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ABSTRACT

In this paper, we describe Qatar Computing Research In-
stitute’s (QCRI) speech transcription system for the 2016
Dialectal Arabic Multi-Genre Broadcast (MGB-2) challenge.
MGB-2 is a controlled evaluation using 1,200 hours audio
with lightly supervised transcription Our system which was
a combination of three purely sequence trained recognition
systems, achieved the lowest WER of 14.2% among the nine
participating teams. Key features of our transcription system
are: purely sequence trained acoustic models using the re-
cently introduced Lattice free Maximum Mutual Information
(LF-MMI) modeling framework; Language model rescoring
using a four-gram and Recurrent Neural Network with Max-
Ent connections (RNNME) language models; and system
combination using Minimum Bayes Risk (MBR) decoding
criterion. The whole system is built using kaldi speech recog-
nition toolkit.

Index Terms— Kaldi, purely sequence trained acous-
tic models, Bi-directional LSTM, RNN LM, Arabic Speech
Recognition, QATS

1. INTRODUCTION

The 2016 Arabic MGB challenge (MGB-2) is a continuation
of MGB challenge introduced in 2015 for English language
[1]. The challenge consisted of two tasks; Arabic speech
transcription and speech-text alignment. The goal of the
speech transcription task is to further the state-of-the-art in
Arabic speech recognition, which is a challenging task con-
sidering the dialectal variation that is inherent in any Arabic
speech database. In this paper, we present Qatar Computing
Research Institute’s Arabic speech transcription system that
achieved the lowest Word Error Rate (WER) among the nine
participating teams. The WER achieved by our system was
14.2%, which was 2 percentage points (absolute) better than
the second best system, which achieved a WER of 16.2%.

Our main focus in this work was to investigate the perfor-
mance of recently introduced, purely sequence trained acous-
tic modeling framework [2], trained using Lattice Free Max-
imum Mutual Information (LF-MMI) objective function. We
trained three different acoustic model (AM) architectures us-
ing LF-MMI modeling framework; Time Delay Neural Net-

work (TDNN) [3], Long-Short Term Memory (LSTM) Re-
current Neural Network (RNN) [4] and Bi-directional LSTM
(Section 4). Apart from acoustic modeling, we also construct
N-gram and RNN language models (LMs), that are used in
the decoding and language model rescoring stage (Section 3).
Our final recognition system, is a combination of the three
recognition systems that are LF-MMI trained and rescored
using N-gram and RNN language models. (Section 5).

2. DATA DESCRIPTION

The MGB-2 Challenge used recorded programs from 10 years
of Aljazeera Arabic TV channel with total of 1,200 hours
worth of audio for Acoustic Modeling (AM). The original
transcription has no timing information, and lightly super-
vised algorithms have been used to recover the timing infor-
mation for each word. However, the human transcription was
meant to be convenient for reader, and not necessary verba-
tim transcription. The quality of the transcription varies sig-
nificantly, there have been two major challenges in the given
transcription; a) conversational speech, which includes multi-
ple dialects and overlapping talkers, which is the typical sce-
nario for political debate and talk show programs, b) dubbed
speech, this happens when the speech is not Arabic. Neither
the overlap speech nor the dubbed speech is marked in the
original transcription. The recordings are coming from TV
programs with Modern Standard Arabic (MSA) dominating
most of them. It was roughly estimated to be more than 70%
of the speech is MSA, and the rest is spoken in different Di-
alectal Arabic (DA) namely as: Egyptian (EGY), Gulf (GLF),
Levantine (LEV), and North African (NOR).
The recognized output was aligned with the original tran-
scription to generate small speech segments on average be-
tween five and 30 seconds per segments suitable for building
speech recognition system. For each segment, the Average
Word Duration in seconds (AWD), Phoneme Matching Error
Rate (PMER), and Word Matching Error Rate (WMER) are
stored in the given meta-data to be potentially used for further
filtering, and data selection.



2.1. Acoustic Modeling Data

Initially, we used about 250 hours of training data for AM
experiments. This is the same amount of data that has been
used to report the baseline system. This will be called sam-
ple data through the rest of the paper. The Sample data are
those segments with WMER less than 80%, and limited to
the first 500 programs. The full AM train data comes from
all segments with MWER less than 80% which was summed
up to more than 370K segmented across the 2214 programs
creating more than 1200 hours speech segments. The devel-
opment and evaluation are coming from diverse 17 hours each
that have not been in the training data. The program title itself
may have been seen, but not these particular episodes.

Type Hours Programs #segments

SampleData 250h 500 83K
Training 1200h 2214 370K
Development 10h 17 5800
Evaluation 10h 17 5600

Table 1. Data used for acoustic model training, development
and evaluation

2.2. Language Modeling Data

We have used the provided BuckWalter format for the tran-
scription which doesn’t have any punctuation or dicraization,
however we didn’t use any text normalization like normaliz-
ing Alef, yaa, and taa marbouta in the given text. LM experi-
ments have been using the grapheme lexicon provided by the
organizer for most of the experiment and for the final submis-
sion. The grapheme based lexicon has 1:1 word-to-grapheme
mapping, which means the vocabulary size is the same as the
lexicon size. The main motivation to use the grapheme is that
Arabic is phonologically complex language [5], and we need
a huge lexicon to reduce OOV, especially for Dialectal Ara-
bic speech, more details about this can be found our previous
study [6].

Type Tokens Vocab

In-domain 8M 200k
Background 130M 1M

Table 2. In-domain data refers to the training transcripts and
Background data refers to the extra Arabic language model-
ing text provided for the challenge

3. LANGUAGE MODELS

3.1. N-Gram Language Models

We train two N-gram language models (LMs); A tri-gram
LM (KN3) is trained using the spoken utterances transcripts,
which we refer to as the in-domain data. This LM is used for
decoding to generate decode lattices. These lattices are then
rescored using a four-gram LM (KN4), which is trained on
the in-domain and the extra language modeling text, which
we refer to as the background data, provided by the chal-
lenge organizers for building better LMs. We use interpolated
kneser-ney smoothing on both the LMs, which are built using
the SRILM toolkit [7]. We limit the LM vocabulary to top
900k most frequent words in the text, which is same as the
speech lexicon. Table 3 shows the perplexity on the dev set
by using the tri-gram and four-gram LMs.

3.2. Recurrent Neural Network Language Model

We trained a Recurrent Neural Network Language Model
with MaxEnt Connections (RNNME) using RNNLM-Toolkit
[8]. RNNLM-Toolkit is arguably the first toolkit publicly
released to construct RNN language models. As the training
procedure in this toolkit is CPU based, it takes a considerable
amount of time to train a LM and hence we go straight to
building a RNNME LM, which has been shown to perform
better than RNN LM without direct connections (MaxEnt)
between the input and the ouput layer [8].

RNNME refers to a RNN architecture which along with
recurrent connections, also has non-recurrent or direct con-
nections between input and output layer. These direct con-
nections are known as MaxEnt connections which derives its
name from Maximum Entropy language model. This kind of
RNN architecture provides a way to jointly train an N-gram
LM and a RNN LM. RNNME has been shown to perform
better than the conventional RNN LM. See [8] for details. Ta-
ble 3 gives perplexity on the dev set using RNNME LM.

In this work, we train a Class Based RNNME LM, with
hyperparameter settings as follows; class dimensions: 200,
input-layer-size: 40k, which is also the language model
vocabulary, which is restricted to the top 40k most frequent
words, hidden-dimension: 300, hidden-activation func-
tion: sigmoid, direct-connections: 2000M, which are the
number of weights used for direct connections between the
input and the output layer, n-gram order: 3, which is referred
to as the direct-order in the RNNLM-toolkit Fig 2 shows the
RNNME architecture along with the hyperparameter settings
used.

3.3. Summary

In this work, we train three LMs; Tri-gram, Four-gram and
RNN with MaxEnt connections. We give the parameter set-
tings of all the LMs and present the perplexity results on the



Model Tokens Vocab LM-Vocab PPL (Dev)

KN3 8M 200k 900k 640
KN4 130M 1M 900k 590
RNNME 130M 1M 40k 400

Table 3. Perplexity on the dev set using LMs built for decoding and language model rescoring
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Fig. 1. RNNME LM architecture and the hyperparameter set-
tings

dev set. The RNNME LM took 2 weeks to train and because
of limited time available, we could only train one LM. A com-
prehensive hyperpaprameter tuning and experimentation with
different RNN architectures is left as an extension to this pa-
per.

4. NEURAL NETWORK ACOUSTIC MODELS

In this section, we give brief details about the acoustic mod-
els that we trained using the kaldi toolkit [9]. We discuss the
architectures, the training objectives used for training these
models, the hyperparameter settings and the input features
used for developing these models.

4.1. Training Setups

We experimented with the following neural network architec-
tures; feed forward deep neural network (FDNN), Long-short
term memory RNN (LSTM), Bi-directional LSTM (BLSTM)
and Time Delay Neural Network (TDNN). Below, we give
brief details about the training setups used in our experiments.

1. FDNN: FDNN is trained using adapted MFCC features
as input. The model has 5 hidden layers, each layer
having 2048 sigmoidal neurons. Input to the FDNN is
40 dimensional transformed Mel-Frequencey Ceptral
Coefficient (MFCC) [10] feature vector (MFCC A)
which is extracted as follows; 9 frames of 13 dimen-
sional MFCC feature vectors are spliced together,

whitened (Mean Normalized) and reduced to 40 di-
mensional representation using LDA, followed by
Maximum Likelihood Linear Transform (MLLT) [11]
and speaker normalization technique known as feature-
space Maximum Likelihood Linear Regression (fM-
LLR) or contrained maximum-likelihood linear regres-
sion (cMLLR) [12]. fMLLR transform is obtained
from a baseline GMM-HMM system with speaker
adaptive training (SAT). The output of the FDNN is
a softmax layer, whose units correspond to triphone-
states. A baseline GMM-HMM system provides frame
vs HMM-state alignments that are used as training
examples in a multi-class classification setting. The
FDNN is trained to minimize the Cross Entropy loss
function using Stochastic Gradient Descent (SGD). We
use a learning rate of 0.008 for SGD for the first epoch
and for later epochs, the learning rate is decided using
”new-bob” algorithm as explained in [13]. Training is
performed in mini-batches; we use mini-batches of size
256.

2. LSTM: Over the past few years RNN based acous-
tic models have shown tremendous improvements in
recognition performance by reducing the WER signifi-
cantly. Long Short Term Memory (LSTM) is particular
type of RNN architecture which is now widely used
for AM. We use the LSTM architecture with recur-
rent and non-recurrent projection layers as used in
[4, 14] and given by the block diagram below. LSTM
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AM is trained using concatenated 40 dimensional hi-
resolution MFCC features (MFCC hires) and 100 di-
mensional i-Vectors [15] for each frame. We denote
these features as MFCC B. We use 3 LSTM layers
with a delay of -1,-2 and -3 at each layer for the Cross
Entropy trained model, while for the purely sequence
trained model the delay at each layer is chosen to be
-3. An output label delay of 5 is also used. Purely
sequence trained models are trained using a sequence
objective, without the need of Cross Entopy training.



Sequence training of Neural Networks using Connec-
tionist Temporal Classification (CTC) training objec-
tive have become quite popular in speech recognition
[4, 14]. Recently, CTC inspired training framework
for acoustic models was introduced in kaldi toolkit
[2], where Lattice Free version of the Maximum Mu-
tual Information training criterion (LF-MMI) is used
to train the acoustic models. In this work, we train
LSTM acoustic model with the Cross Entropy training
objective and also the newly introduced LF-MMI mod-
eling framework. For details about different training
objectives, see [16].

A major component in an LSTM model is the memory
block, that consists of input (i), output (o), forget (f)
gates that control the flow of input information (g) from
the previous hidden layer and the output information
(h) to be passed onto the next layer. For more details see
excellent explanation in [4]. The hyperparametrs of the
LSTM memory block are best given by the following
labeled diagram.

g hCELL
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CELL

OUTPUT GATE

FORGET GATE

INPUT GATE

CELL INPUT

CELL OUTPUT

OUTPUT

where, Wr and Wp refer to the recurrent and non-
recurrent projection spaces respectively, which are of
dimensions 256.

In this case, MFCCs, used as input features, are not
adapted or whitened like in FDNN training. The rea-
son for not doing mean normalization of MFCC fea-
tures is to let the i-Vectors provide the speaker related
mean offset information, as explained in [17] and [3].
For the same reason, the i-Vector extractor in trained
on top of features that are not mean normalized so that
the mean offset information can be encoded in the i-
Vectors [3]. Once, the i-Vector extractor is trained, i-
Vectors for the training and test data are extracted in
an online fashion i.e. only prior frames to the current
frame are used along with the prior utterances from the
same speaker to extract the i-Vectors. The i-Vector ex-
traction framework consist of a GMM-UBM trained on
top of LDA+MLLT MFCCs and consists of 512 Gaus-
sian components that makes use of 200k feature frames

for UBM modeling. UBM stats are then modeled us-
ing a factor analysis model known as total variability
subspace model [15] given by the following equation.

M = m+ Tu (1)

where, M is the utterance based mean super-vector, m
is the UBM mean super-vector, u is the i-Vector and T
is the total variability subspace. The parameters of the
model are learned in an unsupervised manner. In our
case, variability subspace, T , was chosen to be of 100
dimensions. For more details about i-Vector modeling
framework, reader is referred to the excellent work in
[15] and for more details about the input features, see
[17].

3. BLSTM: Acoustic Model architecture for BLSTM is
exactly similar to LSTM, except that the training oc-
curs in both the directions; left to right and vice versa.
We train BLSTM AM using only LF-MMI training ob-
jective [2].

4. TDNN: TDNN is trained using concatenated 40 dimen-
sional hi-resolution MFCCs (MFCC hires) with 100 di-
mensional i-Vectors for each speech frame; the same
input features as used for (B)LSTM acoustic models.
TDNNs require less training time than sequence mod-
els such as LSTMs, while attempting to capture the
long-term temporal dependencies just like a sequence
model. We use the same TDNN architecture as given
in [3], except the input splicing indexes used are as
given in [2]. The splicing indexes used are �1, 0, 1 �
1, 0, 1, 2 �3, 0, 3 �3, 0, 3 �3, 0, 3 �6,�3, 0 0 for the
LF-MMI modeling framework i.e. input to the TDNN
is 3 frames spliced together (�1, 0, 1), the hidden layers
see 3 frames of the previous layer, separated by three
frames (�3, 0, 3). Splicing indexes for the CE training
of TDNN are �2,�1, 0, 1, 2 � 1, 2 � 3, 3 � 7, 2 0.
More details about the architecture can be found in [3]
and [2].

4.2. Summary

In this section, we give details about the training setups for
the four AMs that we trained; FDNN, TDNN, LSTM and
BLSTM. FDNN is trained using the Cross Entropy train-
ing criterion using adapted 40 dimensional MFCC features
(MFCC A) as input. TDNN and LSTM are trained using both
the Cross Entropy and the recently introduced LF-MMI mod-
eling framework (purely sequence trained), while BLSTM
was trained using only LF-MMI training criterion. The input
features used for these AMs are per frame concatenation of
40 dimensional unadapted and un-normalized hi-resolution
MFCCs and 100 dimensional i-Vectors, which are extracted
in an online fashion (MFCC B).



5. SYSTEM DESCRIPTION

In this section, we give details about our overall final sys-
tem that we submitted as part of the MGB-2 speech transcrip-
tion challenge. We train six AMs, but three best AMs make
it to the final system. The three AMs are LF-MMI trained
TDNN, LSTM and BLSTM. AM training is followed by de-
coding using a tri-gram LM (KN3) that is built using the spo-
ken transcripts text, that generates decode lattices. The de-
coding process is followed by four-gram LM rescoring of the
full lattices, in which the alternate hypothesis paths in the de-
code lattices are rescored using a better LM, which is trained
on the whole text (in-domain + background). RNNME LM
is then used to perform N-best list rescoring of the rescored
four-gram lattices. The three sets of final lattices correspond-
ing to three AMs are then combined using Minimum Bayes
Risk (MBR) decoding criterion to give the recognition output.
See Fig 2 for the block diagram of our final system.
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Fig. 2. System Description of the final Arabic speech tran-
scription system

6. EXPERIMENTS AND RESULTS

6.1. GMM-HMM Baseline System

We train a GMM-HMM recognition system that provides
frame vs HMM-state alignments that are used for training
the neural network acoustic models. GMM-HMM system is
built using whitened (Mean Normalized) spliced MFCC fea-
tures that are transformed using LDA and MLLT, followed by
Speaker Adaptive Training (SAT) [18]. We use kaldi to build
the baseline system which is explained in [9]. The %WER
using the baseline GMM-HMM system is 40.2 on the dev set.

6.2. Neural Network Based Recognition Systems

Here, we give performance of the neural network recognition
systems, that are built as part of this work.

1. Data Augmentation We use the audio augmentation
technique proposed in [19]. We perform audio speed

perturbation with speed factors of 0.9, 1.0, 1.1. This
gives us three times the original speech utterances. The
speed perturbed data is followed by volume perturba-
tion with volume factors that are uniformly sampled
from the interval [ 18 , 2.0]. The same data augmentation
approach was also used in [3].

2. Decoding Table 4 gives recognition performance on the
dev set using the CE trained recognition systems, de-
coded using tri-gram LM (KN3). MFCC A refers to the
transformed features (MFCC+LDA+MLLT+fMLLR),
while MFCC B refers to concatenated hi-resolution
MFCCs and i-Vectors. We use publicly available kaldi
decoders [9], using a beam width of 15.0. Table 5 gives

Model Feats Criterion AUG %WER

FDNN MFCC A CE N 31.8
TDNN MFCC B CE N 27.3
LSTM MFCC B CE N 23.6

Table 4. Recognition results for the CE trained ASR systems.
LM used for decoding is KN3. Data augmentation (AUG) is
not used in this case

recognition performance on dev set of the LF-MMI
trained recognition systems. In this case, augmented
data is used for training.

Model Feats Criterion AUG %WER

TDNN MFCC B LF-MMI Y 23.0
LSTM MFCC B LF-MMI Y 20.9
BLSTM MFCC B LF-MMI Y 19.3

Table 5. Recognition results for the LF-MMI trained recog-
nition systems. LM used for decoding is KN3. Data augmen-
tation is used before training

3. Four-gram LM Rescoring: The decode lattices ob-
tained from LF-MMI trained recognition systems, from
the previous step are rescored using the four-gram lan-
guage model (KN4), which is built using all the lan-
guage modeling text available. It assigns a new graph
score to each alternated hypothesis path in the lattice
by scoring it using the KN4 language model. Table 6
shows improvements in recognition results due to four-
gram LM rescoring.

4. RNNME LM Rescoring: We rescore the KN4 rescored
lattices obtained from the previous step, using an RN-
NME LM. Full lattice rescoring is inefficient using
RNN LMs and hence, we extract the N-best hypothe-
ses for each utterance and rescore the N-best list. In our
case, N is 1000. We found out that the interpolation of



Model Criterion %WER(KN3) %WER(KN4)

TDNN LFMMI 23.0 21.5
LSTM LFMMI 20.9 20.1
BLSTM LFMMI 19.3 18.5

Table 6. Recognition results after performing the four-gram
LM (KN4) rescoring of the decode lattices

the scores that RNNME LM assigns to the hypotheses
with the score assigned by the KN4 language model
gives us the best recognition performance. The inter-
polation parameters are 0.3 and 0.7 for the KN4 LM
score and RNNME LM score respectively. These pa-
rameters are optimized on the dev set. Table 7 shows
the results of N-best rescoring. Clear improvements
in the recognition results can be seen after performing
N-best list rescoring.

Model Criterion %WER(KN4) %WER(KN4
+RNNME)

TDNN LFMMI 21.5 20.5
LSTM LFMMI 20.1 19.1
BLSTM LFMMI 18.5 17.9

Table 7. Recognition results after performing interpolated
KN4 and RNNME LM rescoring. Interpolation parameters
are 0.3 for KN4 and 0.7 for RNNME

6.3. System Combination

Our best system is the combination of the LF-MMI trained
recognition systems that are rescored using four-gram and
RNNME language models i.e. we combine the three recogni-
tion systems mentioned in Table 7.

The three sets of output lattices are combined to form a
union lattice, which is then used as an input to minimum
bayes risk (MBR) decoding pipeline, to get the final recog-
nition output on the evaluation and development set, which
was submitted as our entry to the MGB-2 speech transcription
challenge. Our recognition output had the lowest %WER
of 14.2% on the evaluation data and 16.7% on the devel-
opment data, from among the nine-participating teams.

6.4. Summary

In this section, we reported the recognition results obtained
using the LF-MMI and CE trained recognition systems. Lan-
guage model rescoring significantly helps the recognition
performace, in particular interpolation of language model
scores from the four-gram and RNNME LM gives signifi-
cant improvements in the recognition performance. LF-MMI
trained systems performs significantly better than CE trained

systems. We acknowledge that the comparison between the
CE trained TDNN, LSTM and BLSTM and LF-MMI trained
systems is not fair, because of the fact that augmented data is
used to train LF-MMI systems, while no data augmentation is
used to train CE systems. Due to limited time, we could not
perform a principled comparison between the two training
criterion and plan to do so as an extension of this work. We
also acknowledge that our recognition system is based on
the publicly available recipes in the kaldi toolkit [9]. The
LF-MMI systems are based on the excellent work in [2].

7. CONCLUSIONS AND FUTURE WORK

We participated in the MGB-2 Arabic speech transcription
challenge with our recognition systems that are built using
the recently introduced LF-MMI modeling framework [2]
and achieve the lowest %WER of 14.2% on the evaluation
data. Our final system is a combination of three LF-MMI
trained models; TDNN, LSTM and BLSTM. The models are
rescored using a four-gram and RNNME LM before combi-
nation. We acknowledge that due to lack of time, we were
not able to make a detailed and principled comparison be-
tween the CE and LF-MMI trained systems. We also did not
manage to train RNNLMs with different architectures and
objective functions such as Noise Contrastive Estimation and
Variance Regularization, implemented in the recently intro-
duced CUED-RNNLM toolkit [20]. We are in the process of
doing that analysis and hope to publish it as an extension to
this work, soon.
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