Flexible Architectural Support
for Fine-Grain Scheduling

Daniel Sanchez
Richard M. Yoo
Christos Kozyrakis

March 16" 2010
Stanford University

Our focus: User-level schedulers for parallel runtimes
— Cilk, TBB, OpenMP, ...
Trends:
— More cores/chip = > Need to exploit finer-grain parallelism

— Deeper memory hierarchies Communication through shared
— Costlier cache coherence memory increasingly inefficient

Existing fine-grain schedulers:
— Software-only: Slow, do not scale

— Hardware-only: Fast, but inflexible
Our contribution: Hardware-aided approach
— HW: Fast, asynchronous messages between threads (ADM)

— SW: Scalable message-passing schedulers
— ADM schedulers scale like HW, flexible like SW schedulers

e Introduction
e Asynchronous Direct Messages (ADM)
e ADM schedulers

e Evaluation

* Fine-grain parallelism: Divide work in parallel phase in
small tasks (~¥1K-10K instructions)

* Potential advantages:
— Expose more parallelism
— Reduce load imbalance

— Adapt to a dynamic environment (e.g. changing # cores)

* Potential disadvantages:
— Large scheduling overheads

— Poor locality (if application has inter-task locality)

Task-stealing schedulers

‘ Threads
Dequeue Enqueue
- - Task
Queues

_/ Steal

e One task queue per thread
e Threads dequeue and enqueue tasks from queues

e \When a thread runs out of work, it tries to steal tasks
from another thread

Task-stealing: Com ‘

4)

- 1. Queues
Y,
<
2. Policies
> <
Steal

3. Communication
_ Y,

mergesort

* |n software schedulers:

—Queues and policies are cheap

—Communication through shared
memory increasingly expensive!

Mormalized exec. time

Threads

e Carbon [ISCA ‘07]: HW gqueues, policies, communication
— One hardware LIFO task queue per core
— Special instructions to enqueue/dequeue tasks
 Implementation:

— Centralized queues for fast stealing (Global Task Unit)

— One small task buffer per core to hide GTU latency (Local Task Units)

mergesort gtfold-tp
1.0 , , ,
B Sstarved Eos[EE 21af
B stealing % %
Queues g — g
A £ | Large benefits if app E[Useless if app doesn’t
[App 2 { matches HW policies 2| match HW sollidtes

0.0

SW Carbon SW Carbon ’ SW Carbon SW Carbon
128 threads 256 threads 128 threads 256 threads

Approaches to fine-grain scheduling |

Fine-grain scheduling

v
Software-only Hardware-only Hardware-aided
OpenMP TBB Carbon Asynchronous Direct
Cilk X10 GPUs Messages
SW queues & policies HW queues & policies SW queues & policies
SW communication HW communication HW communication
x High-overhead v" Low-overhead v" Low-overhead
v" Flexible x |Inflexible v Flexible
v No extra HW x Special-purpose HW v’ General-purpose HW

e Introduction
e Asynchronous Direct Messages (ADM)

e ADM schedulers

e Evaluation

e ADM: Messaging between threads tailored to scheduling
and control needs:

—Low-overhead ~ Send from/receive to registers
—Short messages Independent from coherence

Generic interface
—>

—General-purpose Allows reuse

10

Core ADM Unit
Thread ID Core
ineli Register | |Interrupt "
Pipeline File Unit ||
Yo N Receive TID Send
L1D L1l ADM Buffers Cong(trcl Translation Buffers
q Gen
To Intef&onnect

* One ADM unit per core:
— Receive buffer holds messages until dequeued by thread
— Send buffer holds sent messages pending acknowledgement
— Thread ID Translation Buffer translates TID - core ID on sends

— Small structures (16-32 entries), don't grow with # cores

ADM ISA

Instruction Description

adm_sendrl, r2 Sends a message of (r1) words (0-6) to thread with ID (r2)
adm_peekrl, r2 Returns source and message length at head of rx buffer
adm_rx rl,r2 Dequeues message at head of rx buffer
adm_ei/adm_di Enable / disable receive interrupts

* Send and receive are atomic (single instruction)

— Send completes when message is copied to send buffer
— Receive blocks if buffer is empty

— Peek doesn't block, enables polling

e ADM unit generates an user-level interrupt on the running thread when a
message is received

— No stack switching, handler code partially saves context (used registers) - fast

— Interrupts can be disabled to preserve atomicity w.r.t. message reception

12

e Introduction
e Asynchronous Direct Messages (ADM)

e ADM schedulers

e Evaluation

13

 Message-passing schedulers
 Replace parallel runtime’s (e.g. TBB) scheduler
— Application programmer is oblivious to this

 Threads can perform two roles:
— Worker: Execute parallel phase, enqueue & dequeue tasks

— Manager: Coordinate task stealing & parallel phase termination

* Centralized scheduler: Single manager coordinates all

é T, is manager Manager
and worker!
P N
P / \ A S
7 / \ N
7’ / \ N
7’ N
7’ / \ N N
e / \ S
7’ N
14

 Manager keeps approximate task counts of each worker
* Workers only notify manager at exponential thresholds

15

Centralized Scheduler: Steals

Ty

Manager

STEAL_REQ

<T1->T2, 1> UPDATE <1>

TASK

Workers

Task
Queues

e Manager requests a steal from the worker with most tasks

16

Hierarchical Scheduler

e Centralized scheduler:
v Does all communication through messages
v Enables directed stealing, task prefetching
x Does not scale beyond ~16 threads

e Solution: Hierarchical scheduler

—Workers and managers form a tree

‘ 2"d Level Manager
- ~
-
/
7 II

- - S~ So
~,
Q 1%t Level Managers
~ 4 ~
N 7 N
7 4 N N\ 4 4 N N
7 N 7 N
17

Hierarchical Scheduler: Steals

2"d Level Manager

1%t Level Managers

Workers

TASK (x2) TASK (x4)

e Steals can span multiple levels
— A single steal rebalances two partitions at once
— Scales to hundreds of threads 18

e Introduction
e Asynchronous Direct Messages (ADM)

e ADM schedulers

e Evaluation

19

Simulated machine: Tiled CMP

— 32, 64, 128 in-order dual-thread SPARC cores
(64 — 256 threads)

— 3-level cache hierarchy, directory coherence

Benchmarks:
— Loop-parallel: canneal, cg, gtfold
— Task-parallel: maxflow, mergesort, ced, hashjoin

— Focus on representative subset of results,
see paper for full set

CMP tile

Directory Bank —

Memory
Controller

IC Router

—

]

Private L2 Cache
Bank 2 |Bank 3

Bank 0

Bank 1

—

1
Crossbar

—

Core 0

Corel

Core 2|Core 3

64-core, 16-tile CMP

20

I App Queues [J] Stealing [} Starved

mergesort hashjein

B CB ADM B CB ADM

B CB ADM B CB ADM B CB ADM B CB ADM
2360 e 2360

0.0 g CB ADM BW CB ADM
2% a0t 2% a0t 2%

e SW scalability limited by scheduling overheads
e Carbon and ADM: Small overheads that scale
e ADM matches Carbon = No need for HW scheduler

21

* |n gtfold, FIFO queues allow tasks to clear critical
dependences faster

—FIFO queues trivial in SW and ADM _

—Carbon (HW) stuck with LIFO LA

IJ
LS

* ADM achieves 40x speedup
over Carbon

=

e Can’timplement all
scheduling policies in HW!

Normalized exec, tamnme
=R - - =
T T

e CE ADM ZW CE ADM
128t 236t

22

