
Design and Implementation of
Signatures in Transactional

Memory Systems

Daniel Sanchez

August 2007

University of Wisconsin-Madison

2

Outline

 Introduction and motivation

 Bloom filters

 Bloom signatures

 Area & performance evaluation

 Influence of system parameters

 Novel signature schemes (brief overview)

 Conclusions

Signature-based conflict detection

 Signatures:

• Represent an arbitrarily large set of elements in
bounded amount of state (bits)

• Approximate representation, with false positives but no
false negatives

 Signature-based CD: Use signatures to track
read/write sets of a transaction

• Pros:

ゴ Transactions can be unbounded in size

ゴ Independence from caches, eases virtualization

• Cons:

ゴ False conflicts -> Performance degradation

3

Motivation of this study

 Signatures play an important role in TM
performance. Poor signatures cause lots of
unnecessary stalls and aborts.

 Signatures can take significant amount of area

• Can we find area-efficient implementations?

• Adoption of TM much easier if the area requirements are
small!

 Signature design space exploration incomplete in
other TM proposals

4

Summary of results

 Previously proposed TM signatures are either true
Bloom (1 filter, k hash functions) or parallel
Bloom (k filters, 1 hash function each).

• Performance-wise, True Bloom = Parallel Bloom

• Parallel Bloom about 8x more area-efficient

 New Bloom signature designs that double the
performance and are more robust

 Pressure on signatures greatly increases with the
number of cores; directory can help

 Three novel signature designs

5

Outline

6

 Introduction and motivation

 Bloom filters

 Bloom signatures

 Area & performance evaluation

 Influence of system parameters

 Novel signature schemes (brief overview)

 Conclusions

Bloom filters

7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

h1 h2

Bit field (m bits)

Hash functions

Address

Hash values {0,…,m-1}

Bloom filters

8

0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

Add 0x2a83ff00

h1 h2

3 8

Bloom filters

9

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

Add 0x2a8ab3f4

h1 h2

12 2

Bloom filters

10

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

Test 0x2a8a83f4

h1 h2

10 2

False

Bloom filters

11

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

h1 h2

3 8

True

Test 0x2a83ff00

Bloom filters

12

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

h1 h2

2 8

True (false positive!)

Test 0xff83ff48

Outline

13

 Introduction and motivation

 Bloom filters

 Bloom signatures

• True Bloom signatures

• Parallel Bloom signatures

 Area & performance evaluation

 Influence of system parameters

 Novel signature schemes (brief overview)

 Conclusions

Design
Implementation

True Bloom signature - Design

 True Bloom signature = Signature implemented
with a single Bloom filter

14

 Easy insertions and tests for membership

 Probability of false positives:

 Design dimensions

• Size of the bit field (m)

• Number of hash functions (k)

• Type of hash functions

k kn k n k

m

F P

1
P (n) 1 1 1 e

m

k
(if 1)

m

Number of hash functions

15

Types of hash functions

 Addresses neither independent nor uniformly
distributed (key assumptions to derive PFP(n))

 But can generate hash values that are almost
uniformly distributed and uncorrelated with good
(universal/almost universal) hash functions

 Hash functions considered:

16

Bit-selection H3

(inexpensive, low quality) (moderate, higher quality)

True Bloom signature – Implementation

 Divide bit field in words, store in small SRAM

• Insert: Raise wordline, drive appropriate bitline to 1,
leave the rest floating

• Test: Raise wordline, check the value at bitline

 k hash functions => k read, k write ports

17

Problem
Size of SRAM cell

increases quadratically
with # ports!

Parallel Bloom signatures - Design

 Use k Bloom filters of size m/k, with independent
hash functions

18

 Probability of false positives:

k kn n k

m

F P

1
P (n) 1 1 1 e

m / k

Same as
true Bloom!

Parallel Bloom signature - Implementation

19

 Highly area-efficient SRAMs

 Same performance as true Bloom! (in theory)

Outline

20

 Introduction and motivation

 Bloom filters

 Bloom signatures

 Area & performance evaluation

• Area evaluation

• True vs. Parallel Bloom in practice

• Type of hash functions

• Variability in hash functions

 Influence of system parameters

 Novel signature schemes (brief overview)

 Conclusions

Area evaluation

 SRAM: Area estimations using CACTI

• 4Kbit signature, 65nm

21

k=1 k=2 k=4

True Bloom 0.031 mm2 0.113 mm2 0.279 mm2

Parallel Bloom 0.031 mm2 0.032 mm2 0.035 mm2

 8x area savings for four hash functions!

 Hash functions:

 Bit selection has no extra cost

 Four hardwired H3 require ≈25% of SRAM area

Performance evaluation

 System organization:

• 32 in-order single-issue cores

• Private split 32KB, 4-way L1 caches

• Shared unified 8MB, 8-way L2 cache

• High-bandwidth crossbar

• Signature checks are broadcast (no directory)

• Base conflict resolution protocol with write-set prediction

 Benchmarks: btree, raytrace, vacation

• barnes, delaunay, and full set of results in report

22

True vs. Parallel Bloom signatures

 Bottom line: True ≈ parallel if we use good
enough hash functions

23

vacation
bit-selection

vacation
H3

Graph format

Solid lines = Parallel Bloom

Dashed lines = True Bloom

Different colors = Different
number of hash functions

Execution times are
always normalized

Bit-selection vs. fixed H3

 H3 clearly outperforms bit-selection for k≥2
 Only 2Kbit signatures with 4+ H3 functions cause

no degradation over all the benchmarks 24

btree
bit-selection

btree
H3

The benefits of variability

 Variable H3: Reconfigure hash functions after
each commit/abort

• Constant aliases -> Transient aliases

• Adds robustness

25

btree
fixed H3

btree
var. H3

The benefits of variability

 Variable H3: Reconfigure hash functions after
each commit/abort

• Constant aliases -> Transient aliases

• Adds robustness

26

raytrace
fixed H3

raytrace
var. H3

Conclusions on Bloom signature evaluation

 Parallel Bloom enables high number of hash
functions “for free”

 Type of hash functions used matters a lot (but
was neglected in previous analysis)

 Variability adds robustness

 Should use:

• About four H3 or other high quality hash functions

• Variability if the TM system allows it

• Size… depends on system configuration

27

Outline

28

 Introduction and motivation

 Bloom filters

 Bloom signatures

 Area & performance evaluation

 Influence of system parameters

• Number of cores

• Conflict resolution protocol

 Novel signature schemes (brief overview)

 Conclusions

Number of cores & using a directory

 Pressure increases with #cores

 Directory helps, but still requires to scale the
signatures with the number of cores 29

btree vacation

Constant signature size (256 bits)
Number of cores in the x-axis!

Effect of conflict resolution protocol

 Protocol choice fairly orthogonal to signatures

 False conflicts boost existing pathologies in
btree/raytrace -> Hybrid policy helps even more
than with perfect signatures

30

btree raytrace vacation

(Parallel Bloom, fixed H3, k=2)

Constant signature type (H3, k=2)
Execution times not normalized!

Overview of novel signature schemes

 Cuckoo-Bloom signatures

• Adapts cuckoo hashing for HW implementation

• Keeps a hash table for small sets, morphs into a Bloom filter
dynamically as the size grows

• Significant complexity, performance advantage not clear

 Hash-Bloom signatures

• Simpler hash-table based approach

• Morphs to a Bloom filter more gradually than Cuckoo-Bloom

• Outperforms Bloom signatures for both small and write sets,
in theory and practice

 Adaptive Bloom signatures

• Bloom signatures + set size predictors + scheme to select
the best number of hash functions

31

Conclusions

 Bloom signatures should always be implemented
as parallel Bloom

• with ≈4 good hash functions, some variability if allowed
• Overall good performance, simple/inexpensive HW

 Increasing #cores makes signatures more critical

• Hinders scalability!

• Using directory helps, but doesn’t solve

 Hybrid conflict resolution helps with signatures

 There are alternative schemes that outperform
Bloom signatures

32

Thanks

for your attention

Any questions?

Backup – Hash function analysis

34

 Hash value distributions for btree, 512-bit parallel
Bloom with 2 hash functions

bit-selection fixed H3

Backup - Conflict resolution in LogTM-SE

 Base: Stall requester by default, abort if it is
stalling an older Tx and stalled bt an older Tx

 Pathologies:

• DuelingUpgrades: Two Txs try to read-modify-update
same block concurrently -> younger aborts

• StarvingWriter: Difficult for a Tx to write to a widely
shared block

• FutileStall: Tx stalls waiting for other that later aborts

 Solutions:

• Write-set prediction: Predict read-modify-updates, get
exclusive access directly (targets DuelingUpgrades)

• Hybrid conflict resolution: Older writer aborts younger
readers (targets StarvingWriter, FutileStall)

35

Backup – Cuckoo-Bloom signatures

36

vacationbtree

Backup – Hash-Bloom signatures

37

vacation

Backup – Adaptive Bloom signatures

38

vacationraytrace

