
Vantage: Scalable and Efficient Fine-Grain Cache Partitioning

Daniel Sanchez and Christos Kozyrakis
Electrical Engineering Department, Stanford University

{sanchezd, kozyraki}@stanford.edu

ABSTRACT

Cache partitioning has a wide range of uses in CMPs, from guaran-
teeing quality of service and controlled sharing to security-related
techniques. However, existing cache partitioning schemes (such as
way-partitioning) are limited to coarse-grain allocations, can only
support few partitions, and reduce cache associativity, hurting per-
formance. Hence, these techniques can only be applied to CMPs
with 2-4 cores, but fail to scale to tens of cores.

We present Vantage, a novel cache partitioning technique that
overcomes the limitations of existing schemes: caches can have
tens of partitions with sizes specified at cache line granularity, while
maintaining high associativity and strong isolation among parti-
tions. Vantage leverages cache arrays with good hashing and asso-
ciativity, which enable soft-pinning a large portion of cache lines.
It enforces capacity allocations by controlling the replacement pro-
cess. Unlike prior schemes, Vantage provides strict isolation guar-
antees by partitioning most (e.g. 90%) of the cache instead of all
of it. Vantage is derived from analytical models, which allow us
to provide strong guarantees and bounds on associativity and siz-
ing independent of the number of partitions and their behaviors. It
is simple to implement, requiring around 1.5% state overhead and
simple changes to the cache controller.

We evaluate Vantage using extensive simulations. On a 32-core
system, using 350 multiprogrammed workloads and one partition
per core, partitioning the last-level cache with conventional tech-
niques degrades throughput for 71% of the workloads versus an
unpartitioned cache (by 7% average, 25% maximum degradation),
even when using 64-way caches. In contrast, Vantage improves

throughput for 98% of the workloads, by 8% on average (up to
20%), using a 4-way cache.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Ca-
che memories; C.1.4 [Parallel Architectures]

General Terms: Design, Performance

Keywords: Cache partitioning, shared cache, multi-core, QoS

1. INTRODUCTION
As Moore’s Law enables chip-multiprocessors (CMPs) with hun-

dreds of threads, controlling capacity allocation in the cache hierar-
chy to improve performance and provide quality of service (QoS) is
becoming a first-order issue. In current designs with 16-128 threads
sharing the last-level cache [13, 23], a few threads can use most of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

its capacity, degrading performance for other applications running
in parallel [7, 9, 10].

To address this issue, we can explicitly partition cache capacity
across multiple threads. Additionally, cache partitioning has sev-
eral important uses beyond enforcing isolation and QoS in systems
with shared caches. For example, in CMPs with private caches, ca-
pacity sharing schemes also need to partition each cache [18]. Sev-
eral software-controlled memory features like local stores [4, 5] or
line pinning [16] can be implemented through partitioning. Archi-
tectural proposals such as transactional memory and thread-level
speculation [2, 8] use caches to store speculative data, and can use
partitioning to avoid having that data evicted by non-speculative
accesses. Finally, security schemes can use the isolation provided
by partitioning to prevent timing side-channel attacks that exploit
the shared cache [17].

A cache partitioning solution consists of an allocation policy

to determine the space allocated per partition (e.g. to improve fair-
ness, favor threads based on priorities, or maximize overall through-
put [9, 19, 24]), and a partitioning scheme to actually enforce those
allocations [3, 14, 20, 27]. While allocation policies are often easy
to implement and efficient, current partitioning schemes have se-
rious drawbacks. Ideally, a partitioning scheme should allow the
cache to hold a large number of arbitrarily fine-grain partitions (e.g.
hundreds of partitions of tens or hundreds of lines each). It should
maintain strong isolation among partitions, and strictly enforce ca-
pacity allocations, without reducing cache associativity. Dynami-
cally creating, deleting or resizing partitions should be quick and
efficient. Finally, partitioning should require minimal changes to
cache designs and add small state and logic overheads.

Unfortunately, existing schemes for allocation enforcement fail
to meet these properties. Way-partitioning [3] is limited to few
coarse-grain partitions (at most, as many partitions as ways) and
drastically reduces the associativity of each partition. Other sche-
mes partition the cache by sets instead of ways, either in hard-
ware [20] or software [14], maintaining associativity. However,
these methods also lead to coarse-grain partitions, require costly
changes to cache arrays and expensive data copying or flushing
when partitions are resized, and often do not work with shared
address spaces. Finally, proposals such as decay-based replace-
ment [26] or PIPP [27] modify the replacement policy to provide
some control over allocations. However, they lack strict control and
guarantees over partition sizes and interference, preclude the use of
a specific replacement policy within each partition, and are often
co-designed to work with a specific allocation policy.

In this paper we present Vantage, a scheme to enforce capacity
allocations in a partitioned cache that addresses the shortcomings
of prior proposals. Unlike other schemes that provide strict guaran-
tees, Vantage does not restrict line placement depending on its par-
tition, thus maintaining high associativity on the partitioned cache

and enabling a large number of fine-grain partitions with capacities
defined at line granularities. Partitions can be dynamically resized,
created and removed efficiently. Vantage enforces capacity alloca-

1

Scheme
Scalable &

fine-grain

Maintains

associativity

Efficient

resizing

Strict sizes

& isolation

Indep. of

repl. policy

Hardware

cost

Partitions

whole cache

Way-partitioning [3, 20] No No Yes Yes Yes Low Yes

Set-partitioning [20, 25] No Yes No Yes Yes High Yes

Page coloring [14] No Yes No Yes Yes None (SW) Yes

Ins/repl policy-based [10, 26, 27] Sometimes Sometimes Yes No No Low Yes

Vantage Yes Yes Yes Yes Yes Low No (most)

Table 1: Classification of partitioning schemes.

tions by controlling the replacement process, but it still requires a
replacement policy (e.g. LRU) to rank lines within each partition.

Vantage is derived from statistical analysis, not empirical obser-

vation. It works with highly-associative cache designs, like skew-
associative caches [22] or zcaches [21], which have good analytical
properties, namely, they provide a high-quality set of replacement
candidates independently of the workload’s access pattern. Hence,
they enable us to effectively soft-pin a large portion of the lines in
the cache through the replacement policy. Vantage provides strong
guarantees on partition sizes and isolation by partitioning most of

the cache, not all of it. Partitions can slightly outgrow their tar-
get allocations, but they borrow space from a small unpartitioned
region of the cache, not from other partitions. Hence, Vantage elim-
inates destructive interference between partitions. Sizes are main-
tained by matching the average rates at which lines enter and leave

each partition. We prove that by controlling partition sizes this
way, the amount of cache space that has to be left unpartitioned
for Vantage to work well is both small (e.g. around 5-15% in a 4-
way zcache) and independent of the number of partitions or their

sizes. Therefore, Vantage is scalable. Vantage also works with
conventional set-associative caches, although with slightly reduced
performance and weaker guarantees.

While these conceptual techniques provide strong guarantees,
implementing them directly would be complex. We propose a prac-
tical design that relies on negative feedback to control partition

sizes in a way that maintains the guarantees of the analytical mod-

els without their complexity. Our design just requires adding few
bits to each tag (e.g. 6 bits to support 32 partitions) and simple
modifications to the cache controller, which only needs to track
about 256 bits of state per partition, and a few narrow adders and
comparators for its control logic. On an 8 MB last-level cache with
32 partitions, Vantage adds a 1.5% state overhead overall.

We evaluate Vantage by simulating a large variety of multipro-
grammed workloads on both 4-core and 32-core CMPs. We com-
pare it to way-partitioning and PIPP using utility-based cache par-
titioning (UCP) [19] as the allocation policy. Vantage significantly
improves the performance of UCP on the 4-core system (up to
40%), but results are most striking on the 32-core system: while
using either way-partitioning or PIPP to partition a 64-way cache
almost always degrades performance due to the large loss of asso-
ciativity, Vantage is able to deliver similar performance improve-
ments as in the 4-core system, maintaining 32 fine-grain, highly-
associative partitions using a 4-way cache (i.e. 16 times fewer
ways). Additional simulation results show that Vantage achieves
the benefits and bounds predicted by the analytical models.

2. BACKGROUND
Partitioning requires an allocation policy to decide the number

and sizes of partitions, and a partitioning scheme to enforce them.
In this work we focus on the latter. Table 1 summarizes the differ-
ences between current approaches, which we review in this section.
Broadly, there are two approaches to partition a cache:

Strict partitioning by restricting line placement: Schemes with
strict partitioning guarantees rely on restricting the locations where
a line can be placed depending on its partition. Way-partitioning or
column caching [3] divides the cache by ways, restricting fills from
each partition to its assigned subset of ways. Way-partitioning is
simple, but has several problems: partitions are coarsely sized (in
multiples of way size), the number of partitions is limited by the
number of ways, and the associativity of each partition is propor-
tional to its way count, imposing a trade-off between isolation and
partition performance. For way-partitioning to work well, the num-
ber of ways should be significantly larger than the number of parti-
tions, so this scheme does not scale to large partition counts.

To avoid losing associativity, the cache can be partitioned by
sets instead of ways, as proposed by one flavor of reconfigurable
caches [20] and molecular caches [25]. However, these approaches
require configurable decoders or a significant redesign of cache ar-
rays, and must do scrubbing, i.e. flushing or moving data when
resizing partitions. Most importantly, this scheme will only work
when we have fully disjoint address spaces, which is not true in
most cases. Even different applications operating on separate ad-
dress spaces share library code and OS code and data. A differ-
ent approach to partition through placement restriction is to lever-
age virtual memory, using page coloring to constrain the physi-
cal pages of a process to map to a portion of the cache sets [14].
While this scheme does not require hardware support, it is limited
to coarse-grain partition sizes (multiples of page size×cache ways),
precludes the use of superpages, does not work on caches that are
indexed using hashing (common in modern processors [23]), and
repartitioning requires costly recoloring (i.e. copying) of physical
pages, so it must be done infrequently [14].

Soft partitioning by controlling insertion and/or replacement:

Alternatively, a cache can be partitioned approximately by modi-
fying the allocation or replacement policies. These schemes avoid
some of the issues of restricting line placement, but provide only
limited control over partition sizes and inter-partition interference.
They are useful for partitioning policies that can work with approx-
imate partitioning, but not for uses that require stricter guarantees.
In selective cache allocations [10] each partition is assigned a prob-
ability p, and incoming lines from that partition are inserted with
probability p or discarded (self-replaced) with probability 1 − p.
In decay-based replacement policies, lines from different partitions
age at different rates; adjusting the rates provides some control
over partition sizes [26]. Promotion-insertion pseudo-partitioning
(PIPP) [27] assigns each partition a different insertion position in
the LRU chain and slowly promotes lines on hits (e.g. promoting
≃ 1 position per hit instead of moving the line to the head of the
LRU chain). With an additional mechanism to restrict cache pollu-
tion of thrashing applications, PIPP approximately attains the de-
sired partition sizes. PIPP is co-designed to work with UCP as the
allocation policy, and may not work correctly with other policies.
Finally, as we will see in Section 6, PIPP’s partitioning scheme
does not scale with the number of partitions.

2

0.0 0.2 0.4 0.6 0.8 1.0

Eviction priority

0.0

0.2

0.4

0.6

0.8

1.0

A
s
s
o
c
ia

ti
v
it
y

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

Eviction priority

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

A
s
s
o
c
ia

ti
v
it
y

C
D

F

R=4 R=8 R=16 R=64

Figure 1: Associativity CDFs under the uniformity assumption (FA(x) = xR, x ∈ [0, 1]) for R = 4, 8, 16, 64 replacement candidates,

in linear and logarithmic scales.

3. VANTAGE TECHNIQUES

3.1 Overview
Vantage is a partitioning scheme for caches with high associa-

tivity and good hashing, such as skew-associative caches [22] and
zcaches [21]. These caches provide high, predictable associativity
regardless of the workload (see Section 3.2), and thus can keep a
large portion of the lines effectively pinned in the cache.

Vantage does not physically restrict line placement: lines from
all partitions share the cache. It enforces partition sizes at replace-
ment time. On each replacement, Vantage needs to evict one line
from a set of replacement candidates. In a partitioned cache, this
set may include good candidates from other partitions (i.e. lines
that the owning partition would have to evict anyway). To strictly
enforce partition sizes, we should always evict a candidate from the
same partition as the incoming line. However, this does not scale
with the number of partitions, as the portion of candidates from that
specific partition will be increasingly small with more partitions.
For example, a 16-way set-associative cache has 16 replacement
candidates to choose from when unpartitioned, but only 2 when it
is evenly divided in 8 partitions. The core idea behind Vantage is
to relax this restriction, imposing only that the rates of insertions
and evictions from each partition match on average. Since Vantage
dynamically adjusts how to select candidates based on the insertion
rate of each partition, we call this technique churn-based manage-

ment (Section 3.4).
Unfortunately, churn-based management alone has several draw-

backs: it allows interference across partitions (as choosing a can-
didate from another partition means taking space away from that
partition and giving it to the one that caused the miss), makes it
hard to provide strong guarantees on partition sizes, and requires a
complex controller. To solve these issues, we partition most of the
cache rather than all of it. We divide cache space into a managed
region and a small unmanaged region (e.g. 15% of the cache), and
partition only the managed region. Partitions can slightly outgrow
their target allocations, borrowing space from the unmanaged re-
gion instead of from each other. This managed-unmanaged region

division (Section 3.3) solves all interference issues, allows for a
simple controller design, and significantly increases the associativ-
ity on the managed region.

Vantage’s control scheme is derived from statistical analysis ra-
ther than empirical observation. It achieves provable, strong guar-

antees, namely, it eliminates inter-partition interference, provides
precise control of partition sizes, and maintains high partition asso-
ciativities, regardless of the number of partitions or the workload.

3.2 Caches with High Associativity
Vantage relies on caches with good hashing and high associativ-

ity, such as skew-associative caches [22] and zcaches [21]. Skew-
associative caches index each way with a different hash function,
spreading out conflicts. ZCaches enhance skew-associative caches
with a replacement process that obtains an arbitrarily large number
of candidates with a low number of ways. These caches exhibit two
very useful properties for partitioning: they can restrict evictions to
a specific portion of lines by simply controlling the replacement
policy, and provide high associativity independently of the work-
load’s access pattern [21].

We follow the analytical framework for associativity described
in [21], which we summarize here: A cache consists of an ar-

ray, which implements associative lookups and gives a list of re-

placement candidates on each eviction, and a replacement policy,
which defines a global rank of the lines in the cache. Each line is
given an uniformly distributed eviction priority e ∈ [0, 1]. On a
replacement, the cache controller always evicts the candidate with
the highest eviction priority from the ones given by the array. The
associativity distribution is the probability distribution of the evic-
tion priorities of evicted lines. Intuitively, the more skewed towards
1.0 the distribution is, the higher the associativity of the cache.

For skew-associative caches and zcaches, the set of replacement
candidates examined on every eviction is statistically very close to
an uniform random selection of lines [21]. Hence, the associativ-
ity distribution can be derived analytically: if the array gives R
uniformly distributed replacement candidates, the cumulative dis-
tribution function (CDF) of the associativity distribution is [21]:

FA(x) = Prob(A ≤ x) = xR, x ∈ [0, 1] (1)

Fig. 1 plots the associativity distribution for different values of R.
Associativity depends on the number of replacement candidates,

not the number of ways. The good randomization properties of
skew-associative caches and zcaches allow them to match this dis-
tribution in practice, independently of the workload’s access pattern
or the replacement policy used [21]. Fig. 1 shows that the proba-
bility of evicting lines with a low eviction priority quickly becomes
negligible. For example, with R = 64, the probability of evicting
a line with eviction priority e < 0.8 is FA(0.8) = 10−6. Hence,
by simply controlling how lines are ranked, we can guarantee that
they will be kept in the cache with a very high probability. Unfor-
tunately, this does not apply to set-associative caches, which tend
to perform worse than the uniform candidates case [21].

Vantage assumes that the underlying cache design meets the uni-
formity assumption FA(x). We will use zcaches in our evaluation,

3

Evictions
Fills

Demotions

Promotions

Managed

region

Unmanaged

region

(a) Managed-unmanaged region division for
a R = 16 replacement candidates cache,
and flows between regions.

0.0 0.2 0.4 0.6 0.8 1.0

Demotion priority (in managed region)

0.0

0.2

0.4

0.6

0.8

1.0

A
s
s
o
c
ia

ti
v
it
y

C
D

F

R=16

R=32

R=64

(b) Associativity CDF in the man-
aged region when doing exactly one
demotion per eviction.

0.0 0.2 0.4 0.6 0.8 1.0

Demotion priority (in managed region)

0.0

0.2

0.4

0.6

0.8

1.0

A
s
s
o
c
ia

ti
v
it
y

C
D

F

R=16

R=32

R=64

(c) Associativity CDF in the man-
aged region when doing one demo-
tion per eviction on average.

Figure 2: Managed-unmanaged region division: setup, flows and associativity in the managed region (assuming 30% of the cache is

unmanaged).

since they are a cheap way of meeting this constraint. For example,
a 4-way zcache can easily provide R = 16 or R = 52 candi-
dates per replacement [21]. ZCaches, like skew-associative caches,
break the concept of a set, so they cannot use replacement policies
that rely on set ordering. Nevertheless, most replacement policies
can be cheaply implemented, e.g. LRU can be implemented with 8-
bit coarse-grain timestamps [21]. Vantage is not limited to zcaches
and skew-associative caches, however. In Section 6 we show that
Vantage can be used with hashed set-associative caches, although
at higher cost (more ways) and with a slight loss of performance
and analytical guarantees.

Assumptions: For the rest of this section, we make two assump-
tions in our analysis. First, we assume that the replacement candi-
dates on each eviction are independent and uniformly distributed.
Although this is not strictly the case, it is close enough [21] that
our models are accurate in practice, as we will see in Section 6.
Second, we assume that, on each replacement, we know the evic-
tion priority of every candidate, as given by the replacement policy.
While tracking eviction priorities would be very expensive in prac-
tice, Section 4 shows that we can achieve similar results with a
much simpler scheme.

3.3 Managed-Unmanaged Region Division
We divide the cache in two logical regions: a managed and an

unmanaged region. This division is done by simply tagging each
line as either managed or unmanaged, and region sizes are set by
controlling the flow of lines between the two regions. A base re-

placement policy (e.g. LRU) ranks lines as in an undivided cache,
oblivious to the existence of the two regions. On an eviction, lines
in the unmanaged region are always prioritized for eviction over
managed lines. The unmanaged region is sized so that it captures
most evictions, making evictions in the managed region negligible.

Fig. 2a illustrates this setup. It shows the associativity distribu-
tion of a cache with R = 16 candidates, divided in the managed
and unmanaged regions, and the flows of lines between the two. To
make evictions in the managed region negligible (≃ 10−3 proba-
bility), the unmanaged region is sized to 30% of the cache. Caches
with R > 16 will require a smaller unmanaged region. Incoming
lines are inserted in the managed region, eventually demoted to the
unmanaged region, and either evicted from there, or promoted if
they get a hit. Promotions and demotions do not physically move
the line, just change its tag.

In a sense, the unmanaged region acts as a victim cache for the
managed region. Evicting a line requires that it be demoted first

(saving for the rare cases where we do not find a candidate from
the unmanaged region). To keep the sizes of both regions constant,
we would have to demote one line on each replacement and promo-
tion. We denote the fraction of the cache devoted to the managed
and unmanaged regions by m and u, respectively (e.g. in Fig. 2a,
m = 0.7 and u = 0.3). Ignoring the flow of promotions (which
is typically small compared to the evictions), if we demote exactly
one line on each replacement, the associativity distribution for de-

motions inside the managed region is:

FM (x) ∼=
R−1
∑

i=1

B(i, R)FAi
(x) (2)

where B(i, R) =
(

R
i

)

(1 − u)iuR−i is the probability that i of
the R replacement candidates are in the managed region (a bino-
mial distribution), and FAi

(x) = xi is the nominal associativity
distribution with i replacement candidates1. Fig. 2b plots this dis-
tribution for various values of R.

To maintain the sizes of the two regions under control, however,
it is not necessary to demote exactly one candidate per eviction. It
suffices to demote one on average. For example, some evictions
might not yield any candidates with high eviction priority from the
managed region, while others might find two or more. By allowing
demotions to work on the average case rather than being affected
by the worst case, associativity increases significantly. In this case
the controller only needs to select a threshold value, which we call
the aperture (A), over which it will demote every candidate that it
finds. For example, if A = 0.05, it will demote every candidate
that is on the top 5% of eviction priorities (i.e. e ≥ 0.95). Since,
on average, R · m of the candidates are from the managed region,
maintaining the sizes requires an aperture A = 1

R·m
. The associa-

tivity distribution in the managed region is uniform ∼ U [1−A, 1],
so the CDF is:

FM (x) =







0 if x < 1−A
x−(1−A)

A
if 1−A ≤ x ≤ 1

1 if x > 1
(3)

Fig. 2c shows the associativity distributions for several values of R.
By comparing Fig. 2b and Fig. 2c, we clearly see that demoting on
the average significantly improves associativity. For example, with

1This formula is approximate, because we ignore the cases i = 0
(no replacement candidates are from the managed region, hence
none can be demoted), and i = R (all the candidates are from
the managed region, so we need to evict from the managed region
rather than demote). Both cases have a negligible probability.

4

R = 16 candidates, demoting on the average only demotes lines
with eviction priority e > 0.9. Meanwhile, when demoting always
one line per eviction, 60% of the demotions will happen to lines
with e < 0.9.

Overall, using the unmanaged region has several advantages.
First, it enables the controller to work on the average in the man-
aged region, increasing associativity. Second, once we partition
the managed region, partitions will borrow space from it instead
of from each other, eliminating inter-partition interference. Third,
it will make it practical to implement a Vantage controller (Sec-
tion 4). While a portion of the cache must remain unpartitioned,
this is typically a small percentage, e.g. 5-15% with R = 52 can-
didates (Section 4).

3.4 Churn-based Management
We now logically partition the managed region2. We have P par-

titions of target sizes T1, ..., TP , so that
∑P

i=1 Ti = m (i.e. parti-
tion sizes are expressed as a fraction of the total cache size). These
target sizes are given to Vantage by the allocation policy (e.g. UCP
or software mechanisms). Partitions have actual sizes S1, ..., SP ,
and insertion rates, which we call churns, C1, ..., CP (a partition’s
churn is measured in insertions per unit of time). Churn-based man-
agement keeps the actual size of each partition close to its target
size by matching its demotion rate with its churn. It achieves this by
controlling how demotions are done. Instead of having one aperture
for the managed region, there is one aperture per partition, Ai. On
each replacement, all the candidates below their partitions’ aper-
tures are demoted. Unlike way-partitioning, which achieves isola-
tion by always evicting a line from the inserting partition, Vantage
allows a partition’s incoming line to demote others’ lines. Vantage
embraces interference and uses it to its advantage.

We now describe how churn-based management works on differ-
ent cases. As in Section 3.3, we ignore the flow of promotions to
simplify the analysis. Promotions are rare compared to insertions,
hence we treat them as a small modeling error, addressed when
implementing the controller (Section 4).

Partitions with similar behavior: The simplest case happens when
partitions have both the same sizes (Si) and churns (Ci). In this
case, keeping all apertures equal, Ai = 1

R·m
, will maintain their

sizes. This is independent of how the base replacement policy ranks
candidates, as we are demoting from the bottom Ai portion from
each partition. Furthermore, the aperture is independent from the
number of partitions: Vantage retains the same associativity as if

the cache was unpartitioned.

Partitions with different behaviors: When partitions have differ-
ent sizes and/or churns, apertures need to accommodate for this.
A partition with a higher churn than the average will need a larger
aperture, as we need to demote its lines at a higher frequency; and
a partition that is smaller in size than the average will also need a
larger aperture, because replacement candidates from that partition
will be found more rarely.

Overall, partitions with a larger churn and/or a smaller size than
the average will have a larger aperture, and partitions with a smaller
churn and/or a larger size than the average will have a smaller aper-
ture. For example, consider a case with 4 equally sized partitions
(S1 = S2 = S3 = S4), where the first partition has twice the
churn as the others (C1 = 2C2, C2 = C3 = C4). The cache
examines R = 16 replacement candidates per eviction, and the
managed region takes m = 62.5% of the cache. On each replace-

2Please note the distinction between regions and partitions: Van-
tage keeps two regions, managed and unmanaged, and divides the
managed region in partitions.

ment, R · m = 16 · 0.625 = 10 candidates are in the managed
region on average. To maintain the partitions’ sizes, on average,
for every 5 demotions, 2 should be done from partition 1, and 1
demotion from each of partitions 2, 3 and 4. Every 5 demotions,
Vantage gets 5·10 = 50 candidates from the managed region on av-
erage, 50/4 = 12.5 candidates per partition since they are equally
sized. Therefore, the apertures need to be A1 = 2/12.5 = 16%
for partition 1, and A2 = A3 = A4 = 1/12.5 = 8% for the other
partitions. Hence, partitions with disparate churns or sizes cause
associativity to be unevenly distributed.

In general, when we have partitions with different sizes Si and
churns Ci, we can derive the aperture of each partition. Out of the
R · m replacement candidates per demotion that fall in the man-
aged region, a fraction Si∑

P

k=1
Sk

are from partition i, and we need

to demote lines at a fractional rate of Ci∑
P

k=1
Ck

in this partition.

Therefore,

Ai =
Ci

∑P
k=1 Ck

∑P
k=1 Sk

Si

1

R ·m (4)

Stability: Depending on the sizes and churns of the partitions, sim-
ply adjusting their apertures may not be enough to maintain their
sizes. Even if we are willing to sacrifice associativity by allowing
the aperture to reach up to 1.0 (demoting every candidate from this
partition), a partition with a large Ci/Si ratio may require a larger
aperture. Since it is undesirable to completely sacrifice associativ-
ity to maintain partition sizes, we set a maximum aperture Amax.
If using Equation 4 yields an aperture larger than Amax, we have
three options. First, we can do nothing and let the partition grow
beyond its target allocation, borrowing space from the unmanaged
region. Second, we can allow low-churn/size → high-churn/size
partition interference by inserting its lines in the unmanaged re-
gion (throttling its churn). Third, we can allow high-churn/size →
low-churn/size partition interference by reducing the size of one
or more low-churn partitions and allocating that space to the high-
churn partition until its aperture is lower than Amax.

Doing nothing could lead, in principle, to borrowing too much
space from the unmanaged region, making it too small and leading
to frequent forced evictions from the managed region, breaking our
scheme. However, this is not the case if we allow for some extra
slack when sizing the unmanaged region. Consider what happens
when several partitions cannot match their minimum sizes. Specif-
ically, partitions 1, ..., Q (Q < P) have very small sizes (e.g. 1
line each) and high churns. Each partition will grow until it is large
enough that its Ci/Si ratio can be handled with aperture Amax.
This minimum stable size is:

MSSj =
Cj

∑P
k=1 Ck

∑P
k=1 Sk

Amax ·R ·m, ∀j ∈ {1, ..., Q} (5)

(obtained from Equation 4, with Sj = MSSj and Aj = Amax).
Additionally, in the worst case, all other partitions (Q + 1, ..., P)
have zero churn, so

∑P
k=1 Ck =

∑Q
k=1 Ck. In this case, the total

space borrowed from the unmanaged region is:

Q
∑

j=1

MSSj =

∑Q
j=1 Cj

∑P
k=1 Ck

∑P
k=1 Sk

Amax ·R ·m =

∑P
k=1 Sk

Amax ·R ·m (6)

and assuming
∑P

k=1 Sk
∼= m,

∑Q
j=1 MSSj

∼= 1/(AmaxR). For

the exact derivation,
∑P

k=1 Sk =
∑P

k=1 Tk +
∑Q

j=1 MSSj , and

the target sizes achieve
∑P

k=1 Tk = m. By substituting on the

previous equation,
∑Q

j=1 MSSj = 1/(AmaxR−1/m). For any rea-

sonable values of Amax, R and m, AmaxR ≫ 1/m, and therefore

5

Amax

Ai

Ti (1+slack)Ti
Si

(a) Linear transfer function used
in feedback-based aperture con-
trol.

Pa
rt

it
io

n
lin

e
s

d
is
tr

ib

Timestamp 2550

Setpoint TS Current TS

Demote DemoteKeep

(b) Setpoint-based demotions se-
lects candidates below setpoint (in
modulo arithmetic).

0.5

Ai

1000 1100
Si

Si range

(lines)

Dems per 256

candidates

1000-1033 32

1034-1066 64

1067-1100 96

1101+ 128

(c) 4-entry demotion thresholds lookup table for a 1000-line
partition with 10% slack.

Figure 3: Feedback-based aperture control and setpoint-based demotions.

∑Q
j=1 MSSj

∼= 1/(AmaxR) is a fine approximation. Hence, sizing

the unmanaged region with an extra 1/(AmaxR) of the cache guaran-
tees that the scheme maintains the desired number of evictions from
the managed region, regardless of the number of partitions! For ex-
ample, if the cache has R = 52 candidates, with Amax = 0.4, we
need to assign an extra 1/0.4·52 = 4.8% to the unmanaged region.
Given that this is an acceptable size, we let partitions outgrow their
allocations, disallowing inter-partition interference.

Transient behavior: So far, we have analyzed what happens in
a steady-state situation. However, partitions may be suddenly re-

sized. A partition that is suddenly downsized will need some time
to reach its new target size (its aperture will be Amax during this
period). Similarly, a partition that is suddenly upsized will take
some time to acquire capacity (and will have an aperture of 0 until
it reaches it). If we are reassigning space and upsized partitions
gain capacity faster than downsized partitions lose it, the managed
region may temporarily grow larger than it should be. In our eval-
uation, re-partitioning is infrequent and this is a minor issue. How-
ever, Vantage applications that resize partitions at high frequency
should control the upsizing and downsizing of partitions progres-
sively and in multiple steps.

Since partitions are cheap, some applications (e.g. local stores [4,
5]) might want to have a variable number of partitions, creating and
deleting partitions dynamically. Deleting an existing partition sim-
ply requires setting its target size to 0, and its aperture to 1.0. When
most or all of its lines have been demoted, the partition identifier
can be reused for a new partition.

4. VANTAGE CACHE CONTROLLER
Vantage implements partitioning through the replacement pro-

cess, so only the cache controller needs to be modified. Specifi-
cally, the controller is given the target sizes of each partition and
the partition ID of each cache access. Partition sizes are set by
an external resource allocation policy (such as UCP), and partition
IDs depend on the specific application. In our evaluation, we have
one partition per thread, but other schemes may have other assign-
ments, e.g. local stores [4, 5] may partition by address range, TM
and TLS [2, 8] would have extra partitions to hold speculative data,
etc. Vantage tags each line with its partition ID, and, on each re-
placement, performs evictions from the unmanaged region and de-
motions from the managed region, as described in Section 3. How-
ever, implementing a controller simply using the previous analysis
is impractical due to several reasons:
1. It is too compute-intensive: Each aperture Ai depends on the

sizes and churns of all the other partitions (Equation 4 in Sec-

tion 3.4), and they need to constantly change to adapt to time-va-
rying behavior. Recomputing these on every replacement would
be extremely expensive. Also, we need to estimate the churn
(insertions/cycle) of each partition, which is not trivial.

2. It is not robust: The prior analysis has two sources of model-
ing errors. First, replacement candidates are not exactly inde-
pendent and uniformly distributed (though they are close [21]).
Second, the previous analysis ignores promotions, which have
no matching demotion3. Even if we could perfectly estimate the
Ai, these modeling errors would cause partition sizes to drift
away from their targets.

3. It requires knowing the eviction priority of every line (in order
to know which candidates are below the aperture): This would
be extremely expensive to do in practice.
In this section, we address these issues with a practical controller

implementation that relies on two techniques: feedback-based aper-

ture control enables a simple and robust controller where the re-
quired aperture is found using feedback instead of calculating it
explicitly, and setpoint-based demotions lets us demote lines ac-
cording to the desired aperture without knowing their eviction pri-
orities.

4.1 Feedback-based Aperture Control
Deriving the aperture of each partition is possible by using neg-

ative feedback alone. Once again, we let partitions slightly out-
grow their target allocations, borrowing from the unmanaged re-
gion, and adjust their apertures based on how much they outgrow
them. Specifically, we derive each aperture Ai as a function of Si,
as shown in Fig. 3a:

Ai(Si) =







0 if Si ≤ Ti
Amax

slack
Si−Ti

Ti
if Ti < Si ≤ (1 + slack)Ti

Amax if Si > (1 + slack)Ti

(7)
where Ti is the partition’s target size, and slack is the fraction of
the target size at which the aperture reaches Amax and tapers off.
This is a classic application of negative feedback: an increase in
size causes an increase in aperture, attenuating the size increase.
The system is stable: partitions can reach and exceed a size of
(1 + slack)Ti, in which case Amax aperture is applied, and the

3One could argue that promotions are not bounded, so they may
affect the strong guarantees derived in Section 3. Addressing this
issue completely just requires to do one demotion per promotion on
average, but we observe that in practice, promotions are rare com-
pared to evictions, so demoting on evictions is enough for Vantage
to work well.

6

dynamics of the system follow what was discussed in the previous
section (i.e. the partition will reach a minimum stable size MSSi).
This linear transfer function is simple, works well in practice, and
the extra space requirements are small and easily derived: in the
linear region, ∆Si = Si − Ti = slack · Si

Ai

Amax
. Using Equa-

tion 4 (Section 3.4), we get:

∆Si =
slack

Amax
Si

Ci

∑P
k=1 Sk

Si

∑P
k=1 Ck

1

R ·m =
slack

Amax

Ci
∑P

k=1 Ck

1

R
(8)

Therefore, the aggregate outgrow for all partitions in steady-state
is:

P
∑

i=1

∆Si =
slack

Amax ·R (9)

We will need to account for this when sizing the unmanaged region.
This is relatively small, e.g. with R = 52 candidates, slack = 0.1
and Amax = 0.4,

∑P
i=1 ∆Si = 0.48% of the cache size. This

also reveals the trade-off in selecting the slack: with a larger slack,
apertures will deviate less from their desired value due to instan-
taneous size variations, but it requires a larger unmanaged region,
as partitions will outgrow their target sizes by a larger amount. We
will see how to size the unmanaged region in Section 4.3.

4.2 Setpoint-based Demotions
Setpoint-based demotions is a scheme to perform demotions with-

out tracking eviction priorities. We first explain it with a concrete
replacement policy, then generalize it to other policies.

We use coarse-timestamp LRU [21] as the base replacement pol-
icy. Each partition has a current timestamp counter that is in-
cremented every ki accesses, and accessed lines are tagged with
the current timestamp value. We choose 8-bit timestamps with
ki = 1/16 of the partition’s size, which guarantees that wrap-
arounds are rare. To perform demotions, we choose a setpoint

timestamp, and all the candidates that are below it (in modulo 256
arithmetic) are demoted if the partition is exceeding its target size.
We adjust the setpoint every c candidates seen from each partition
in the following fashion: we have a counter for candidates seen
from this partition, and a counter for the number of demoted can-
didates, di. Every time that the candidates counter reaches c, if
di > c · Ai (i.e. di/c > Ai), the partition’s setpoint is incre-
mented, and if di < c · Ai, it is decremented. Both counters are
then reset. Additionally, we increase the setpoint every time the
timestamp is increased (i.e. every ki accesses), so that the distance
between both remains constant.

Fig. 3b illustrates this scheme. Adjusting the setpoint allows us
to track the aperture indirectly, without profiling the distribution of
timestamps in the partition. In our controller, we find that c = 256
candidates is a sensible value. Since c is constant and, in our eval-
uation, target allocations are varied sparingly (every 5 million cy-
cles), we do not even need to explicitly compute the desired aper-
ture from the size (as in Equation 7). Instead, we use a small 8-entry
demotion thresholds lookup table that gives the di threshold for dif-
ferent size ranges. Fig. 3c shows a concrete example of this lookup
table, where we have a partition with Ti = 1000 lines, and a 10%
slack. For example, if when we reach c = 256 candidates from this
partition, its size is anywhere between 1034 and 1066 lines, having
more/less than 64 demotions in this interval will cause the setpoint
to be incremented/decremented. This table is filled at resize time,
and used every c candidates seen.

This scheme is also extensible to other policies beyond coarse-
timestamp LRU. For example, in LFU we would choose a setpoint

Vantage Controller

Partition 0
state (256b)

Partition 31
state (256b)

…

Data
Array

Tag
Array

Line Address
Coherence/
Valid Bits

Timestamp
(8b)

Tag Fields

Partition
(6b)

Per-Partition State

CurrentTS (8b)

AccessCounter (16b)

ActualSize (16b)

SetpointTS (8b)

CandsSeen(8b)

CandsDemoted(8b)

ThrSize0 (16b) ThrDems0 (8b)

ThrSize7 (16b) ThrDems7 (8b)

Implement coarse-grain timestamp LRU
Used on accesses

Implement setpoint-based demotions
Used on replacements

8-entry demotion thresholds lookup table
Used to adjust SetpointTS (sparingly)

…

TargetSize (16b)

Figure 4: State required to implement Vantage: tag fields and

per-partition registers. Additional state over an unpartitioned

baseline is shown in blue. Each field or register shows its size in

bits.

access frequency, and RRIP [12] can use a setpoint re-reference
prediction value, as we will see in Section 6.

4.3 Putting it all Together
Now that we have seen the necessary techniques, we describe the

implementation of the Vantage controller in detail.

State: Fig. 4 shows the state required by Vantage:
• Tag state: Each line needs to be tagged with its partition ID, and

we need an extra ID for the unmanaged region. For example,
with P = 32 partitions, we need 33 identifiers, or 6 bits per tag.
If tags are nominally 64 bits, and cache lines are 64 bytes, this is
a 1.01% increase in cache state. Note that each tag also has an
8-bit timestamp field to implement the LRU replacement policy,
as in the baseline zcache.

• Per-partition state: For each partition, the controller needs to
keep track of the registers detailed in Fig. 4. We explain how
each of these registers is used below. Each register is labeled
as either 8 or 16-bit, but 16-bit registers, which track sizes or
quantities relative to size, assume a cache with 216 lines. We
assume that each of these registers is kept in partition-indexed
register files. With 32K lines per bank, this amounts to 256 bits
per partition. For 32 partitions and 4 banks (for an 8 MB cache),
this represents 4 KBytes, less than a 0.5% state overhead.

Hits: On each hit, the controller writes the partition’s CurrentTS

into the tag’s Timestamp field and increases the partition’s Access-

Counter. This counter is used to drive the timestamp registers for-
ward: when AccessCounter reaches ActualSize/16, the counter is
reset and both timestamp registers, CurrentTS and SetpointTS, are
increased. This scheme is similar to the basic coarse-grained times-
tamp LRU replacement policy [21], except that the timestamp and
access counter are per partition. Additionally, if the tag’s Partition

field indicates that the line was in the unmanaged region, this is a
promotion, so ActualSize is increased and Partition is written when
updating the Timestamp field.

Misses: On each miss, the controller examines the replacement
candidates and performs one demotion on average, chooses the can-
didate to evict, and inserts the incoming line:
• All candidates are checked for demotion: a candidate from parti-

tion p is demoted when both ActualSize[p] > TargetSize[p] (i.e.
the partition is over its target size) and the candidate’s Times-

tamp field is not in between SetpointTS[p] and CurrentTS[p] (as
shown in Fig. 3b), which requires two comparisons to decide.
If the candidate is demoted, the tag’s Partition field is changed
to the unmanaged region, its Timestamp field is updated to the

7

Cores 32 cores, x86-64 ISA, in-order, IPC=1 except on memory accesses, 2 GHz

L1 caches 32 KB, 4-way set associative, split D/I, 1-cycle latency

L2 cache 8 MB NUCA , 4 banks, 2 MB per bank, shared, non-inclusive, MESI directory coherence,
4-cycle average L1-to-L2-bank latency, 8-cycle L2 bank latency

MCU 4 memory controllers, 200 cycles zero-load latency, 32 GB/s peak memory BW

Table 2: Main characteristics of the large-scale CMP. Latencies assume a 32 nm process at 2GHz.

Insensitive (n) perlbench, bwaves, gamess, gromacs, namd, gobmk, dealII, povray, calculix, hmmer, sjeng, h264ref, tonto, wrf

Cache-friendly (f) bzip2, gcc, zeusmp, cactusADM, leslie3d, astar

Cache-fitting (t) soplex, lbm, omnetpp, sphinx3, xalancbmk

Thrashing/streaming (s) mcf, milc, GemsFDTD, libquantum

Table 3: Classification of SPEC CPU2006 workloads.

unmanaged region’s timestamp, ActualSize[p] is decreased, and
CandsDemoted[p] is increased. Regardless of whether the can-
didate is demoted or not, CandsSeen[p] is increased.

• The controller evicts the candidate from the unmanaged region
with the oldest timestamp. If all candidates come from the man-
aged region, it chooses one of the demoted candidates arbitrar-
ily, and if no lines are selected for demotion, it chooses among
all the candidates. Note that if the unmanaged region is sized
correctly, the common case is to find candidates from it.

• The incoming line is inserted into the cache as usual, with its
Timestamp field set to its partition’s CurrentTS register, and its
ActualSize is increased. As in a hit, AccessCounter is increased
and the timestamps are increased if it reaches ActualSize/16.

Additionally, to implement the setpoint adjustment scheme from
Section 4.2, partition p’s setpoint is adjusted when CandsSeen[p]

crosses 0. At this point, the controller has seen 256 candidates from
p since the last time it crossed 0 (since the counter is 8 bits), and
has demoted CandsDemoted[p] of them. The controller finds the
first entry K in the 8-entry demotion thresholds lookup table (as
in Fig. 3b) so that the partition’s threshold size, ThrSize[K][p], is
lower than its current size, ActualSize[p]. It then compares Can-

dsDemoted[p] with the demotion threshold, ThrDems[K][p]. If
the demoted candidates exceed the threshold, SetpointTS[p] is de-
creased, while if they are below the threshold, the setpoint is in-
creased. Finally, CandsDemoted[p] is reset. Note that this happens
sparingly, e.g. if the cache examines 64 replacement candidates per
miss, the controller does one setpoint adjustment each 256/64 = 4
misses on average, independently of the number of partitions.

Implementation costs: The controller requires counter updates
and comparisons on either 8 or 16-bit registers, so a few narrow
adders and comparators suffice to implement it. Operation on hits
is simple and does not add to the critical path. On misses, demo-
tion checks are the main overhead versus an unpartitioned cache,
as the controller needs to decide whether to demote every candi-
date it sees, and each demotion check requires a few comparisons
and counter updates. When a W -way zcache is used (typically
W = 4 ways), replacements are done over multiple cycles, with
the cache array returning at most W candidates per cycle. There-
fore, a narrow pipeline suffices for demotions (i.e. we only need
logic that can check W = 4 candidates per cycle). When using
wider caches (e.g. a 16-way set-associative cache), the controller
can implement demotion checks over multiple cycles, because the
replacement process is not on the critical path [21]. Finally, note
that, while all candidates are checked for demotion, only one on
average is demoted per miss. Unlike other partitioning schemes,
Vantage does not need to implement set ordering or LRU chains or
pseudo-random number generation [10, 19, 27].

0.0 0.2 0.4 0.6 0.8 1.0

Amax

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o
n

o
f
u
n
m

a
n
a
g
e
d

c
a
c
h
e

(u
)

R=16

R=52

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Pev (worst-case)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o
n

o
f
u
n
m

a
n
a
g
e
d

c
a
c
h
e

(u
)

R=16

R=52

Figure 5: Fraction of the cache dedicated to the unmanaged

region, with slack = 0.1 and R = 16, 52 candidates, both (a)

as a function of Amax, with Pev = 10−2, and (b) as a function

of Pev , with Amax = 0.4.

Sizing the unmanaged region: We finally have all the information
needed to size the unmanaged region. First, from Equation 1 (Sec-
tion 3.2), to have a worst-case probability of a forced eviction from
the managed region Pev , we need FA(m) = FA(1− u) = Pev =
(1 − u)R. Hence, at least we need u ≥ 1 − R

√
Pev . Additionally,

we need to reserve 1/(AmaxR) to allow high-churn/small-sized par-
titions to grow to their minimum stable sizes, and slack/(AmaxR)

for feedback-based aperture control. Sizing u = 1 − R
√
Pev +

(1+slack)/(AmaxR) accounts for all these effects. Fig. 5 shows the
fraction of the cache that needs to be unmanaged when varying both
Amax and Pev , for a 10% slack and R = 16 or 52 candidates. For
example, with 52 candidates, having Amax = 0.4 requires 13% of
the cache to be unmanaged for Pev = 10−2, while going down to
Pev = 10−4 would require 21% to be unmanaged. Different ap-
plications will have different requirements for Pev . For example,
Pev ≃ 10−2 may suffice for applications that only require approx-
imate partitioning, while applications with strong partitioning and
isolation requirements may need Pev ≃ 10−4 or lower.

5. EXPERIMENTAL METHODOLOGY

Modeled systems: We perform microarchitectural, execution-dri-
ven simulation using an x86-64 simulator based on Pin [15], and
model both small and large-scale CMPs. Our large-scale design
has 32 in-order, single-threaded x86 cores modeled after Atom [6].
The system has private L1s and a shared 8MB, 4-bank L2, where
the different partitioning schemes are implemented. Table 2 shows
the details of the system. On a high-performance 32nm process,
this CMP requires about 220mm2 and has a TDP of around 90W
at 2GHz. Our small-scale design is similar, but has 4 cores, a 2MB
L2 (1 bank) and 4GB/s of memory bandwidth.

8

0 50 100 150 200 250 300 350

Workload

0.8

0.9

1.0

1.1

1.2

1.3

1.4

T
h
ro

u
g
h
p
u
t
v
s

L
R

U
Vantage-Z4/52

PIPP-SA16

WayPart-SA16

(a) Results over all 350 workloads

sftn1 ffft4 ssst7 fffn7 ffnn3 ttnn4 sfff6 sssf6
−20

−10

0

10

20

30

40

T
h
ro

u
g
h
p
u
t
v
s

L
R

U
(%

)

LRU-Z4/52

WayPart-SA16

PIPP-SA16

Vantage-Z4/52

(b) Throughput for selected workloads

Figure 6: Throughput improvements over an unpartitioned 16-way set-

associative L2 with LRU obtained with different partitioning schemes on the

4-core configuration.

0 50 100 150 200 250 300 350

Workload

0.8

0.9

1.0

1.1

1.2

1.3

T
h
ro

u
g
h
p
u
t
v
s

L
R

U

Vantage-Z4/52

WayPart-SA64

PIPP-SA64

Figure 7: Throughput improvements over a 64-

way set-associative L2 with LRU on the 32-core

configuration.

Partitioning schemes: We compare Vantage against way-parti-
tioning and PIPP. Way-partitioning uses LRU, and its replacement
process is implemented as in [19]. PIPP is implemented as de-
scribed in [27] (pprom = 3/4, stream detection with θm ≥ 12.5%,
1 way per streaming application and pstream = 1/128).

Allocation policy: We use utility-based cache partitioning (UCP)
to determine space allocation among partitions [19]. UCP uses aux-
iliary cache monitors to estimate how well each core uses cache ca-
pacity, and allocates more capacity to the threads that benefit from
it the most. Each core has a small utility monitor based on dynamic
set sampling (UMON-DSS) with 64 sets. Partition sizes are found
with the Lookahead algorithm [19]. UCP repartitions the cache ev-
ery 5 million cycles. When used with Vantage, UMONs are config-
ured with the same number of ways as way-partitioning and PIPP
are using, but since Vantage can partition at line granularity instead
of at way granularity, we linearly interpolate the miss rate curves
given by UMON, getting 256-point curves, and use them to drive
the Lookahead algorithm.

Workloads: We use multiprogrammed SPEC CPU2006 applica-
tion mixes, and follow the methodology of prior cache partition-
ing studies [19, 27]. Each application in the mix is fast-forwarded
for 20 billion instructions, and the mix is simulated until all appli-
cations have executed 200 million instructions. We report aggre-
gate throughput (

∑

IPCi), where each application’s IPC is mea-
sured on its first 200 million instructions. Other studies also re-
port metrics that give insight on fairness, such as weighted speedup
or harmonic mean of weighted speedups [19, 27]. Due to lack of
space, and because UCP attempts to maximize throughput, we re-
port throughput only. We have checked these metrics and they do
not offer additional insights. Fairness is mostly an issue of the al-

location policy, i.e. UCP.
The 29 SPEC programs are divided in four categories, following

a classification similar to the one in [11]. We first run each applica-
tion alone, using cache sizes from 64KB to 8MB. Applications with
less than 5 L2 misses per kilo-instruction (MPKI) are classified as
insensitive; from the remaining ones, applications that gradually
benefit from increased cache size are classified as cache-friendly;
those where misses decrease abruptly with size when getting close
to cache capacity (over 1MB) are classified as cache-fitting, and
the ones where additional capacity does not yield any benefit are
marked as thrashing/streaming. Table 3 shows this classification.
There are 35 possible combinations (with repetitions) of these four

categories, each of which forms a class. In the 4-core mixes, we
have 10 mixes per class, with each application being randomly se-
lected from the ones in its category, yielding 350 workloads. The
32-core mixes have 8 randomly chosen workloads per category, and
again 10 mixes per class, for another 350 workloads.

6. EVALUATION
We first compare Vantage against other partitioning schemes us-

ing utility-based cache partitioning. We then present a series of ex-
periments focused on Vantage, showing how to configure it, its sen-
sitivity to configuration parameters, and confirm that the assump-
tions made in the analysis are met in practice.

6.1 Comparison of Partitioning Schemes

Small-scale configuration: Fig. 6a summarizes the performance
results across the 350 workload mixes on the simulated 4-core sys-
tem. Each line shows the throughput (

∑

IPCi) of a different
scheme, normalized to a 16-way set-associative cache using LRU.
For each line, workloads (the x-axis) are sorted according to the
improvement achieved. All caches use simple H3 hashing [1, 21],
since it improves performance in most cases. Way-partitioning
and PIPP use a 16-way set-associative cache, while Vantage uses
a 4-way zcache with 52 replacement candidates (Z4/52), with a
u = 5% unmanaged region, Amax = 0.5 and slack = 10%. Al-
though zcaches have a lower hit latency [21], we simulate the same
hit latency for all designs (which is unfair to Vantage, but lets us
isolate the improvements due to partitioning).

Fig. 6a shows that, overall, Vantage provides much larger im-
provements than either way-partitioning or PIPP: a 6.2% geomet-
ric mean on average and up to 40%. While Vantage slightly de-
creases performance for only 4% of the workloads, when using ei-
ther way-partitioning or PIPP, around 45% of the workloads show
worse throughput, often significantly (up to 22% worse for way-
partitioning, and 29% worse for PIPP). These workloads already
share the cache efficiently with LRU, and partitioning hurts per-
formance by decreasing associativity. Indeed, when using 64-way
set-associative caches, way-partitioning and PIPP improve perfor-
mance for most workloads. This shows the importance of main-
taining high associativity, which Vantage achieves.

Fig. 6b compares the throughput of selected workload mixes.
Each bar represents throughput improvements of a specific con-
figuration, and there is an additional configuration per set, an un-

9

0 200 400 600 8001000120014001600

Time (Mcycles)

0

2000

4000

6000

8000

10000

12000

14000

16000

S
iz

e
s

(C
a
c
h
e

L
in

e
s
)

Actual

Target

(a) Way-partitioning

0 200 400 600 800 1000 1200 1400

Time (Mcycles)

0

2000

4000

6000

8000

10000

12000

14000

S
iz

e
s

(C
a
c
h
e

L
in

e
s
)

Actual

Target

(b) Vantage

0 500 1000 1500

Time (Mcycles)

0

5000

10000

15000

20000

S
iz

e
s

(C
a
c
h
e

L
in

e
s
)

Actual

Target

(c) PIPP

Figure 8: Comparison of way-partitioning, Vantage and PIPP for a specific partition in a 4-core mix. Plots show target partition size

(as set by UCP) and actual size for the three schemes. We also show heat maps of the measured associativity CDF on this partition

for way-partitioning and Vantage.

partitioned Z4/52 zcache, to determine how much the higher asso-
ciativity of the zcache is helping Vantage. As we can see, most
of the benefits are due to Vantage, not the zcache, though they are
complementary. We have selected these workloads to illustrate sev-
eral points. First, we observe that PIPP sometimes shows signifi-
cantly different behavior from way-partitioning and Vantage, some-
times outperforming both (sftn1), and sometimes doing consid-
erably worse (ffft4). PIPP does not use LRU, and performance
differences do not necessarily come from partitioning. Neverthe-
less, both way-partitioning and Vantage can benefit from another
replacement policy, as we will see in Section 6.2. Between way-
partitioning and Vantage, Vantage achieves higher performance in
all except 3 of the 350 workloads. In these rare cases (e.g. ssst7),
way-partitioning has a slight edge as Vantage cannot partition the
whole cache, which affects some mixes, especially those with cache-
fitting applications where the miss rate curve decreases abruptly.
Way-partitioning and PIPP, however, do significantly worse on as-
sociativity-sensitive workloads, such as fffn7 and ffnn3. We
can see that, in these cases, the highly-associative zcache has a
more noticeable effect in improving Vantage’s performance. Fi-
nally, mixes ttnn4, sfff6 and sssf6 illustrate typical behavior
of workloads that benefit more from partitioning than from high as-
sociativity: both way-partitioning and PIPP improve performance,
with PIPP having a slight edge over way-partitioning, while Van-
tage provides significantly higher throughput.

Large-scale configuration: Fig. 7 shows the throughput improve-
ments of different partitioning schemes for the 32-core system, in
the same fashion as Fig. 6a. In this configuration, the baseline, way-
partitioning and PIPP configurations use a 64-way cache, while
Vantage uses the same Z4/52 zcache and configuration of the 4-core
experiments. Results showcase the scalability of Vantage: while
way-partitioning and PIPP degrade performance for most work-
loads, even with their highly-associative caches, Vantage continues
to provide significant improvements on most workloads (8.0% ge-
ometric mean and up to 20%) with the same configuration as the
4-core system. While low associativity is again the culprit with
way-partitioning, PIPP has much more severe slowdowns (up to
3×) because its approach of assigning an insertion position equal
to the number of allocated ways causes very low insertion positions
with many partitions, leading to high contention at the lower end of
the LRU chain and hard to evict dead lines at the higher end.

Partition sizes and associativity: Fig. 8 shows, for each partition-
ing scheme, the target and actual partition sizes as a function of
time for a specific partition and workload mix in the 4-core sys-
tem. As we can see, way-partitioning and Vantage closely track the
target size, while PIPP only approximates it. More importantly, in
Vantage the partition is never under its target allocation, while in

PIPP the target is often not met (e.g. in some intervals the target
size is 2048 lines, but the partition has less than 100). We also ob-
serve that with way-partitioning, when the target size is suddenly
decreased, reaching the new target allocation can take a significant
amount of time (100 Mcycles). This happens because the applica-
tions that now own the reallocated ways need to access all the sets
and evict all of this partition’s lines in those ways. In contrast, Van-
tage adapts much more quickly, both because of the better location
randomization of zcaches and because it works on global, not per-
set, allocations. Finally, at times UCP gives a negligible allocation
to this partition (128 lines in Vantage, 2048 lines, i.e. 1 way in
way-partitioning/PIPP). Vantage cannot keep the partition size that
small, so it grows to its minimum stable size, which hovers around
400-700 lines. In this cache, the worst-case minimum stable size
is 1/(AmaxR) = 1/0.5·52 = 3.8%, i.e. 1260 lines, but replacements
caused by other partitions help this partition stay smaller.

Fig. 8 also shows the time-varying behavior of the associativity
distributions on way-partitioning and Vantage using heat maps. For
each million cycles, we plot the portion of eviction/demotions that
happen to lines below a given eviction/demotion priority (i.e. the
empirical associativity CDFs). For a given point in time (x-axis),
the higher in the y-axis the heat map starts becoming darker, the
more skewed the demotion/eviction priorities are towards 1.0, and
the higher the associativity. Vantage achieves much higher asso-
ciativity than way-partitioning: when the partition is large (7 ways
at 200-400 Mcycles), way-partitioning gets acceptable associativ-
ity, but when given one way, evictions have almost uniformly dis-
tributed eviction priorities in [0, 1], and even worse at times (e.g.
700-800 Mcycles). In contrast, Vantage maintains a very high as-
sociativity when given a large allocation (at 200-400 Mcycles, the
aperture hovers around 3%) because the churn/size ratio is low.
Even when given a minimal allocation, demoted lines are uniformly
distributed in [0.5, 1], by virtue of the maximum aperture, giving
acceptable worst-case associativity.

6.2 Vantage Evaluation

Sensitivity analysis: Fig. 9a shows the performance of Vantage
on the 4-core workloads when the size of the unmanaged region
changes from 5% to 30% in a Z4/52 zcache. Differences are rel-
atively small, and a size of 5% delivers the highest throughput.
Fig. 9b shows what portion of evictions happen from the managed
region (because no candidates are from the unmanaged region). For
u = 5%, on most workloads 1% to 10% of the evictions come from
the managed region. By having a smaller unmanaged region, Van-
tage can partition a larger portion of the cache, but this slightly
degrades isolation. UCP is not very sensitive to strict isolation or
partition size control, but benefits from having more space to parti-

10

u=5% u=10% u=15% u=20% u=25% u=30%

0 50 100 150 200 250 300 350

Workload

0.9

1.0

1.1

1.2

1.3

1.4

T
h
ro

u
g
h
p
u
t
v
s

L
R

U

(a) Throughput improvement

0 50 100 150 200 250 300 350

Workload

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

F
ra

c
ti
o
n

o
f
e
v
ic

ti
o
n
s

in
m

a
n
a
g
e
d

re
g
io

n

(b) Evictions in managed region

Figure 9: Throughput and fraction of evictions in the managed

region when varying the size of the unmanaged region, on a

Z4/52 cache with Amax = 0.5 and slack = 0.1.

0 50 100 150 200 250 300 350

Workload

0.9

1.0

1.1

1.2

1.3

1.4

T
h
ro

u
g
h
p
u
t
v
s

L
R

U

Z4/52

SA64

Z4/16

SA16

Figure 10: Throughput im-

provements of Vantage on the

4-core system, using different

cache designs.

0 50 100 150 200 250 300 350

Workload

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

T
h
ro

u
g
h
p
u
t
v
s

L
R

U

Vantage-DRRIP-Z4/52

Vantage-LRU-Z4/52

TA-DRRIP-Z4/52

DRRIP-Z4/52

SRRIP-Z4/52

Figure 11: Throughput im-

provements on the 4-core sys-

tem using RRIP variants and

Vantage.

tion, so 5% works best. Other applications may need better isola-
tion, which would require a larger unmanaged region. We have also
studied the sensitivity of Vantage to the maximum aperture, Amax,
and the slack needed for feedback-based aperture control. With
UCP, Vantage is largely insensitive to these parameters: ranges of
5− 70% for Amax and slack > 2% work well.

Comparison with analytical models: In Fig. 9b, we have included
a round marker at the point where each line crosses the worst-case
eviction priority Pev , as predicted by our models (Section 4.3).
Most workloads achieve probabilities below the predicted worst-
case. For those that exceed it, we have determined that frequent
transients are the main culprit: these workloads have fast time-
varying behavior, UCP continuously changes target sizes, and the
size of the unmanaged region shrinks during transients, increasing
evictions. Nevertheless, Fig. 9b shows that we can make evictions
in the managed region arbitrarily rare by increasing the size of the
unmanaged region, achieving strong isolation guarantees.

We also simulated Vantage in two unrealistic configurations to
test that our assumptions hold: first, using feedback-based aperture
control but with perfect knowledge of the apertures instead of using
setpoint-based demotions, and second, using a random candidates

cache, an unrealistic cache design that gives truly independent and
uniformly distributed candidates. Both design points perform ex-
actly as the practical implementation of Vantage. These results
show that our simple controller provides the benefits predicted by
the analytical models.

Set-associative and low-associativity caches: Fig. 10 compares
Vantage on different cache designs on the 4-core system: our orig-
inal Z4/52 zcache; a Z4/16 zcache, and 64 and 16-way set-asso-
ciative caches. Vantage is tuned in each case: the 16-way set-
associative and Z4/16 caches use an unmanaged region u = 10%,
while the 64-way set-associative and Z4/52 caches use u = 5%.
All use Amax = 0.5 and slack = 0.1. As we can see, Vantage
works well on set-associative caches and degrades gracefully with
lower associativity: the 64-way set-associative cache and Z4/52
zcache achieve practically the same performance, followed very
closely by the Z4/16 design, and the 16-way set-associative does
sensibly worse, although still significantly better than either way-
partitioning or PIPP with a 16-way cache (Fig. 6a). These re-
sults show that, although Vantage works best and provides stronger
isolation with zcaches, it is practical to use with traditional set-
associative caches.

Comparison with alternative replacement policies: We have used
LRU so far because the partitioning schemes we compare Vantage
with are based on LRU. However, much prior work has improved
on LRU, both in performance and implementation cost. The RRIP
family of replacement policies [12] is one such example. They in-
clude scan-resistant SRRIP, thrash-resistant BRRIP, and scan and
thrash-resistant DRRIP, which uses set dueling to choose between
SRRIP and BRRIP dynamically. Additionally, TA-DRRIP enhan-
ces performance in shared caches by using TADIP’s thread-aware
set dueling mechanism on DRRIP [11]. These policies do not re-
quire set ordering, so they are trivially applicable to zcaches and
Vantage. Fig. 11 compares the performance achieved by using
these policies with two variants of Vantage, one using LRU and
other using DRRIP. All RRIP variants use a 3-bit re-reference pre-
diction value (RRPV) in each tag instead of 8-bit LRU timestamps.
In Vantage-DRRIP, we have a per-partition setpoint RRPV instead
of a setpoint LRU timestamp, and do not age lines from partitions
below their target size, but otherwise the scheme works as in [12].
Additionally, for Vantage-DRRIP to work, we have to (1) mod-
ify UCP’s UMON-DSS mechanism to work with RRIP instead of
LRU, and (2) provide a way to decide between SRRIP and BRRIP.
To achieve this, UMON-DSS is modified to maintain RRIP chains
instead of LRU chains (i.e. lines are ordered by their RRPVs), and
one half of the UMON sets use SRRIP, while the other half use BR-
RIP. Each time partitions are resized, the best of the two policies is
chosen for each partition and used in the next interval. Because the
decision of whether to use SRRIP or BRRIP is done per partition,
Vantage-DRRIP is automatically thread-aware.

Fig. 11 shows that Vantage-LRU outperforms all RRIP variants,
and Vantage-DRRIP further outperforms Vantage-LRU, although
by a small amount: the geometric means over all benchmarks are
2.5% for TA-DRRIP, 6.2% for Vantage-LRU, and 6.8% for Vantage-
DRRIP. We can extract three conclusions from these experiments.
First, Vantage can be easily modified to work with alternative re-
placement policies. Second, Vantage is still beneficial when using a
better replacement policy. Moreover, partitioning has several other
uses beyond improving miss rates, as explained in Section 1. Fi-
nally, we note that these results are preliminary, as there may be
better ways than using UMON to decide partition sizes and choos-
ing the replacement policy. We defer a more detailed exploration
of these issues to future work.

11

7. CONCLUSIONS
We have presented Vantage, a scalable and efficient scheme for

fine-grained cache partitioning. Vantage works by matching the in-
sertion (churn) and demotion rates of each partition, thus keeping
their sizes approximately constant. It partitions most of the cache,
and uses the unmanaged region to eliminate inter-partition interfer-
ence and achieve a simple implementation. Vantage is derived from
analytical models, which allow it to provide different degrees of
isolation by varying the size of the unmanaged region: a small un-
managed region (5%) suffices to provide moderate isolation, while
a larger region (20%) can provide strong isolation and eliminate
inter-partition interference. Thus, Vantage satisfies the needs of ap-
plications with different isolation requirements, all while maintain-
ing a good associativity per partition regardless of the number of
partitions. Under UCP, Vantage outperforms existing partitioning
schemes on small-scale CMPs, but most importantly, it continues
to deliver the same benefits on CMPs with tens of threads, where
previous schemes fail to scale.

8. ACKNOWLEDGEMENTS
We sincerely thank Woongki Baek, Asaf Cidon, Christina De-

limitrou, Jacob Leverich, David Lo, Tomer London, and the anony-
mous reviewers for their useful feedback on earlier versions of this
manuscript. Daniel Sanchez was supported by a Hewlett-Packard
Stanford School of Engineering Fellowship.

9. REFERENCES

[1] J. L. Carter and M. N. Wegman. Universal classes of hash
functions (extended abstract). In Proc. of the 9th annual

ACM Symposium on Theory of Computing, 1977.

[2] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk
disambiguation of speculative threads in multiprocessors. In
Proc. of the 33rd annual Intl. Symp. on Computer

Architecture, 2006.

[3] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Dynamic
cache partitioning via columnization. In Proc. of the 37th

annual Design Automation Conf., 2000.

[4] D. Chiou, P. Jain, L. Rudolph, and S. Devadas.
Application-specific memory management for embedded
systems using software-controlled caches. In Proc. of the

37th annual Design Automation Conf., 2000.

[5] H. Cook, K. Asanović, and D. A. Patterson. Virtual local
stores: Enabling software-managed memory hierarchies in
mainstream computing environments. Technical report,
EECS Department, U. of California, Berkeley, 2009.

[6] G. Gerosa et al. A sub-1W to 2W low-power IA processor
for mobile internet devices and ultra-mobile PCs in 45nm
hi-K metal gate CMOS. In IEEE Intl. Solid-State Circuits

Conf., 2008.

[7] F. Guo, H. Kannan, L. Zhao, R. Illikkal, R. Iyer, D. Newell,
Y. Solihin, and C. Kozyrakis. From Chaos to QoS: Case
Studies in CMP Resource Management. ACM SIGARCH

Computer Architecture News, 35(1), 2007.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and
consistency. In Proc. of the 31st annual Intl. Symp. on

Computer Architecture. 2004.

[9] L. Hsu, S. Reinhardt, R. Iyer, and S. Makineni. Communist,
utilitarian, and capitalist cache policies on CMPs: caches as
a shared resource. In Proc. of the 15th intl. conf. on Parallel

Architectures and Compilation Techniques, 2006.

[10] R. Iyer. CQoS: A framework for enabling QoS in shared
caches of CMP platforms. In Proc. of the 18th annual intl.

conf. on Supercomputing, 2004.

[11] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely,
Jr., and J. Emer. Adaptive insertion policies for managing
shared caches. In Proc. of the 17th intl. conf. on Parallel

Architectures and Compilation Techniques, 2008.

[12] A. Jaleel, K. Theobald, S. C. S. Jr, and J. Emer. High
performance cache replacement using re-reference interval
prediction (RRIP). In Proc. of the 37th annual Intl. Symp. on

Computer Architecture, 2010.

[13] N. Kurd et al. Westmere: A family of 32nm IA processors. In
IEEE Intl. Solid-State Circuits Conf., 2010.

[14] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and real
systems. In Proc. of the 14th IEEE intl. symp. on High

Performance Computer Architecture, 2008.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
building customized program analysis tools with dynamic
instrumentation. In Proc. of the ACM SIGPLAN conf. on

Programming Language Design and Implementation, 2005.

[16] V. Nagarajan and R. Gupta. ECMon: exposing cache events
for monitoring. In Proc. of the 36th annual Intl. Symp. on

Computer Architecture, 2009.

[17] C. Percival. Cache missing for fun and profit. BSDCan, 2005.

[18] M. Qureshi. Adaptive spill-receive for robust
high-performance caching in cmps. In Proc. of the 10th intl.

symp. on High Performance Computer Architecture, 2009.

[19] M. Qureshi and Y. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to
partition shared caches. In Proc. of the 39th annual

IEEE/ACM intl. symp. on Microarchitecture, 2006.

[20] P. Ranganathan, S. Adve, and N. Jouppi. Reconfigurable
caches and their application to media processing. In Proc. of

the 27th annual Intl. Symp. on Computer Architecture, 2000.

[21] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling
Ways and Associativity. In Proc. of the 43rd annual

IEEE/ACM intl. symp. on Microarchitecture, 2010.

[22] A. Seznec. A case for two-way skewed-associative caches. In
Proc. of the 20th annual Intl. Symp. on Computer

Architecture, 1993.

[23] J. Shin et al. A 40nm 16-core 128-thread CMT SPARC SoC
processor. In Intl. Solid-State Circuits Conf., 2010.

[24] G. Suh, S. Devadas, and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and
partitioning. In Proc of the 8th IEEE intl. symp. on High

Performance Computer Architecture, 2002.

[25] K. Varadarajan, S. Nandy, V. Sharda, A. Bharadwaj, R. Iyer,
S. Makineni, and D. Newell. Molecular Caches: A caching
structure for dynamic creation of application-specific
Heterogeneous cache regions. In Proc. of the 39th annual

IEEE/ACM intl. symp. on Microarchitecture, 2006.

[26] C. Wu and M. Martonosi. A Comparison of Capacity
Management Schemes for Shared CMP Caches. In Proc. of

the 7th Workshop on Duplicating, Deconstructing, and

Debunking, 2008.

[27] Y. Xie and G. H. Loh. PIPP: promotion/insertion
pseudo-partitioning of multi-core shared caches. In Proc. of

the 36th annual Intl. Symp. on Computer Architecture, 2009.

12

	Introduction
	Background
	Vantage Techniques
	Overview
	Caches with High Associativity
	Managed-Unmanaged Region Division
	Churn-based Management

	Vantage Cache Controller
	Feedback-based Aperture Control
	Setpoint-based Demotions
	Putting it all Together

	Experimental Methodology
	Evaluation
	Comparison of Partitioning Schemes
	Vantage Evaluation

	Conclusions
	Acknowledgements
	References

