 initial ptr,
2 array ptr,
2 reference ptr,
2 equivalence ptr,
2 descriptor ptr,
2 escape ptr,
2 bits,
3 abnormal bit(1),
3 packed bit(1),
3 a 1 igned bit(1),
3 parameter bit(1),
3 referenced bit(1).,
3 set bit(1),
3 desc_image_reg bit(1),
3 refer_option bit(1):

node type - is a constant 8 which indicates that this
is a data attribute block.

canst bit size - If the data is of constant size, then
this field contains the size measured in bits, otherwise
the field is zero.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 7

statement - is the identification number of the source
statement from which this declaration was derivedo

level - is the structure levelo

~ - is a code which describes the data type of the
variableo Appendix B contains a list of the data types.

class - is a code which describes the storage class of
the variable. Appendix C contains a list of the storage
classes.

precision - is the arithmetic precision of the variable.

scale - is the arithmetic scale factor of the variable.

position - is used by the declaration processor and semantic
translator. Durin~ declaration processing it contains
the declared posit1on for defined data. During semantic
translation it contains the parameter position number.

size - contains the declared size of strings if that size
was declared as a decimal integer constant.

unit size - is used by the declaration processor to remember
the units in which the current size is expressed. If
the current size is in bits the value is 1, if it is in
characters the value is 2.

boundar~ - contains a code indicating the storage boundary
alignment requirements of the variab1eo It may be one
of the following codes:

1. bit
2. character
3. word
4. mod 2 word
5. mod 4 word
6. mod 8 word
7. mod 16 word

allocation units- is used by the declaration processor
to remember the units in which the allocated size is expressed.
If the allocated size is in bits the value is 1, if it
is in characters the value is 2.

const stora~e - contains the amount of stora~e required
by this variable. It is zero for variable s1ze data and
it is always in terms of words for level 1 variables.

.. '
' ' f 'T I :••,. I •'•", '<I

MUL TICS SYSTEM- PROGRAMMER'S MANUAL SECTION BZ.8.10 PAGE 8

storage - points to an expression which describes the
amount of storage needed by this variable. The amount
is always measured in words for level 1 variables and
is null for constant size data.

del size - points to an expression which is the declared
length of a string or the declared size of an area. It
is null if these values were declared as constant.

back - is a pointer to the symbol table node whch owns
this attribute block.

father - is a pointer to the attribute block of the immediately
containing structure. If the variable is not a member
of a structure this pointer is null.

brother - is a pointer to the attribute block of the next
structure member at this level. If the variable is not
a member of a structure or if no more members exist at
this level, this pointer is null.

son - is a pointer to the first element of a structure.
If the variable is not a structure, this pointer is null.

initial - is a pointer to the internal representation
of an initial value. If the call form of the initial
attribute was used in the declaration, this points to
an expression which describes the call. If the initial
attribute was declared, this pointer points to an init1al_link
node as described in Section 2.3.1.

array - points to an array block if the variable was declared
with dimensions, otherwise the pointer is null. The array
block is described in Section 2.3.2.

reference - points to an accessing expression which describes
the accessing function associated with this variable.
If the variable is an array, the accessing function describes
an access to the entire array. Accessing functions are
described in Section 2.3.3.

equivalence- is a null pointer reserved for the implementation
of the defined attribute.

d~scriptor- is a null pointer used by the code generator
and storage allocator. If the desc_image_req bit is on,
the storage allocator creates an argument descriptor image
for this variable. The code generator uses that image
when necessary.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 9

escape - this is a general purpose pointer used by PL/I
for three functions.

a)

b)

c)

Label variables declared with a list of label
values use this pointer to reference the list.

The structure created for varying strings uses
this pointer to directly access the data attribute
block of the string.

Declarations of offset variables which contain
an area reference use this pointer to access
the area.

abnormal - if on this bit indicates that the value of
this variable may change without explicit indication of
that change. The code generator and optimizer will not
attempt to eliminate common subexpressions involving this
variable.

packed - if on this bit indicates that the variable consists
entirely of unaligned bit strings or entirely of unaligned
character strings.

alilned - if on this bit indicates that the variable was
dec ared aligned.

parameter- if on this bit indicates that the variable is a
formal parameter.

referenced - if on this bit indicates that the variable
has been referenced somewhere in the program. If this
bit is not on, no storage will be allocated for the variable
by the storage allocator.

set - reserved for future use.

desc image reg - if on this bit indicates that the variable
has been used as an argument to a function which requires
descriptors. The bit causes the storage allocator to
create a descriptor for the variable.

refer option - if on this bit indicates that the refer
option was used in the declaration of this variable.

2.3.1 Definition of an Initial Link Node

de 1 1
2
2
2
2

in it ia 1 link
node_ type
factor
value
next

based(p),
fixed bin(15),
pt r,
ptr,
pt r;

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.8.10 PAGE 10

node type- is a constant 11 which indicates that this
is an 1nitial link node.

factor - is a pointer to an expression which descirbes
the number of times this value is to be used.

yalue - is a pointer to the internal representation of
the initial value. A null pointer indicates no initialization.
The pointer may point to a constant or to another
initial_link_node.

next - is a pointer to the next initial link at this factoring
level. A null pointer indicates that no more values exist
at this level.

NOTE- All expressions must be constants if the storage
class of the variable is static. The call option is not
allowed for static variables.

2.3.2 Definition of an Array Block:

del 1 array_block
2 node_type
2 number of dimensions
2 dimensioned ancestor
2 virtual_origin
2 bounds
2 number of elements
2 const number of elements
2 constant_virtuaT_origin
2 units

based(p),
fixed bin(15),
fixed bin(15),
pt r,
ptr,
ptr,
ptr,
fixed bin(15),
fixed bin(31),
fixed bin (15);

node type - is a constant 19 which indicates that this
is an array attribute block.

number of dimensions - is the number of dimensions declared
for this var1able.

dimensioned anc~stor - is a pointer to the data attribute
block of the first dimensioned containing structure.
If no such ancestors exist, this pointer is null.

yirtual origin - is a pointer to the expression

n
~ l.m.
L_ j j

j=1

where n is the number of dimensions

lj is the jth lower bound
mj is the jth multiplier

The pointer is null if the expression is a constant.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 11

bounds - is a pointer to a chain of bound pair nodes.
Each dimension is represented by a bound pair node of
the form descirbed in Section 2.3.2.1.

number of elements - is a pointer to an expression which
describes the total size of the array prior to any rounding.
This value may be smaller than the allocated size by some
fraction of a word. This pointer is null if the value
is a constant. This expression is used to initialize
automatic or based arrary.

const number of elements - the same as the previous except
the value is a constant.

constant virtual origin - same as the virtual origin except
this value is a constant.

units- indicates the units of the multiplier. 1 indicates
bits - other than 1 indicates words.

Definition of a Bound Pair

de 1 1
2
2
2
2
2
2
2

bound_pai r
lower variable
upper _variable
variable_multiplier
next
lower constant
upper:constant
constant_multiplier

based(p).
ptr.
ptr.
ptr.
ptr.
f i xed b i n (31).
f i xed b i n (31).
fixed bin(31);

lower variable - points to an expression which describes
the lower bound. If the lower bound is constant. this
pointer is null.

upper variable - points to an expression which describes
the upper bound. If the upper bound is constant. this
pointer is null.

variable multiplier- points to an expression which describes
the multiplier associated with this dimension. This pointer
is never null.

lower constant

upper constant
I

constant multiplier

these fields correspond
to the variable fields previously
described. If the bounds
or multiplier are constant.
their values are contained
in these fields.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 12

2.3.3 Accessing Function~

An accessing function consists of a reference node or
string reference node possibly qualified by a pointer
operator.

If the declared variable has a pointer qualified accessing
function then the ref~rence pointer of the data attribute
block points to a pointer operator node which in turn
points to a reference or string reference node.

The reference or string reference node is completely described
in BZ.8.09. These two nodes contain size and offset
expressions and constants used to address variables.

2.4 The Entry Attribute Block

All declarations of entry names are represented by a symbol
table node which contains a pointer to an entry attribute
block. The entry attribute block contains information
which is unique to declarations of entries.

Definition of an Entry Attribute Block:

del 1 entry_attribute
2 node_type
2 entry_type
2 ·last_usage
2 location
2 address
2 returns
2 1 ist
2 bits,
3 external
3 desc_l is t_req
3 referenced
3 irreducible
2 back

based(p),
fixed bin(15),
fixed bin(15),
fixed bin(31),
fixed bin(31),
ptr,
ptr,
ptr,

bit(l),
bit(l),
bit(1),
bit(l),
ptr;

node type - is a constant 12 that indicates that this
is an entry attribute block.

entry type - is a code which describes the type of entry
name. The code may be any of the following values:

1 •

2.
3.

An entry name either belonging to this program
or declared in this program.
An entry name parameter.
A generic entry name.

100 to 200 a builtin function name.

MULTICS SYSTEM-PROGRAMMERS; MANUAL SECTION BZ.8.10 PAGE 13

last usage - must be zero. Used by the code generator.

location - must be zero. Used by the code generator.

addresi - points to the entry or procedure statement on
which this name appeared. The pointer is null if the
name is not an entry to this program.

returns - points to a symbol table node which describes
the properties of the return value of this entry. The
pointer may be null.

~- points to a chain of link nodes. Each link node
consists of two pointers~ the first points to a symbol
table node,. the second points to the next link in the
chain. The symbol table nodes describe the properties
of the parameters declared for this entry or they describe
members of a generic family of entries.

external - if on this bit indicates that the entry is
external. If off the bit indicates that the entry is
interna 1.

desc list reg - if on this bit indicates that this entry
requires a descriptor list. If off the code generator
will not create a descriptor list for calls to this entry.

referenced - if on this bit indicates that the entry is
referenced somewhere in this program. External entries
which are not referenced will not result in links.

irreducible - if on this bit indicates that the entry
is irreduc1ble. The bit is ignored by the compiler

back - points to the symbol table node which owns this
attribute block.

2.5 The Label Attribut~ Block

All declarations of statement labels are represented by
a symbol table node which contains a pointer to a label
attribute block contains information whch is unique to
declarations of statement labels. Note that label variables
are represented as variables not as statement labels.

Definition of a Label Attribute Block:

del 1 label attribute
2 node_type
2 labe l_type
2 last_usage
2 location
2 address
2 back

based(p),.
fixed bin(15),.
fixed bin(15),.
fixed bin(15),.
fixed bin(31),.
ptr,.
pt r:

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.8.10 PAGE 14

node type - is a constant 20 which indicates that this
is a label attribute block.

label type- is a constant 1. Other values are reserved
for format statements and future expansion.

last usage -
must be zero. Used by the code generator.

location -

address - points to the statement node on which the label
was defined.

~ - points to the symbol table node which owns this
attribute block.

2.6 The Condition Attribute Block

All declarations of condition names are represented by a symbol
table node which points to a condition attribute block.

Definition of a Condition flttribute Block:

del 1 cond attribute
2 node:type
2 location
2 name
2 enabled

based(p),
fixed bin(15),
fixed bin(15),
ptr,
bit(1);

node type - is a constant 9 which indicates that this
is a condition attribute block.

location - must be zero. Used by the code generator.

name - a pointer to a constant node which describes the
character string representation of the condition name.

enabled - if on this bit indicates that this condition
is enabled by an on statement somewhere in this program.

2.7 Constant Nodes

All arithmetic and string constants used by the program
are represented by constant nodes. These nodes are connected
into a chain whose origin is the external static pointer

11 constant 1 is t 11
- 0

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Definition of a Constant Node:

del 1
2
2
2
2
2
2
2
2
2
2
2
2

constant node
node_ type
data_ type
size
scale
boundary
class offset
value-
next
last
equivalence
last_usage
location

SECTION BZ.8.10 PAGE 15

based (p),
f i xed b in (15) ,
fixed bin(15),
fixed bin(31),
fixed bin(15),
f i xed b in (15) ,
fixed bin(31),
ptr,
pt r,
ptr
pt r,
fixed bin(31),
fixed bin (31):

node type - is a constant 16 which indicates that this
is a constant node.

data type - one of the arithmetic or string data types
given in Appendix Bo Pointer and offset are also valid
codes.

~ - arithmetic precision or string length.

scale - arithmetic scale factor.

boundary - a code which describes the storage boundary
alignment requirements of the constant.

1. bit
2. character
3. word
4. mod 2

class offset - the amount of storage, measured in words,
required for this constant.

value - a pointer to the actual value of the constant.

next - a pointer to the next constant node.

~ - unused.

eguivalence - a pointer to another constant node. If
this pointer is null, then the storage allocator will
create a unique constant in the text segment. If this
pointer points to another constant node, then that node's
value has a binary representation which is equivalent
to this constant. No storage is allocated for equivalenced
constants.

last usage -

location -

these fields are zero and are used by the
code generator.

f~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT! ON BZ .8. 10 PAGE 16

APPENDIX A

LEXICAL TOKEN TYPES

no token
identifier
bit_string
char_string
float bin
float-dec
bi n_i'nteger
dec_integer
isub
plus
minus
asterisk
expon
slash
not
eq
assignment
ne
1t

1!
ge
ngt
n1t
or
cat
and
colon
left_parn
right_parn
arrow
period
comma
semi colon
i_dec_integer
i_bin_integer
i float bin
i-float-dec
i-fixed-dec
i-fixed-bin
fixed bTn
fixed_ dec

0
1
3
4
5
6
7
8

10
11
12
1 3
14
1 5
1 6
17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
36
37
38
39
40
41
42
43

_,....

MULTICS SYSTEM-PROGRAMMERS' Mt\NUAL SECTION BZ.8.10 PAGE 17

rfb1
rfb2
rfd1
rfd2
rflb1
rflb2
rfld1
rfld2

cfb1
cfb2
cfd1
cfd2
cf lb1
cflb2
cf ld1
cfld2

cs
vcs

bs
vbs

lbv1
lbv

ptr
off

entvar

1
2
3
4
5
6
7
8

21
22
23
24
25
26
27
28

31
32

41
42

51
52

60
61

72

struct 80
v struct 81
cell 82
f i len 83
area 84

APPENDIX 8

DATA TYPE CODES

real fixed binary single
real fixed binary double
real fixed decimal single
real fixed decimal double
real float binary single
real float binary double
real float decimal single
real float decimal double

complex fixed binary single
complex fixed binary double
complex fixed decimal single
complex fixed decimal double
complex float binary single
complex float binary double
complex float decimal single
complex float decimal double

non-varying character string
varying character string

non-varying bit string
varying bit string

label variable local values only
label variable any value

pointer variable
offset variable

entry variable

structure
structure created for var strings
cell data type
file name
area data

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.10 PAGE 18

APPENDIX C

STORAGE CLASS CODES

auto
auto_adj
based
static int
static-ext
ct 1 int
ct 1 ext
param
def
temp
stack header
text ref
link-ref
ct l_param

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14

, . - - __

