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Abstract

The size and complexity of current custom VLSI have forced the use of high-level
programming languages to describe hardware, and compiler and synthesis technology to
map abstract designs into silicon. Many applications operating on large streaming data
usually require a custom VLSI because of high performance or low power restrictions.
Since the data processing is typically described by loop constructs in a high-level
language, loops are the most critical portions of the hardware description and special
techniques are developed to optimally synthesize them. In this thesis, we introduce a new
method for mapping nested loops into hardware and pipelining them efficiently. The
technique achieves fine-grain parallelism even on strong intra- and inter-iteration data-
dependent inner loops and, by economically sharing resources, improves performance at
the expense of a small amount of additional area. We implemented the transformation
within the Nimble Compiler environment and evaluated its performance on several
signal-processing benchmarks. The method achieves up to 2x increase in the area
efficiency compared to the best known optimization techniques.
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Chapter 1

Introduction

Growing consumer market needs that require processing of large amounts of

streaming data with a limited power or dollar budget have led to the development of

increasingly complex embedded systems and application-specific integrated circuits

(ASIC). As a result, high-level compilation and sophisticated state-of-the-art computer-

aided design (CAD) tools that synthesize custom silicon from abstract hardware-

description languages are used to automate and accelerate the intricate design process.

These techniques not only eliminate the need of human intervention at every stage of the

design cycle, but also raise the level of abstraction and bring the hardware design closer

and closer to the system engineer.

Various studies show that loops are the most critical parts of many applications.

For example, Table 1.1 demonstrates that several popular signal-processing algorithms

spend, on average, 95% of the execution time in a few computation-intensive loops.

Thus, since loops are the application performance bottleneck, the new generation of CAD

tools needs to borrow many transformation and optimization methods from traditional

compilers to efficiently synthesize hardware from high-level languages. A large body of

work exists on translating software applications from common programming languages

such as C/C++ and Fortran for optimal sequential or parallel execution on conventional
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microprocessors. These techniques include software pipelining [16][19] for exploiting

loop parallelism within single processors and loop parallelization for multi-processors

[14].

Benchmark # loops # loops
> 1% time

Total %
(> 1 % time)

Wavelet image compression 25 13 99%

EPIC encoding 132 13 92%

UNEPIC decoding 62 15 99%

Media Bench ADPCM 3 3 98%

MPEG-2 encoder 165 14 85%

Skipjack encryption 6 2 99%

Table 1.1: Program execution time in loops.

However, a direct application of these methods fails to generate efficient

hardware since the design tradeoffs in software compilation to a microprocessor and in

the process of circuit synthesis from a program are rather different. For instance, the

number of extra operators (instructions) resulting from a particular software compiler

transformation may not be critical as long as it increases the overall parallelism in a

microprocessor. On the other hand, the amount of additional area coming from new or

duplicated operators that the hardware synthesis produces may have a much bigger

impact on the performance and cost of a custom VLSI (very large-scale integrated

circuit) design. Furthermore, in contrast to traditional compilers, which are restrained by

the paucity of registers in general-purpose processors and their limited capacity to

transfer data between registers and memory, hardware synthesis algorithms usually have

much more freedom in allocating registers and connecting them to memory. In addition
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to that, custom silicon provides a lot of flexibility in choosing the optimal delay of each

operator versus its size and allows application-specific packing of different operations

into a single operator to achieve better performance.

When an inner loop has no loop-carried dependencies across iterations, many

techniques such as pipelining and unrolling will provide efficient and effective parallel

performance for both microprocessors and custom VLSI. Unfortunately, a large number

of loops in practical signal-processing applications have strong loop-carried data

dependencies. Many cryptographic algorithms, such as unchained Skipjack and DES for

example, have a nested loop structure where an outer loop traverses the data stream while

the inner loop transforms each data block. Furthermore, the outer loop has no strong

inter-iteration data-dependencies while the inner loop has both inter- and intra-iteration

dependencies that prevent synthesis tools employing traditional compilation techniques

from mapping and pipelining them efficiently.

This thesis introduces a new loop transformation that efficiently maps nested

loops following this pattern into hardware. The technique, which we call unroll-and-

squash, exploits the outer loop parallelism, concentrates more computation in the inner

loop and improves the performance with little area increase by allocating the hardware

resources without expensive multiplexing and complex routing. The algorithm was

prototyped using the Nimble Compiler environment [1], and its performance was

evaluated on several signal-processing benchmarks. Unroll-and-squash reaches

performance comparable to the best applicable traditional loop transformations with 2 to

10 times less area.
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The rest of this document is organized as follows. Chapter 2 provides several

simple examples as well as one practical application that motivated this work. Chapter 3

gives a brief overview of the loop transformation and optimization theory including

dependence analysis and some relevant traditional loop transformations. Chapter 4

presents the unroll-and-squash algorithm along with the requirements for the legality of

the transformation. Chapter 5 discusses the implementation of the method within the

Nimble Compiler framework, and, subsequently, Chapter 6 demonstrates the benchmark

results obtained using the technique. The document concludes with a concise summary of

the work related to unroll-and-squash and briefly states the contributions of this thesis.
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Chapter 2

Motivation

for (i=0; i<M; i++) {

  a = data_in[i];

  for (j=0; j<N; j++) {

    b = f(a);

    a = g(b);

  }

  data_out[i] = a;

}

f

g

DFG

pipeline register

Figure 2.1: A simple example of a nested loop.

The importance and the application of the new technique can be demonstrated

using the simple set of loops shown in Figure 2.1. Although it is trivial, this loop nest

represents the common pattern that many digital signal-processing algorithms follow.

The outer loop traverses M blocks of input data and writes out the result, while the inner

loop runs the data through N rounds of two operators – f and g, each completing in 1

clock cycle. Little can be done to optimize this program considering only the inner loop.

Because of the cycle in the inner loop, it cannot be pipelined, i. e., it is not possible to

execute several inner loop iterations in parallel. Also, there is no instruction-level

parallelism (ILP) in the inner loop basic block. The interval at which consecutive

iterations are started is called the initiation interval (II). As depicted in the data-flow
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graph (DFG), the minimum II of the inner loop is 2 cycles, and the total time for the loop

nest is 2×M×N.

for (i=0; i<M; i+=2) {

  a1=data_in[i]; a2=data_in[i+1];

  for (j=0; j<N; j++) {

    b1 = f(a1); b2 = f(a2);

    a1 = g(b1); a2 = g(b2);

  }

  data_out[i]=a1; data_out[i+1]=a2;

}

DFG

pipeline register

f

g

f

g

Figure 2.2: A simple example: unroll-and-jam by 2.

Traditional loop optimizations such as loop unrolling, flattening, permutation and

pipelining [29] fail to exploit the parallelism and improve the performance for this set of

loops. One successful approach in this case is the application of unroll-and-jam (Figure

2.2), which unrolls the outer loop but fuses the resulting sequential inner loops to

maintain a single inner loop [28], explained further in Chapter 3. After applying unroll-

and-jam with a factor of 2 (assuming that M is even), the resulting inner loop has 4

operators (twice the original number). Although this transformation does not decrease the

minimum II of the inner loop because the data-dependency cycle still exists, the ability to

execute several operators in parallel has the potential to speed up the program. The II is 2

but the total execution time is half the original since the outer loop iteration count is

halved – 2×(M/2)×N=M×N. Thus, unroll-and-jam doubles the performance of the

application at the expense of a doubled operator count.

A more efficient way to improve the performance of this sample set of loops is by

applying the unroll-and-squash technique introduced in this thesis, which decreases the

overall execution time of the original program without a significant amount of additional
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area. This transformation, similarly to unroll-and-jam, unrolls the outer loop but

maintains a single inner loop that executes the consecutive outer loop iterations in

parallel. However, the data sets of the different outer loop iterations run through the inner

loop operators in a round-robin manner, which allows the parallel execution of the

operators and a lower II. Moreover, the transformation adds to the hardware

implementation of the inner loop only registers and, since the original operator count

remains unchanged, the design area stays approximately the same.

for (i=0; i<M; i+=2) {

  a1=data_in[i]; a2=data_in[i+1];

  b1 = f(a1);

  for (j=0; j<2*N-1; j++) {

    b2 = f(a2); a1 = g(b1);

    a2 = a1; b1 = b2;

  }

  a1 = g(b1);

  data_out[i]=a2; data_out[i+1]=a1;

}

DFG

pipeline register

f

g

f

g

Figure 2.3: A simple example: unroll-and-squash by 2.

The application of unroll-and-squash on the sample loop nest by a factor of 2,

illustrated in Figure 2.3, is similar to unroll-and-jam with respect to the transformation of

the outer loop – the outer loop iteration count is halved, and 2 outer loop iterations are

processed in parallel. However, the operator count in the inner loop remains the same as

in the original program – 2. By adding variable shifting/rotating statements, which

translate into register moves in hardware, and pulling appropriate prolog and epilog out

of the inner loop to fill and flush the pipeline, the transformation can be correctly

expressed in software. One should note that these extra source code statements might not

be necessary if a pure hardware implementation is pursued. Since the final II is 1, the
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total execution time of the loop nest is 1×(M/2)×(2×N)=M×N. Thus, unroll-and-squash

doubles the performance without paying the additional cost of extra operators.

f

f

g

g

f

g

Time

unroll-and-jam

unroll-and-squash

data
set 1

data
set 2 idle

Figure 2.4: Operator usage.

Figure 2.4 shows the operator usage over time in the unroll-and-jammed and

unroll-and-squashed versions of the program (it omits the prolog and the epilog necessary

for unroll-and-squash). Besides the fact that unroll-and-squash makes better use of the

existing operators than unroll-and-jam by filling all available idle time slots, another

important observation is that it may be possible to combine both techniques

simultaneously. Unroll-and-jam can be applied with an unroll factor that matches the

desired or available amount of operators, and then unroll-and-squash can be used to

further improve the performance and achieve better operator utilization. For example,

after applying unroll-and-jam by a factor of 2 to the sample loop nest, which doubles both

the performance and the operator count, a subsequent unroll-and-squash transformation

by a factor of 2 further speeds up the program without a significant amount of extra area.

The execution time is 1×(M/4)×(2×N)=M×N/2 and the inner loop operator count is 4.
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That is, the combined application of the two transformations quadruples the performance

but only doubles the area. It is important to notice that the sole use of unroll-and-squash

by a factor of 4 in this case will be less beneficial for the execution time.

w1(n) w2(n) w3(n) w4(n)

w1(n+1) w2(n+1) w3(n+1) w4(n+1)

g1 (high byte) g2 (low byte)

F

F

F

F

g5 (high byte) g6 (low byte)

cv4k

cv4k+1

cv4k+2

cv4k+3

G

Counter
(k)

 (1 to 32)

mux mux

A B AB

Figure 2.5: Skipjack cryptographic algorithm.

A good example of a real-world application of unroll-and-squash is the Skipjack

cryptographic algorithm, declassified and released in 1998 (Figure 2.5). This crypto-

algorithm encrypts 8-byte data blocks by running them through 32 rounds of 4 table-

lookups (F) combined with key-lookups (cv), a number of logical operations and input

selection. The F-lookups form a long cycle that prevents the encryption loop from being

efficiently pipelined. Again, little can be done by optimizing the inner loop in isolation

but, as with the simple example in the previous section, proper application of unroll-and-

squash (separately or together with unroll-and-jam) on the outer, data-traversal loop can

boost the performance significantly at a low extra area cost.
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Chapter 3

Loop Transformation Theory Overview

This chapter gives a brief overview of the loop transformation theory including

data dependence analysis and several examples of traditional loop transformations

relevant to the unroll-and-squash method. More comprehensive presentations of the loop

transformation theory can be found in [27], [29] and [30]. Other applicable compiler

analysis and optimization techniques are discussed in Chapter 4.

3.1 Iteration Space Graph

A FOR style loop nest of depth n can be represented as an iteration space graph

with axes corresponding to the different loops in the loop nest (Figure 3.1). The axes are

labeled with the related index variables and limited by the loop iteration bounds. Each

iteration is represented as a node in the graph and identified by its index vector

( )npppp ,,, 21 K

r = , where pi is the value of the ith loop index in the nest, counting from

the outermost to the innermost loop. Assuming positive loop steps, we can define that

iteration index vector p
r

 is lexicographically greater than q
r

, denoted by qp
r

f
r

, if and

only if 11 qp >  or both 11 qp =  and ( ) ( )nn qqpp ,,,, 22 KfK . Additionally, p
r

q
r

 if and

only if either qp
r

f
r

, or qp
rr = . In general, iteration p

r

 will execute after iteration q
r

 if



18

and only if qp
r

f
r

. The execution order can be represented as arcs between the nodes in

the iteration space graph specifying the iteration-space traversal. The data dependences,

i. e., the ordering constraints between the iteration nodes, determine alternative valid

execution orderings of the nodes that are semantically equivalent to the lexicographic

node execution.

for (i=0; i<M; i++)

  for (j=0; j<N; j++)

    S(i,j);

i

j

Figure 3.1: Iteration-space graph.

The iteration execution ordering can be extended to single loop operations using

the “> ” notation. Given two operations [ ]pS
r

1  and [ ]qS
r

2 , where p
r

 and q
r

 are the

iterations containing S1 and S2 respectively, [ ] [ ]qSpS
r

>
r

21  means that [ ]pS
r

1  is executed

after [ ]qS
r

2 . In general, [ ] [ ]qSpS
r

>
r

21  if and only if either S1 follows S2 in the operation

sequence and p
r

q
r

, or S1 is the same operation as or precedes S2 and p
r

q
r

. Similarly

to the iteration-space traversal, the operation execution ordering can also be displayed

graphically.
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3.2 Data Dependence

Given two memory accesses to the same memory location [ ]pS
r

1  and [ ]qS
r

2  such

that [ ] [ ]qSpS
r

>
r

21 , there is said to be data dependence between the two operations and,

consequently, the two iterations. Distance and dependence vectors are used to describe

such loop-based data dependences. A distance vector for an n-loop nest is an n-

dimensional vector ( )nδδδ ,,1 K

r

=  such that the iteration with index vector

( )nnppp δδδ ++=+ ,,11 K

r

r

 depends on the one with index vector p
r

. If there is data

dependence between [ ]pS
r

1  and [ ]qS
r

2 , the distance vector is qp
rr

r

−=δ . A dependence

vector for an n-loop nest is an n-dimensional vector [ ] [ ]( )+−+−= nn ddddd ,,,, 11 K

r

 that

summarizes a set of distance vectors called its distance vector set:

( ){ }+− ≤≤= iiin dddDV δδδ |,,)( 1 K

r

Note that a dependence distance of ( )0,,0K  has no effect on loop transformations

that keep the order of individual operations and statements unchanged. Finally, a

dependence may be loop-independent (that is, independent of the enclosing loops) or

loop-carried (dependence due to the surrounding loops). Methods to determine loop data

dependences include the extended GCD test, the strong and weak single index variable

tests, the Delta test, the Acyclic test and others [15].

3.3 Tiling

Tiling is a loop transformation that increases the depth of a loop nest and

rearranges the iteration-space traversal, often used to exploit data locality (Figure 3.2).
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Given an n-loop nest, tiling may convert it to anywhere from (n+1)- to 2n-deep loop nest.

Tiling a single loop replaces it by a pair of loops – the inner one has a step equal to that

of the original loop, and the outer one has a step equal to ub-lb+1, where lb and ub are,

respectively, the lower and upper bounds of the inner loop. The number of iterations of

the inner (tile) loop is called the tile size. In general, tiling a loop nest is legal if and only

if the loops in the loop nest are fully permutable. A proof of this statement can be found

in [30].

for (ii=0; ii<M; ii+=Si)

  for (jj=0; jj<N; jj+=Sj)

    for (i=ii; i<ii+Si-1; i++)

      for (j=jj; j<jj+Sj-1; j++)

        S(i,j);

i

j

Figure 3.2: Tiling the sample loop in Figure 3.1.

3.4 Unroll-and-Jam

Unroll-and-jam, demonstrated in Figure 3.3, is a sequence of two loop

transformations, unrolling and fusion, applied to a 2-loop nest. Loop unrolling replaces a

loop body by several copies of the body, each operating on a consecutive iteration. The

number of copies of the loop body is called the unroll factor. Unrolling without

additional operations is legal as long as the loop iteration count is a multiple of the unroll

factor. Loop fusion is a loop transformation that takes two adjacent loops with the same

iteration-space graphs and merges their bodies into a single loop. Fusion can be applied if
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the loops have the same bounds and there are no operations in the second loop dependent

on operations in the first one. Finally, unroll-and-jam can be applied to a set of 2 nested

loops by unrolling the outer loop and fusing the resulting sequential inner loops. Unroll-

and-jam can be used as long as the outer loop unrolling and the subsequent fusion are

legal. It may improve performance by concentrating more parallel computation in the

inner loop, by exploiting data locality and by eliminating loop setup costs. However, it

increases the amount of operations in the inner loop proportionally to the unroll factor.

for (i=0; i<M; i++)

  for (j=0; j<N; j++)

    a[i][j]=i+j;

for (i=0; i<M; i+=4) {

  i1=i+1; i2=i+2; i3=i+3;

  for (j=0; j<N; j++) {

    a[i][j]=i+j;

    a[i1][j]=i1+j;

    a[i2][j]=i2+j;

    a[i3][j]=i3+j;

  }

}

for (i=0; i<M; i+=4) {

  i1=i+1; i2=i+2; i3=i+3;

  for (j=0; j<N; j++)

    a[i][j]=i+j;

  for (j=0; j<N; j++)

    a[i1][j]=i1+j;

  for (j=0; j<N; j++)

    a[i2][j]=i2+j;

  for (j=0; j<N; j++)

    a[i3][j]=i3+j;

}

unroll(4) fuse

Figure 3.3: Unroll-and-jam by a factor of 4.

One should also note that unroll-and-jam can be represented as an alternative

sequence of loop transformations – tiling the outer loop with a tile size equal to the

unroll-and-jam factor, and full tile loop unrolling. This approach signifies the fact the

unroll-and-jam changes the iteration space traversal order, and data dependence analysis

should be employed to verify the legality of the transformation.
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3.5 Pipelining

One of the most important and effective techniques for exploiting parallelism in

loops is loop pipelining (software or hardware), illustrated in Figure 3.4. Let {fg}n be a

loop where f and g denote the operators in the loop body and n is the iteration count.

Pipelining relies on the fact that this loop is equivalent to f{gf}n-1g and improves

performance by overlapping the execution of different iterations. The operators of the

loop executed before the loop body after the transformation (f) form the loop prolog, the

operators executed after the body (g) are the loop epilog, and the interval at which

iterations are started is the initiation interval (II). The goal of pipelining is to achieve the

minimum possible II, which is hardware resource or data dependence constrained [16].

Combined with other loop transformations to eliminate the data dependences and enlarge

the basic blocks, such as modulo variable expansion and loop unrolling and fusion, loop

pipelining becomes a powerful method for exploiting the parallelism inherent to loops.

Prolog

Epilog

1 L: Load

2 Add

3

4 Store

5 Jump L

1 Load

2 Add Load

3 Add Load

4 L: Store Add Load Jump L

5 Store Add

6 Store

7 Store

Figure 3.4: Loop pipelining in software.
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Chapter 4

Unroll-and-Squash

The unroll-and-squash transformation optimizes the performance of 2-loop nests

by executing multiple outer loop iterations in parallel. The inner loop operators cycle

through the separate outer loop data sets, which allows them to work simultaneously. By

doing efficient resource sharing, this technique reduces the total execution time without

increasing the operator count. This chapter assumes that unroll-and-squash is applied to a

nested loop pair where the outer loop iteration count is M, the inner loop iteration count is

N, and the unroll factor is DS (Data Sets).

4.1 Requirements

This section outlines the general control-flow and data-dependency requirements

that must hold for the proposed transformation to be applied to an inner-outer loop pair.

In the next section, we show how some of these conditions can be relaxed by using

various code analysis and transformation techniques such as induction variable

identification, variable privatization, and others.

Unroll-and-squash can be applied to any set of 2 nested loops that can be

successfully unroll-and-jammed [28]. For a given unroll factor DS, it is necessary that the

outer loop can be tiled in blocks of DS iterations, and that the iterations in each block be
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parallel. The inner loop should comprise a single basic block and have a constant

iteration count across the different outer loop iterations. The latter condition also implies

that the control-flow always passes through the inner loop.

4.2 Compiler Analysis and Optimization Techniques

A number of traditional compiler analysis, transformation and optimization

techniques can be used to determine whether a particular loop nest follows the

requirements, to convert the loop nest to one that conforms with them, or to increase the

efficiency of unroll-and-squash. First of all, most standard compiler optimizations that

speed up the code or eliminate unused portions of it can be applied before unroll-and-

squash. These include constant propagation and folding, copy propagation, dead-code

and unreachable-code elimination, algebraic simplification, strength-reduction to use

smaller and faster operators in the inner loop, and loop invariant code motion.

Scalarization may be used to reduce the number of memory references in the inner loop

and replace them with register-to-register moves. Although very useful, these

optimizations can rarely enlarge the set of loops that unroll-and-squash can be applied to.

One way to eliminate conditional statements in the inner loop and make it a single

basic block (one of the restrictions) is to transform them to equivalent logical and

arithmetic expressions (if-conversion). Another alternative is to use code hoisting to

move the conditional statements out of the inner-outer loop pair, if possible.

In order for the outer loop to be tiled in blocks of DS iterations, its iteration count

M should be a multiple of DS. If this condition does not hold, loop peeling may be used,
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that is, M mod DS iterations of the outer loop may be executed independently from the

remaining M-(M mod DS).

The data-dependency requirement, i. e., the condition that the tiled iterations of

the outer loop should be parallel, is much more difficult to determine or overcome.

Moreover, if the outer loop data dependency is an innate part of the algorithm that the

loop nest implements, it is usually impossible to apply unroll-and-squash. One approach

to eliminate some of the scalar variable data dependencies in the outer loops is by

induction variable identification – it can be used to convert all induction variable

definitions in the outer loop to expressions of a single index variable. Another method is

modulo variable expansion, which replaces a variable with several separate variables

corresponding to different iterations and combines them at the end. If the loops contain

array references, dependence analysis [27] may be employed to determine the

applicability of the technique and array privatization may be used to better exploit the

parallelism. Finally, pointer analysis and other relevant techniques (such as converting

pointer to array accesses) may be utilized to determine whether code with pointer-based

memory accesses can be parallelized.

The use of dependence analysis is summarized below. Let A1 and A2 be two

different memory accesses inside the inner-outer loop pair. If the accesses are memory

loads, they are independent for the purposes of the technique and, therefore, we assume

that at least one of them is a memory store. Without losing generality, we can also

assume that the outer loop is not enclosed by another loop. The dependence vector is

defined as follows:

( ) [ ]( )+−= 1121 ,, ddAAd
r

, if neither A1, nor A2 belongs to the inner loop, or
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( ) [ ] [ ]( )+−+−= 221121 ,,,, ddddAAd
r

, if either A1, or A2 belongs to the inner loop.

There are 3 cases for [ ]+−
11 , dd  that need to be considered in order to determine

whether the transformation can be applied to the particular inner-outer loop pair:

Case 1: [ ] [ ]0,0, 11 =+− dd . If the dependence distance is 0 then the dependence is

iteration-independent and the loop transformation will not introduce any data hazards –

the unrolled memory accesses will be independent.

Case 2: [ ] [ ] ∅=−+−∩+− 1,1, 11 DSDSdd . If the intersection between the outer

loop dependence range and the data set range is empty, unroll-and-squash will not create

any data hazards – any dependent accesses will be executed in different outer loop

iterations.

Case 3: [ ] [ ]0,0, 11 ≠+− dd  and [ ] [ ] ∅≠−+−∩+− 1,1, 11 DSDSdd . If the dependence

distance is non-zero and the intersection between the outer loop dependence range and

the data set range is non-empty, unroll-and-squash may reorder and execute the memory

accesses incorrectly and introduce data hazards.

4.3 Transformation

Once it is determined that a particular loop pair can be unroll-and-squashed by an

unroll factor DS, it is necessary to efficiently assign the functional elements in the inner

loop to separate pipeline stages, and apply the corresponding transformation to the

software representation of the loop. Although it is possible to have a pure hardware

implementation of the inner loop (without a prolog and an epilog in software), the outer
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loop still needs to be unrolled and have a proper variable assignment. The sequence of

basic steps that are used to apply unroll-and-squash to a loop nest are presented below:

for (i=0; i<M; i++) {

  a = in[i];

  for (j=0; j<N; j++) {

    b = a + i;

    c = b - j;

    a = (c & 15) * k;

  }

  out[i] = a;

}

+

-

&

*

aij

++

15

k

Figure 4.1: Unroll-and-squash – building the DFG.

• Build the DFG of the inner loop (Figure 4.1). Live variables are stored in

registers at the top of the graph.

• Transform live variables that are used in the inner loop but defined in the

outer loop (i. e., registers that have no incoming edges) into cycles (output

edges from the register back to itself).

• “Stretch” the cycles in the graph so that the backedges start from the bottom

and go all the way to the registers at the top.

• Pipeline the resulting DFG ignoring the backedges (Figure 4.2) producing

exactly DS pipeline stages. Empty stages may be added or pipeline registers

may be removed to adjust the stage count to DS.
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Figure 4.2: Stretching cycles and pipelining.

• Perform variable expansion – expand each variable in the inner/outer loop

nest to DS versions. Some of the resulting variables may not actually be used

later.

• Unroll the outer loop basic blocks (this includes the basic blocks that

dominate and post-dominate the inner loop).

• Generate prolog and epilog code to fill and flush the pipeline (unless the inner

loop is implemented purely in hardware).

• Assign proper variable versions in the inner loop. Note that some new (delay)

variables may be needed to handle expressions split across pipeline registers.

• Add variable shifting/rotation to the inner loop. Note that reverse

shifting/rotation may be required in the epilog or, alternatively, a proper

assignment of variable versions.



29

The outer loop data sets pass through the pipeline stages in a round-robin manner.

All live variables should be saved to and restored from the appropriate hardware registers

before and after execution, respectively.

4.4 Algorithm Analysis

The described loop transformation decreases the number of outer loop iterations

from M to M/DS. A software implementation will increase the inner loop iteration count

from N to DS×N-(DS-1) and execute some of the inner loop statements in the prolog and

the epilog in the outer loop. The total iteration count of the loop nest stays approximately

the same as the original – M×N.

There are several factors that need to be considered in order to determine the

optimal unroll factor DS. One of the main barriers to performance increase is the

maximum number of pipeline stages that the inner loop can be efficiently divided into. In

a software implementation of the technique, this number is limited by the operator count

in the critical path in the DFG or may be smaller if different operator latencies are taken

into account. A pure hardware implementation bounds the stage count to the delay of the

critical path divided by the clock period. The pipeline stage count determines the number

of outer loop iterations that can be executed in parallel and, in general, the more data sets

that are processed in parallel the better the performance. Certainly, the calculation of the

unroll factor DS should be made in accordance to the outer loop iteration count (loop

peeling may be required) and the data dependency analysis discussed in the previous

section (larger DS may eliminate the parallelism).
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Another important factor for determining the unroll factor DS is the extra area

and, consequently, extra power that comes with large values of DS. Unroll-and-squash

adds only pipeline registers to the existing operators and data feeds between them and,

because of the cycle stretching, most of them can be efficiently packed in groups to form

a single shift register. This optimization may decrease the impact of the transformation on

the area and the power of the design, as well as make routing easier – no multiplexors are

added, in contrast to traditional hardware synthesis techniques. In comparison with

unroll-and-jam by the same unroll factor, unroll-and-squash results in less area since the

operators are not duplicated. The tradeoff between speed, area and power is further

illustrated in the benchmark report (Chapter 6).
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Chapter 5

Implementation

Recently, there has been an increased interest in hardware/software co-design and

co-synthesis both in the academia and in the industry. Most hardware/software

compilation systems focus on the functional partitioning of designs amongst ASIC

(hardware) and CPU (software) components [5][6][7]. In addition to using traditional

behavioral synthesis languages such as Verilog and VHDL, synthesis from software

application languages such as C/C++ or Java is also gaining popularity. Some of the

systems that synthesize subsets of C/C++ or C-based languages include HardwareC [21],

SystemC [22], and Esterel C [23]. DeepC, a compiler for a variation of the RAW parallel

architecture presented in [2], allows sequential C or Fortran programs to be compiled

directly into custom silicon or reconfigurable architectures. Some other novel hardware

synthesis systems compile Java [24], Matlab [26] and term-rewriting systems [25]. In

summary, the work in this field clearly suggests that future CAD tools will synthesize

hardware designs from higher levels of abstraction. Some efforts in the last few years

have been concentrated on automatic compilation and partitioning to reconfigurable

architectures [8][9][10]. Callahan and Wawrzynek [3] developed a compiler for the

Berkeley GARP architecture [4] which takes C programs and compiles them to a CPU

and FPGA. The Nimble Compiler environment [1] extracts hardware kernels (inner loops
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that take most of the execution time) from C applications to accelerate on a

reconfigurable co-processor. This system was used to develop and evaluate the loop

optimization technique presented in this thesis.

5.1 Target Architecture

Figure 5.1 demonstrates an abstract model of the new class of architectures that

the Nimble Compiler targets. The Agile hardware architecture couples a general purpose

CPU with a dynamically reconfigurable coprocessor. Communication channels connect

the CPU, the datapath, and the memory hierarchy. The CPU can be used to implement

and execute control-intensive routines and system I/O, while the datapath provides a

large set of configurable operators, registers and interconnects, allowing acceleration of

computation-intensive parts of an application by flexible exploitation of ILP.

Embedded CPU

Reconfigurable
Datapath

(e.g. FPGA)

On chip
SRAM/
Caches

Memory
Hierarchy

Figure 5.1: The target architecture – Agile hardware.

This abstract hardware model describes a broad range of possible architectural

implementations. The Nimble Compiler is retargettable, and can be parameterized to

target a specific platform described by an Architecture Description Language. The target

platforms that the Nimble Compiler currently supports include the GARP architecture,
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the ACE2 card and the ACEV platform. Berkeley’s GARP is a single-chip architecture

with a MIPS 4000 CPU, a reconfigurable array of 24 by 32 CLBs, on-chip data and

instruction caches, and a 4-level configuration cache [4]. The TSI Telsys ACE2 card is a

ERDUG�OHYHO� SODWIRUP�DQG�FRQVLVWV�RI� D� 6SDUF�&38� DQG�;LOLQ[� ����� )3*$V� [13]. The

ACEV hardware prototype combines a TSI Telsys ACE card [12]�ZLWK� D� 6SDUF�&38�

and a PCI Mezzanine card [11], containing a Xilinx Virtex XCV 1000 FPGA. In the ACE

card configurations, a fixed wrapper is defined in the FPGA to provide support resources

to turn it into a configurable datapath coprocessor. The wrapper includes the CPU

interface, memory interface, local memory optimization structures, and a controller.

5.2 The Nimble Compiler

The Nimble Compiler (Figure 5.2) extracts the computation-intensive inner loops

(kernels) from C applications, and synthesizes them into hardware. The front-end, built

using the SUIF compiler framework [14], profiles the program to obtain a full basic block

execution trace along with the loops that take most of the execution time. It also applies

various hardware-oriented loop transformations to concentrate as much of the execution

time in as few kernels as possible, and generate multiple different versions of the same

loop. Some relevant transformations include loop unrolling, fusion and packing,

distribution, flattening, pipelining, function inlining, branch trimming, and others. A

kernel selection pass chooses which kernel versions to implement in hardware based on

the profiling data, a feasibility analysis, and a quick synthesis step. The back-end

datapath synthesis tool takes the kernels (described as DFG’s) and generates the
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corresponding FPGA bit streams that are subsequently combined with the rest of the C

source code by an embedded compiler to produce the final executable binary.

CHAI - C front-end Compiler
• instrumentation & profiling
• kernel extraction
• transformations & optimizations
• hardware/software partitioning

Datapath Synthesis
• technology mapping & module
generation

• floorplanning
• scheduling
• place & route

Embedded C compiler

Kernels as DFGs

FPGA bit stream C code

C code

Executable Image

Figure 5.2: Nimble Compiler flow.

Unroll-and-squash is one of the loop transformations that the Nimble Compiler

considers before kernel selection is performed. This newly discovered optimization

benefits the Nimble Compiler environment in a variety of ways. First of all, outer loop

unrolling concentrates more of the execution time in the inner loop and decreases the

amount of transitions between the CPU and the reconfigurable datapath. In addition, this

transformation does not increase the operator count and, assuming efficient

implementation of the register shifts and rotation, the FPGA area is used optimally.

Finally, unroll-and-squash pipelines loops with strong intra- and inter-iteration data



35

dependencies and can be easily combined with other compiler transformations and

synthesis optimizations.

5.3 Implementation Details

DFG/SSA Pipeline
Variable

Expansion
Unroll

CFG

Analysis Loop Setup

CFG

Figure 5.3: Unroll-and-squash implementation steps.

The unroll-and-squash transformation pass, depicted in Figure 5.3, was

implemented in C++ within the Nimble Compiler framework. The module reads in a

control-flow representation of the program using MachSUIF (an extension to SUIF for

machine-dependent optimizations [31]) along with the loop, data dependence and

liveness information, and finds the loop nests to be transformed, identified by user

annotations. In the analysis step, the module checks the necessary control-flow and data

dependency requirements. After determining the legality of the transformation, it builds a

data-flow graph (DFG) for the inner loop instructions. The live variables in the DFG are

represented by registers, and loop-carried dependences result in DFG backedges. While

the DFG is built, the inner loop code is converted into static single-assignment (SSA)

form, so that each variable is defined only once in the inner loop body. The pipeline step

inserts pipeline registers in the DFG using the user-specified unroll factor DS and

machine-dependent operator delays. It ignores the DFG backedges. Single expressions
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split by pipeline registers are transformed using temporary delay variables corresponding

to the registers.

The subsequent steps express the unroll-and-squash transformation in software.

First, variables are expanded into DS versions, and the outer loop basic blocks are

unrolled. This involves assigning proper variable versions in the separate inner loop

pipeline stages, as well as in the outer loop basic blocks corresponding to the different

outer loop iterations. Also, variable shifting and rotation is added at the beginning of the

inner loop. Then, a prolog to fill and an epilog to flush the inner loop pipeline are

generated. These code transformation steps result in a modified program that can be

correctly compiled and executed in software but may be much more efficiently mapped

into hardware.

5.4 Front-end vs. Back-end Implementation

The unroll-and-squash transformation can be implemented either in the front-end,

or the back-end of a hardware synthesis tool. A front-end implementation allows simple

software representation of the transformed code and, specifically for the Nimble

Compiler environment, permits an easy exploration of alternative optimizations. The key

benefit of this approach is that it is flexible and permits a straightforward software-only

compilation of the program.

The main disadvantage of implementing the technique in the front-end is the weak

connection between the transformation and the actual hardware representation. One of the

problems, for example, is that a software implementation in the front-end obstructs intra-

operator pipelining because it manages whole operators. For benchmarking purposes, we
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modeled some operators such as floating point arithmetic to allow deeper pipelining.

Another problem for the specific hardware target is that the back-end synthesis tool can

pack different operators into a single row. Since the front-end has little knowledge about

the possible mappings, it may actually pipeline the data-flow graph in a way that makes

the performance worse in terms of both speed and area. A more sophisticated approach

would integrate the unroll-and-squash transformation with the back-end and differentiate

between the software transformation and the actual hardware representation.
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Chapter 6

Experimental Results

We compared the performance of unroll-and-squash on the main computational

kernels of several digital signal-processing benchmarks to the original loops, pipelined

original loops, and pipelined unroll-and-jammed loops. The collected data shows that

unroll-and-squash is an effective way to speed up such applications at a relatively low

area cost and suggests that this is a valuable compiler and hardware synthesis technique

in general.

6.1 Target Architecture Assumptions

The benchmarks were compiled using the Nimble Compiler with the ACEV target

platform. Two memory references per clock cycle were allowed, and no cache misses

were assumed. The latter assumption is not too restrictive for comparison purposes

because the different transformed versions have similar memory access patterns.

Furthermore, a couple of the benchmarks were specially optimized for a hardware

implementation and had no memory references at all.
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6.2 Benchmarks

Benchmark Description

Skipjack-mem Skipjack cryptographic algorithm: encryption, software
implementation with memory references

Skipjack-hw Skipjack cryptographic algorithm: encryption, software
implementation optimized for hardware without
memory references

DES-mem DES cryptographic algorithm: encryption, SBOX
implemented in software with memory references

DES-hw DES cryptographic algorithm: encryption, SBOX
implemented in hardware without memory references

IIR 4-cascaded IIR biquad filter processing 64 points

Table 6.1: Benchmark description.

The benchmark suit consists of two cryptographic algorithms (unchained Skipjack

and DES) and a filter (IIR) described in Table 6.1. Two different versions of Skipjack

and DES are used. Skipjack-mem and DES-mem are regular software implementations of

the corresponding crypto-algorithms with memory references. Skipjack-hw and DES-hw

are versions specifically optimized for a hardware implementation – they use local ROM

for memory lookups and domain generators for particular bit-level operations. Finally,

IIR is a floating-point filter implemented on the target platform by modeling pipelinable

floating-point arithmetic operations.

6.3 Results and Analysis

Table 6.2 presents the raw data collected through our experiments. It compares

ten different versions of each benchmark – an original, non-pipelined version, a pipelined

version, unroll-and-squashed versions by factors of 2, 4, 8 and 16, and, finally, pipelined
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unroll-and-jammed versions by factors of 2, 4, 8 and 16. The table shows the initiation

interval in clock cycles, the area of the designs in rows and the register count. One should

note that if the initial loop pair iteration count is M×N, after unroll-and-jam by a factor

DS it becomes M×N/DS.

original pipelined squash(2) squash(4) squash(8) squash(16) jam(2) jam(4) jam(8) jam(16)

II (cycles) 22 21 12 9 8 7 23 28 38 70

Area (rows) 49 57 62 91 143 256 111 219 435 867

Registers 
(count) 6 13 18 44 92 197 25 49 97 193

II (cycles) 19 19 11 7 4 3 19 19 19 19

Area (rows) 41 41 56 86 143 262 80 158 314 626

Registers 
(count) 8 8 21 50 105 218 16 32 64 128

II (cycles) 16 13 9 7 5 5 17 25 41 73

Area (rows) 69 72 84 143 174 263 141 279 555 1107

Registers 
(count) 5 8 19 60 99 174 15 29 57 113

II (cycles) 8 5 5 3 3 2 5 5 5 5

Area (rows) 27 30 36 56 99 141 57 111 219 435

Registers 
(count) 5 8 13 33 73 115 15 29 57 113

II (cycles) 56 13 29 15 9 5 13 18 33 65

Area (rows) 106 131 118 138 177 258 253 497 985 1961

Registers 
(count) 2 26 14 34 73 154 48 92 180 356

DES-hw

IIR

Benchmark

Skipjack-mem

Skipjack-hw

DES-mem

Table 6.2: Raw data – initiation interval (II), area and register count.

The normalized data corresponding to the figures in Table 6.2 is presented in

Table 6.3. The base case is the original, non-pipelined version of the benchmarks. A

detailed analysis of these values follows.
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original pipelined squash(2) squash(4) squash(8) squash(16) jam(2) jam(4) jam(8) jam(16)

Speedup 1.00 1.05 1.83 2.44 2.75 3.14 1.91 3.14 4.63 5.03
Area 1.00 1.16 1.27 1.86 2.92 5.22 2.27 4.47 8.88 17.69

Registers 1.00 2.17 3.00 7.33 15.33 32.83 4.17 8.17 16.17 32.17
Speedup / 

Area 1.00 0.90 1.45 1.32 0.94 0.60 0.84 0.70 0.52 0.28

Speedup 1.00 1.00 1.73 2.71 4.75 6.33 2.00 4.00 8.00 16.00
Area 1.00 1.00 1.37 2.10 3.49 6.39 1.95 3.85 7.66 15.27

Registers 1.00 1.00 2.63 6.25 13.13 27.25 2.00 4.00 8.00 16.00
Speedup / 

Area 1.00 1.00 1.26 1.29 1.36 0.99 1.03 1.04 1.04 1.05

Speedup 1.00 1.23 1.78 2.29 3.20 3.20 1.88 2.56 3.12 3.51
Area 1.00 1.04 1.22 2.07 2.52 3.81 2.04 4.04 8.04 16.04

Registers 1.00 1.60 3.80 12.00 19.80 34.80 3.00 5.80 11.40 22.60
Speedup / 

Area 1.00 1.18 1.46 1.10 1.27 0.84 0.92 0.63 0.39 0.22

Speedup 1.00 1.60 1.60 2.67 2.67 4.00 3.20 6.40 12.80 25.60
Area 1.00 1.11 1.33 2.07 3.67 5.22 2.11 4.11 8.11 16.11

Registers 1.00 1.60 2.60 6.60 14.60 23.00 3.00 5.80 11.40 22.60
Speedup / 

Area 1.00 1.44 1.20 1.29 0.73 0.77 1.52 1.56 1.58 1.59

Speedup 1.00 4.31 1.93 3.73 6.22 11.20 8.62 12.44 13.58 13.78
Area 1.00 1.24 1.11 1.30 1.67 2.43 2.39 4.69 9.29 18.50

Registers 1.00 13.00 7.00 17.00 36.50 77.00 24.00 46.00 90.00 178.00
Speedup / 

Area 1.00 3.49 1.73 2.87 3.73 4.60 3.61 2.65 1.46 0.75

IIR

Benchmark

Skipjack-mem

Skipjack-hw

DES-mem

DES-hw

Table 6.3: Normalized data – estimated speedup, area, registers and efficiency
(speedup/area).

Unroll-and-squash achieves better speedup than regular pipelining, and usually

wins over the worse case unroll-and-jam (Figure 6.1). However, for large unroll factors

unroll-and-jam outperforms unroll-and-squash by a big margin in most cases. Still, an

interesting observation to make is the fact that, for several benchmarks, unroll-and-jam

fails to obtain a speedup proportional to the unroll factor for larger factors (Skipjack-

mem, DES-mem and IIR). The reason for this is that the increase of the unroll factor

proportionally increases the operator count and, subsequently, the number of memory

references. Since the amount of memory accesses is limited to two per clock cycle, more

memory references increase the II and decrease the relative speedup. Unlike unroll-and-

jam, unroll-and-squash does not change the number of memory references – the initial

amount of memory references form the lower bound for the minimum II. Therefore,

designs with many memory accesses may benefit from unroll-and-squash more than
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unroll-and-jam at greater unroll factors. Additionally, unroll-and-squash, in general,

performs worse on designs with small original II (Skipjack-hw and DES-hw) because

there is not much room for improvement.
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Figure 6.1: Speedup factor.

The speedup from the different transformations comes at the expense of

additional area (Figure 6.2). Undoubtedly, since unroll-and-squash adds only registers

while unroll-and-jam also increases the number of operators in proportion to the unroll

factor, unroll-and-squash results in much less extra area. This can be very clearly seen

from the results of the floating point benchmark (IIR) depicted in Figure 6.2.
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Figure 6.2: Area increase factor.

In order to evaluate which technique is better, we rate the efficiency of the

designs by looking at the speedup to area ratio. This value captures the performance of a

design per unit area relative to the original version of the loops – a higher speed and a

smaller design lead to a larger ratio, while a lower speed and a larger area result in a

smaller ratio. Although it is possible to assign different application-specific weights to

the performance and the size of a design, these coefficients will only scale the efficiency

ratios of the transformed versions, and the relations will remain the same.
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Figure 6.3: Efficiency factor (speedup/area) – higher is better.

By this measure, presented graphically in Figure 6.3, unroll-and-squash wins over

unroll-and-jam in most cases, although some interesting trends can be noted in this

regard. The ratio decreases with increasing unroll factors when unroll-and-jam is applied

to benchmarks with memory references – this is caused by the higher II due to a

congested memory bus. However, for designs without memory accesses unroll-and-jam

increases the operator count with the unroll factor and does not change the II, so the ratio

stays about constant. The efficiency ratio for unroll-and-squash stays about the same or

decreases slightly with higher unroll factors in most cases. An obvious exception is the

floating point benchmark where higher unroll factors lead to larger efficiency ratios. This

can be attributed to the large original II and the small minimum II that unroll-and-squash

can achieve – a much higher unroll factor is necessary to reach the point where the

memory references limit the II.
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Figure 6.4: Operators as percent of the area.

Finally, it is interesting to observe how the operator count as a proportion of the

whole area varies across the different transformations (Figure 6.4). While this value

remains about the same for unroll-and-jam applied with different unroll factors, it sharply

decreases for unroll-and-squash with higher unroll factors. This is important to note

because our prototype implements the registers as regular operators, i. e., each taking a

whole row. Considering the fact that they can be much smaller, the presented values for

area are fairly conservative and the actual speedup per area ratio will increase

significantly for unroll-and-squash in a final hardware implementation. Furthermore,

many of the registers in the unroll-and-squashed designs are shift/rotate registers that can

be implemented even more efficiently with minimal interconnect.
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Chapter 7

Related Work

A large amount of research effort has been concentrated on loop parallelization in

compilers for multiprocessors and vector machines [14][29][30]. The techniques, in

general, use scalar and array analysis methods to determine coarse-grain parallelism in

loops and exploit it by distributing computations across multiple functional elements or

processing units. These transformations cannot be effectively applied to hardware

synthesis because of the different set of optimization tradeoffs that traditional software

compilation faces.

Loop parallelization for uniprocessors involves methods for detection and

utilization of instruction-level parallelism inside loops. An extensive survey of the

available software pipelining techniques such as modulo scheduling algorithms, perfect

pipelining, Petri net model and Vegdahl’s technique, and a comparison between the

different methods is given in [17]. Since basic-block scheduling is an NP-hard problem

[18], most effort on the topic has been focused on a variety of heuristics to reach near-

optimal schedules. Modulo scheduling algorithms offset the schedule of a single iteration

and repeat it in successive iterations for a continuously increasing II until a legal schedule

is found. By coupling scheduling with pipelining constraints these techniques easily reach

near-optimal schedules and are excellent candidates for software pipelining. While
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modulo scheduling methods attempt to create a kernel by scheduling a single iteration,

kernel recognition techniques provide an alternative approach to the software pipelining

problem – they schedule multiple iterations and recognize when a kernel has been

formed. Window scheduling, for example, makes two copies of the loop body DFG and

runs a window down the instructions to determine the best schedule. This technique can

be easily combined with loop unrolling to improve the available parallelism. Unroll-and-

compact unrolls the loop body and finds a repeating pattern of instructions to determine

the pipelined loop body. Finally, enhanced pipeline scheduling schemes form the third

class of software pipelining algorithms. They combine scheduling with code motion

across loop back edges to determine the pipelined loop body along with its prolog and

epilog.

The main disadvantage of all these methods when applied to loop nests is that

they consider and transform only inner-most loops resulting in poor exploitation of

parallelism as well as lower efficiency due to setup costs. Lam’s hierarchical reduction

scheme pipelines loops that contain control-flow constructs such as nested loops and

conditional expressions [19]. To handle nested loops, this method pipelines outward from

the innermost loop, reducing each loop as it is scheduled to a single node. Thus, the

technique benefits nested loop structures by overlapping execution of the prolog and the

epilog of the transformed loop with operations outside the loop. The original Nimble

Compiler approach to hardware/software partitioning of loops may pipeline outer loops

but considers inner loop entries as exceptional exits from hardware [1]. Overall, the

majority of techniques that perform scheduling across basic block boundaries do not

handle nested loop structures efficiently [15][20].
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Chapter 8

Conclusion

In this thesis we showed that high-level language hardware synthesis needs to

employ traditional compilation techniques but most of the standard loop optimizations

cannot be directly used. We presented an efficient loop pipelining technique that targets

nested loop pairs with iteration-parallel outer loops and strong inter- and intra-iteration

data-dependent inner loops. The technique was evaluated using the Nimble Compiler

framework on several signal-processing benchmarks. Unroll-and-squash improves the

performance at a low additional area cost through efficient resource sharing and proved

to be an effective way to exploit parallelism in nested loops mapped to hardware.
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