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Signature-based conflict detection

 Signatures:

• Represent an arbitrarily large set of elements in 
bounded amount of state (bits)

• Approximate representation, with false positives but no
false negatives

 Signature-based CD: Use signatures to track 
read/write sets of a transaction

• Pros: 

ゴ Transactions can be unbounded in size

ゴ Independence from caches, eases virtualization

• Cons:

ゴ False conflicts -> Performance degradation
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Motivation of this study

 Signatures play an important role in TM 
performance. Poor signatures cause lots of 
unnecessary stalls and aborts.

 Signatures can take significant amount of area

• Can we find area-efficient implementations?

• Adoption of TM much easier if the area requirements are 
small!

 Signature design space exploration incomplete in 
other TM proposals
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Summary of results

 Previously proposed TM signatures are either true 
Bloom (1 filter, k hash functions) or parallel 
Bloom (k filters, 1 hash function each).

• Performance-wise, True Bloom = Parallel Bloom

• Parallel Bloom about 8x more area-efficient

 New Bloom signature designs that double the 
performance and are more robust

 Pressure on signatures greatly increases with the 
number of cores; directory can help

 Three novel signature designs
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Bloom filters
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Bloom filters
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Bloom filters
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Bloom filters
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Bloom filters
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Bloom filters
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True Bloom signature - Design

 True Bloom signature = Signature implemented 
with a single Bloom filter 
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 Easy insertions and tests for membership

 Probability of false positives:

 Design dimensions

• Size of the bit field (m)

• Number of hash functions (k)

• Type of hash functions
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Number of hash functions
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Types of hash functions

 Addresses neither independent nor uniformly 
distributed (key assumptions to derive PFP(n))

 But can generate hash values that are almost
uniformly distributed and uncorrelated with good 
(universal/almost universal) hash functions

 Hash functions considered:

16

Bit-selection H3

(inexpensive, low quality) (moderate, higher quality)



True Bloom signature – Implementation

 Divide bit field in words, store in small SRAM

• Insert: Raise wordline, drive appropriate bitline to 1, 
leave the rest floating

• Test: Raise wordline, check the value at bitline

 k hash functions => k read, k write ports
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Problem
Size of SRAM cell

increases quadratically
with # ports!



Parallel Bloom signatures - Design

 Use k Bloom filters of size m/k, with independent 
hash functions
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 Probability of false positives:
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Same as 
true Bloom!



Parallel Bloom signature - Implementation
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 Highly area-efficient SRAMs

 Same performance as true Bloom! (in theory)
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Area evaluation

 SRAM: Area estimations using CACTI

• 4Kbit signature, 65nm
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k=1 k=2 k=4

True Bloom 0.031 mm2 0.113 mm2 0.279 mm2

Parallel Bloom 0.031 mm2 0.032 mm2 0.035 mm2

 8x area savings for four hash functions!

 Hash functions:

 Bit selection has no extra cost

 Four hardwired H3 require ≈25% of SRAM area



Performance evaluation

 System organization:

• 32 in-order single-issue cores

• Private split 32KB, 4-way L1 caches

• Shared unified 8MB, 8-way L2 cache

• High-bandwidth crossbar

• Signature checks are broadcast (no directory)

• Base conflict resolution protocol with write-set prediction

 Benchmarks: btree, raytrace, vacation

• barnes, delaunay, and full set of results in report
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True vs. Parallel Bloom signatures

 Bottom line: True ≈ parallel if we use good 
enough hash functions
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vacation
bit-selection

vacation
H3

Graph format

Solid lines = Parallel Bloom

Dashed lines = True Bloom

Different colors = Different 
number of hash functions

Execution times are
always normalized



Bit-selection vs. fixed H3

 H3 clearly outperforms bit-selection for k≥2
 Only 2Kbit signatures with 4+ H3 functions cause 

no degradation over all the benchmarks 24
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The benefits of variability

 Variable H3: Reconfigure hash functions after 
each commit/abort

• Constant aliases -> Transient aliases

• Adds robustness
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The benefits of variability

 Variable H3: Reconfigure hash functions after 
each commit/abort

• Constant aliases -> Transient aliases

• Adds robustness
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Conclusions on Bloom signature evaluation

 Parallel Bloom enables high number of hash 
functions “for free”

 Type of hash functions used matters a lot (but 
was neglected in previous analysis)

 Variability adds robustness

 Should use:

• About four H3 or other high quality hash functions

• Variability if the TM system allows it

• Size… depends on system configuration
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Number of cores & using a directory

 Pressure increases with #cores

 Directory helps, but still requires to scale the 
signatures with the number of cores 29

btree vacation

Constant signature size (256 bits)
Number of cores in the x-axis!



Effect of conflict resolution protocol

 Protocol choice fairly orthogonal to signatures

 False conflicts boost existing pathologies in 
btree/raytrace -> Hybrid policy helps even more 
than with perfect signatures 
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btree raytrace vacation

(Parallel Bloom, fixed H3, k=2)

Constant signature type (H3, k=2)
Execution times not normalized!



Overview of novel signature schemes

 Cuckoo-Bloom signatures

• Adapts cuckoo hashing for HW implementation

• Keeps a hash table for small sets, morphs into a Bloom filter 
dynamically as the size grows

• Significant complexity, performance advantage not clear

 Hash-Bloom signatures

• Simpler hash-table based approach

• Morphs to a Bloom filter more gradually than Cuckoo-Bloom

• Outperforms Bloom signatures for both small and write sets, 
in theory and practice

 Adaptive Bloom signatures

• Bloom signatures + set size predictors + scheme to select 
the best number of hash functions
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Conclusions

 Bloom signatures should always be implemented 
as parallel Bloom

• with ≈4 good hash functions, some variability if allowed
• Overall good performance, simple/inexpensive HW

 Increasing #cores makes signatures more critical

• Hinders scalability!

• Using directory helps, but doesn’t solve

 Hybrid conflict resolution helps with signatures

 There are alternative schemes that outperform 
Bloom signatures
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Thanks

for your attention

Any questions?



Backup – Hash function analysis
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 Hash value distributions for btree, 512-bit parallel 
Bloom with 2 hash functions

bit-selection fixed H3



Backup - Conflict resolution in LogTM-SE

 Base: Stall requester by default, abort if it is 
stalling an older Tx and stalled bt an older Tx

 Pathologies:

• DuelingUpgrades: Two Txs try to read-modify-update 
same block concurrently -> younger aborts

• StarvingWriter: Difficult for a Tx to write to a widely 
shared block

• FutileStall: Tx stalls waiting for other that later aborts

 Solutions:

• Write-set prediction: Predict read-modify-updates, get 
exclusive access directly (targets DuelingUpgrades)

• Hybrid conflict resolution: Older writer aborts younger 
readers (targets StarvingWriter, FutileStall)
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Backup – Cuckoo-Bloom signatures
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Backup – Hash-Bloom signatures
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Backup – Adaptive Bloom signatures
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