
VANTAGE: SCALABLE AND EFFICIENT
FINE-GRAIN CACHE PARTITIONING

Daniel Sanchez and Christos Kozyrakis
Stanford University

ISCA-38, June 6th 2011

Executive Summary

!  Problem: Interference in shared caches
!  Lack of isolation " no QoS
!  Poor cache utilization " degraded performance

!  Cache partitioning addresses interference, but current partitioning
techniques (e.g. way-partitioning) have serious drawbacks
!  Support few coarse-grain partitions " do not scale to many-cores
!  Hurt associativity " degraded performance

!  Vantage solves deficiencies of previous partitioning techniques
!  Supports hundreds of fine-grain partitions
!  Maintains high associativity
!  Strict isolation among partitions
!  Enables cache partitioning in many-cores

2

Outline
3

!  Introduction
!  Vantage Cache Partitioning
!  Evaluation

Motivation
4

!  Fully shared last-level caches are the norm in multi-cores
#  Better cache utilization, faster communication, cheaper coherence
$  Interference " performance degradation, no QoS

!  Increasingly important problem due to more cores/chip and virtualization,
consolidation (datacenter/cloud)
!  Major performance and energy losses due to cache contention (~2x)
!  Consolidation opportunities lost to maintain SLAs

LLC

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

VM1 VM2 VM3 VM4 VM5 VM6

L2 L2 L2 L2 L2 L2 L2 L2

LLC

Cache Partitioning
5

!  Cache partitioning: Divide cache space among competing
workloads (threads, processes, VMs)
# Eliminates interference, enabling QoS guarantees
# Adjust partition sizes to maximize performance, fairness, satisfy SLA...
$  Previously proposed partitioning schemes have major drawbacks

LLC

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

VM1 VM2 VM3 VM4 VM5 VM6

L2 L2 L2 L2 L2 L2 L2 L2

LLC

Cache Partitioning = Policy + Scheme
6

!  Cache partitioning consists of a policy (decide partition sizes
to achieve a goal, e.g. fairness) and a scheme (enforce sizes)

!  Focus on the scheme
!  For policy to be effective, scheme should be:

1.  Scalable: can create hundreds of partitions
2.  Fine-grain: partitions sizes specified in cache lines
3.  Strict isolation: partition performance does not depend on other

partitions
4.  Dynamic: can create, remove, resize partitions efficiently
5.  Maintains associativity
6.  Independent of replacement policy
7.  Simple to implement

Maintain high
cache performance

Existing Schemes with Strict Guarantees

!  Based on restricting line placement
!  Way partitioning: Restrict insertions to specific ways

7

-15
-10
-5
0
5

10
15
20

mix1 mix2
IP

C
 im

pr
ov

em
en

t
 v

s
16

-w
ay

 (
%

)

WayPart
Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

#  Strict isolation
#  Dynamic
#  Indep of repl policy
#  Simple

$  Few coarse-grain partitions
$  Hurts associativity

Existing Schemes with Soft Guarantees
8

!  Based on tweaking the replacement policy
!  PIPP [ISCA 2009]: Lines inserted and promoted in LRU

chain depending on the partition they belong to

-20

-10

0

10

20

mix1 mix2

IP
C

 im
pr

ov
em

en
t

 v
s

16
-w

ay
 (

%
)

WayPart PIPP Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

#  Dynamic
#  Maintains associativity
#  Simple
$  Few coarse-grain partitions
$  Weak isolation
$  Sacrifices replacement policy

Comparison of Schemes
9

Scalable & fine-grain

Strict isolation

Dynamic

Maintains assoc.

Indep. of repl. policy

Simple

$

$

Way
partitioning

$

$

$

$

$

$

PIPP

$

$

Reconfig.
caches

Page
coloring

Vantage

Partitions whole cache # # # # $ (most)

Outline
10

!  Introduction
!  Vantage Cache Partitioning
!  Evaluation

Vantage Design Overview
11

1.  Use a highly-associative cache (e.g. a zcache)

2.  Logically divide cache in managed and unmanaged
regions

3.  Logically partition the managed region
!  Leverage unmanaged region to allow many partitions with

minimal interference

Analytical Guarantees
12

!  Vantage can be completely characterized using analytical
models

# We can prove that strict guarantees are kept on partition

sizes and interference independently of workload
$  The paper has too much math to describe it here
!  We now focus on the intuition behind the math

mRS
S

C
CA

i

P

k k
P

k k

i
i !
=

"
"

=

=

11

1

RA
S

P

i
i

11

max0

!"#
=mR

Amgd !
=
1

]1,0[,)()(

},...,max{
]1,0[...~,...,

1

1

!="=

=

xxxAPxF

EEA
UdiiEE

R
A

R

R

… ???

ZCache [MICRO 2010]
13

!  A highly-associative cache with a low number of ways
! Hits take a single lookup
!  In a miss, replacement process

provides many replacement
candidates

! Provides cheap high associativity (e.g. associativity
equivalent to 64 ways with a 4-way cache)

! Achieves analytical guarantees on associativity

Indexes

H0

H1

H2

Line
address

Way0 Way1 Way2

Analytical Associativity Guarantees
14

!  Eviction priority: Rank of a line given by the replacement policy (e.g. LRU),
normalized to [0,1]
!  Higher is better to evict (e.g. LRU line has 1.0 priority, MRU has 0.0)

!  Associativity distribution: Probability distribution of the eviction priorities of
evicted lines

!  In a zcache, associativity distribution depends only on the number of
replacement candidates (R)
!  Independent of ways, workload and replacement policy

With R=8, 17% of evictions happen
to the 80% least evictable lines

With R=64, 10-6 of evictions happen
to the 80% least evictable lines

Managed-Unmanaged Region Division
15

!  Logical division (tag each block as managed/unmanaged)
!  Unmanaged region large enough to absorb most evictions
!  Unmanaged region still used, acts as victim cache (demotion " eviction)
!  Single partition with guaranteed size

Evictions Insertions
Demotions

Managed
region

Unmanaged
region

Multiple Partitions in Managed Region

!  P partitions + unmanaged region
!  Each line is tagged with its partition ID (0 to P-1)
!  On each miss:

!  Insert new line into corresponding partition
!  Demote one of the candidates to unmanaged region
!  Evict from the unmanaged region

16

Insertions

Partition 0
Unmanaged

region
Partition 1

Partition 2

Partition 3

Evictions

Demotions

Churn-Based Management
17

!  Problem: always demoting from inserting partition does not scale
!  Could demote from partition 0, but only 3 candidates
!  With many partitions, might not even see a candidate from inserting partition!

!  Instead, demote to match insertion rate (churn) and demotion rate

1.  Access A (partition 2) " HIT
2.  Access B (partition 0) " MISS

Get replacement candidates (16)

3 P0 4 P1 1 P2 5 P3 3 unmgd

Evict from unmanaged region

Insert new line (in partition 0)

Churn-Based Management
18

!  Aperture: Portion of candidates to demote from each partition

1) Partition 0 MISS

0.1 0.5 0.4 0.3 0.7 0.1 0.2 0.6 0.1 0.3 0.9 0.2 0.4 0.3 0.7 0.8

Replacement candidates

Eviction
priorities Evict

Demote (in top 11% of P3)

Partition 0 Partition 1 Partition 2 Partition 3

23% 15% 12% 11% Apertures

2) Partition 1 MISS

0.3 0.6 0.7 0.4 0.1 0.3 0.2 0.8 0.3 0.7 0.4 0.2 0.2 0.7 0.3 0.6

Eviction
priorities Evict Nothing is demoted (all candidates above apertures!)

3) Partition 3 MISS

0.1 0.8 0.2 0.4 0. 0.9 0.2 0.9 0.1 0.3 0.8 0.7 0.4 0.3 0.3 0.6

Eviction
priorities Evict

Demote (in top 23% of P0) Demote (in top 15% of P1)

Managing Apertures
19

!  Set each aperture so that partition churn = demotion rate
!  Instantaneous partition sizes vary a bit, but sizes are maintained
! Unmanaged region prevents interference

!  Each partition requires aperture proportional to its churn/
size ratio
! Higher churn More frequent insertions (and demotions!)
!  Larger size We see lines from that partition more often

!  Partition aperture determines partition associativity
! Higher aperture less selective lower associativity

Stability
20

!  In partitions with high churn/size, controlling aperture is sometimes
not enough to keep size
!  e.g. 1-line partition that misses all the time
!  To keep high associativity, set a maximum aperture Amax (e.g. 40%)
!  If a partition needs Ai > Amax, we just let it grow

!  Key result: Regardless of the number of partitions that need to
grow beyond their target, the worst-case total growth over their
target sizes is bounded and small!

!  5% of the cache with R=52, Amax=0.4
!  Simply size the unmanaged region with that much extra slack
!  Stability and scalability are guaranteed

RA
11

max

A Simple Vantage Controller
21

!  Directly implementing these techniques is impractical
! Must constantly compute apertures, estimate churns
! Need to know eviction priorities of every block

!  Solution: Use negative feedback loops to derive
apertures and the lines below aperture
! Practical implementation
! Maintains analytical guarantees

Feedback-Based Aperture Control
22

!  Adjust aperture by letting partition size (Si) grow over its
target (Ti):

!  Need small extra space in unmanaged region

! e.g. 0.5% of the cache with R=52, Amax=0.4, slack=10%

Amax

Ai

Ti (1+slack)Ti
Si

Ai

Implementation Costs

!  See paper for detailed implementation

Cache Controller
Partition 0

state (256b)
Partition P-1
state (256b)

…

Data
Array

Tag
Array 256 bits of state per partition

Line Address
Coherence/
Valid Bits

Timestamp
(8b)

Tags: Extra partition ID field
Partition

(6b)

Vantage Replacement Logic

Simple logic, ~10 adders and comparators
Logic not on critical path

Vantage Summary
24

!  Use a cache with associativity guarantees

!  Maintain an unmanaged region

!  Match insertion and demotion rates in each partition
! Partitions help each other evict lines " maintain associativity
! Unmanaged region guarantees isolation and stability

!  Use negative feedback to simplify implementation

Outline
25

!  Introduction
!  Vantage Cache Partitioning
!  Evaluation

Methodology
26

!  Simulations of small (4-core) and large (32-core) systems
! Private L1s, shared non-inclusive L2, 1 partition/core

!  Partitioning policy: Utility-based partitioning [ISCA’06]
! Assign more space to threads that can use it better

!  Partitioning schemes: Way-partitioning, PIPP, Vantage

!  Workloads: 350 multiprogrammed mixes from
SPECCPU2006 (full suite)

Small-Scale: 4 cores, 4 partitions
27

!  Each line shows throughput improvement versus an unpartitioned
16-way set-associative cache

!  Way-partitioning and PIPP degrade throughput for 45% of
workloads

Small-Scale: 4 cores, 4 partitions
28

!  Vantage works on best on zcaches
!  We use Vantage on a 4-way zcache with R=52 replacement

candidates

Small-Scale: 4 cores, 4 partitions
29

!  Vantage improves throughput for most workloads
!  6.2% throughput improvement (gmean), 26% for the 50 most

memory-intensive workloads

Large-Scale: 32 cores, 32 partitions
30

!  Way-partitioning and PIPP use a 64-way set-associative cache
!  Both degrade throughput for most workloads

Large-Scale: 32 cores, 32 partitions
31

!  Vantage uses the same Z4/52 cache as the 4-core system
!  Vantage improves throughput for most workloads " scalable

A Closer Look: Sizes & Associativity
32

Vantage Way-partitioning

!  Vantage maintains strict partition sizes
!  Vantage maintains high associativity even in the worst case

Additional Results (see paper)
33

!  Vantage maintains strict control of partition sizes
!  Vantage maintains high associativity
!  Unmanaged region size vs isolation tradeoff

! ~5% unmanaged region and moderate isolation
! ~20% unmanaged region and strict isolation

!  Validation of analytical models
!  Vantage on set-associative caches

! Loses analytical guarantees, but outperforms other schemes

!  Vantage with other replacement policies (RRIP)

Conclusions
34

!  Vantage enables cache partitioning for many-cores
! Tens to hundreds of fine-grain partitions
! High associativity per partition
! Strict isolation among partitions
! Derived from analytical models, bounds independent of

number of partitions and cache ways
! Simple to implement

THANK YOU FOR
YOUR ATTENTION

QUESTIONS?

Backup: Associativity Guarantees
36

!  Why does zcache produce uniform random replacement
candidates, independently of access pattern?

!  ZCache hashing and replacement scheme eliminates
spatial locality

!  Evictions have negligible temporal locality w.r.t. cache
! Evictions to the same block are widely separated in time
! NOTE: Invalidations (e.g. coherence) are not evictions

!  No locality " uniform random

Backup: Setpoint-Based Demotions
37

!  Derive portion of lines below aperture without tracking eviction priorities
!  Coarse-grain timestamp LRU replacement

!  Tag each block with an 8-bit LRU per-partition timestamp
!  Increment timestamp every Si/16 accesses

!  Demote every candidate below the setpoint timestamp
!  Adjust setpoint using negative feedback

Pa
rt

iti
on

 li
ne

s
di

st
rib

Timestamp 255 0

Setpoint TS Current TS

Demote Demote Keep

A Closer Look: Partition Sizes
38

Way-partitioning Vantage PIPP

$  Coarse-grain partitions

# Strict size

$  Slow convergence

$  Coarse-grain partitions

$  Approximate size

$  No convergence

#  Fine-grain partitions

#  Strict size

#  Fast convergence

Unmanaged Size vs Isolation Trade-off
40

!  A larger unmanaged region reduces UCP perfomance slightly, but gives excellent isolation
!  Simulations match analytical models
!  See paper for additional results (Vantage on set-associative caches, other replacement

policies, etc.)

