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Our focus: User-level schedulers for parallel runtimes
— Cilk, TBB, OpenMP, ...
Trends:
— More cores/chip = > Need to exploit finer-grain parallelism

— Deeper memory hierarchies Communication through shared
— Costlier cache coherence memory increasingly inefficient

Existing fine-grain schedulers:
— Software-only: Slow, do not scale

— Hardware-only: Fast, but inflexible
Our contribution: Hardware-aided approach
— HW: Fast, asynchronous messages between threads (ADM)

— SW: Scalable message-passing schedulers
— ADM schedulers scale like HW, flexible like SW schedulers
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* Fine-grain parallelism: Divide work in parallel phase in
small tasks (~¥1K-10K instructions)

* Potential advantages:
— Expose more parallelism
— Reduce load imbalance

— Adapt to a dynamic environment (e.g. changing # cores)

* Potential disadvantages:
— Large scheduling overheads

— Poor locality (if application has inter-task locality)



Task-stealing schedulers

‘ Threads
Dequeue Enqueue
- - Task
Queues

\_/ Steal

e One task queue per thread
e Threads dequeue and enqueue tasks from queues

e \When a thread runs out of work, it tries to steal tasks
from another thread



Task-stealing: Com ‘
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* |n software schedulers:

—Queues and policies are cheap

—Communication through shared
memory increasingly expensive!
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e Carbon [ISCA ‘07]: HW gqueues, policies, communication
— One hardware LIFO task queue per core
— Special instructions to enqueue/dequeue tasks
 Implementation:

— Centralized queues for fast stealing (Global Task Unit)

— One small task buffer per core to hide GTU latency (Local Task Units)
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Approaches to fine-grain scheduling |

Fine-grain scheduling

v
Software-only Hardware-only Hardware-aided
OpenMP TBB Carbon Asynchronous Direct
Cilk X10 GPUs Messages
SW queues & policies HW queues & policies SW queues & policies
SW communication HW communication HW communication
x High-overhead v" Low-overhead v" Low-overhead
v" Flexible x |Inflexible v Flexible
v No extra HW x Special-purpose HW v’ General-purpose HW
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e ADM: Messaging between threads tailored to scheduling
and control needs:

—Low-overhead ~ Send from/receive to registers
—Short messages Independent from coherence

Generic interface
—>

—General-purpose Allows reuse
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* One ADM unit per core:
— Receive buffer holds messages until dequeued by thread
— Send buffer holds sent messages pending acknowledgement
— Thread ID Translation Buffer translates TID - core ID on sends

— Small structures (16-32 entries), don't grow with # cores



ADM ISA

Instruction Description

adm_sendrl, r2 Sends a message of (r1) words (0-6) to thread with ID (r2)
adm_peekrl, r2 Returns source and message length at head of rx buffer
adm_rx rl,r2 Dequeues message at head of rx buffer
adm_ei/adm_di Enable / disable receive interrupts

* Send and receive are atomic (single instruction)

— Send completes when message is copied to send buffer
— Receive blocks if buffer is empty

— Peek doesn't block, enables polling

e ADM unit generates an user-level interrupt on the running thread when a
message is received

— No stack switching, handler code partially saves context (used registers) - fast

— Interrupts can be disabled to preserve atomicity w.r.t. message reception
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 Message-passing schedulers
 Replace parallel runtime’s (e.g. TBB) scheduler
— Application programmer is oblivious to this

 Threads can perform two roles:
— Worker: Execute parallel phase, enqueue & dequeue tasks

— Manager: Coordinate task stealing & parallel phase termination

* Centralized scheduler: Single manager coordinates all

é T, is manager Manager
and worker!
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 Manager keeps approximate task counts of each worker
* Workers only notify manager at exponential thresholds
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Centralized Scheduler: Steals

Ty

Manager

STEAL_REQ

<T1->T2, 1> UPDATE <1>

TASK

Workers

Task
Queues

e Manager requests a steal from the worker with most tasks
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Hierarchical Scheduler

e Centralized scheduler:
v Does all communication through messages
v Enables directed stealing, task prefetching
x Does not scale beyond ~16 threads

e Solution: Hierarchical scheduler

—Workers and managers form a tree
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Hierarchical Scheduler: Steals
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e Steals can span multiple levels
— A single steal rebalances two partitions at once
— Scales to hundreds of threads 18
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Simulated machine: Tiled CMP

— 32, 64, 128 in-order dual-thread SPARC cores
(64 — 256 threads)

— 3-level cache hierarchy, directory coherence

Benchmarks:
— Loop-parallel: canneal, cg, gtfold
— Task-parallel: maxflow, mergesort, ced, hashjoin

— Focus on representative subset of results,
see paper for full set
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e SW scalability limited by scheduling overheads
e Carbon and ADM: Small overheads that scale
e ADM matches Carbon = No need for HW scheduler
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* |n gtfold, FIFO queues allow tasks to clear critical
dependences faster

—FIFO queues trivial in SW and ADM _

—Carbon (HW) stuck with LIFO LA
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* ADM achieves 40x speedup
over Carbon

=

e Can’timplement all
scheduling policies in HW!
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