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Executive Summary 

!  Problem: Interference in shared caches 
!  Lack of isolation " no QoS 
!  Poor cache utilization " degraded performance 

!  Cache partitioning addresses interference, but current partitioning 
techniques (e.g. way-partitioning) have serious drawbacks 
!  Support few coarse-grain partitions " do not scale to many-cores 
!  Hurt associativity " degraded performance 

!  Vantage solves deficiencies of previous partitioning techniques 
!  Supports hundreds of fine-grain partitions 
!  Maintains high associativity 
!  Strict isolation among partitions 
!  Enables cache partitioning in many-cores 
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Outline 
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!  Introduction 
!  Vantage Cache Partitioning 
!  Evaluation 



Motivation 
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!  Fully shared last-level caches are the norm in multi-cores 
#  Better cache utilization, faster communication, cheaper coherence 
$  Interference " performance degradation, no QoS 

!  Increasingly important problem due to more cores/chip and virtualization, 
consolidation (datacenter/cloud) 
!  Major performance and energy losses due to cache contention (~2x) 
!  Consolidation opportunities lost to maintain SLAs 
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Cache Partitioning 
5 

!  Cache partitioning: Divide cache space among competing 
workloads (threads, processes, VMs) 
# Eliminates interference, enabling QoS guarantees 
# Adjust partition sizes to maximize performance, fairness, satisfy SLA... 
$  Previously proposed partitioning schemes have major drawbacks  
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Cache Partitioning = Policy + Scheme 
6 

!  Cache partitioning consists of a policy (decide partition sizes 
to achieve a goal, e.g. fairness) and a scheme (enforce sizes) 

!  Focus on the scheme 
!  For policy to be effective, scheme should be: 

1.  Scalable: can create hundreds of partitions 
2.  Fine-grain: partitions sizes specified in cache lines 
3.  Strict isolation: partition performance does not depend on other 

partitions 
4.  Dynamic: can create, remove, resize partitions efficiently 
5.  Maintains associativity 
6.  Independent of replacement policy 
7.  Simple to implement 

Maintain high 
cache performance 



Existing Schemes with Strict Guarantees 

!  Based on restricting line placement 
!  Way partitioning: Restrict insertions to specific ways 
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#  Strict isolation 
#  Dynamic 
#  Indep of repl policy 
#  Simple 

$  Few coarse-grain partitions 
$  Hurts associativity 



Existing Schemes with Soft Guarantees 
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!  Based on tweaking the replacement policy 
!  PIPP [ISCA 2009]: Lines inserted and promoted in LRU 

chain depending on the partition they belong to 
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#  Dynamic 
#  Maintains associativity 
#  Simple 
$  Few coarse-grain partitions 
$  Weak isolation 
$  Sacrifices replacement policy 



Comparison of Schemes 
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Outline 
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!  Introduction 
!  Vantage Cache Partitioning 
!  Evaluation 



Vantage Design Overview 
11 

1.  Use a highly-associative cache (e.g. a zcache) 

2.  Logically divide cache in managed and unmanaged 
regions 

3.  Logically partition the managed region 
!  Leverage unmanaged region to allow many partitions with 

minimal interference 



Analytical Guarantees 
12 

!  Vantage can be completely characterized using analytical 
models 

 
# We can prove that strict guarantees are kept on partition 

sizes and interference independently of workload 
$  The paper has too much math to describe it here 
!  We now focus on the intuition behind the math 
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ZCache [MICRO 2010] 
13 

!  A highly-associative cache with a low number of ways 
! Hits take a single lookup 
!  In a miss, replacement process 

provides many replacement 
candidates 

! Provides cheap high associativity (e.g. associativity 
equivalent to 64 ways with a 4-way cache) 

! Achieves analytical guarantees on associativity 
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Analytical Associativity Guarantees 
14 

!  Eviction priority: Rank of a line given by the replacement policy (e.g. LRU), 
normalized to [0,1] 
!  Higher is better to evict (e.g. LRU line has 1.0 priority, MRU has 0.0) 

!  Associativity distribution: Probability distribution of the eviction priorities of 
evicted lines 

!  In a zcache, associativity distribution depends only on the number of 
replacement candidates (R) 
!  Independent of ways, workload and replacement policy 

With R=8, 17% of evictions happen 
to the 80% least evictable lines 

With R=64, 10-6 of evictions happen 
to the 80% least evictable lines 



Managed-Unmanaged Region Division 
15 

!  Logical division (tag each block as managed/unmanaged) 
!  Unmanaged region large enough to absorb most evictions 
!  Unmanaged region still used, acts as victim cache (demotion " eviction) 
!  Single partition with guaranteed size 

Evictions Insertions 
Demotions 

Managed 
region 

Unmanaged 
region 



Multiple Partitions in Managed Region 

!  P partitions + unmanaged region 
!  Each line is tagged with its partition ID (0 to P-1) 
!  On each miss: 

!  Insert new line into corresponding partition 
!  Demote one of the candidates to unmanaged region 
!  Evict from the unmanaged region 
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Churn-Based Management 
17 

!  Problem: always demoting from inserting partition does not scale 
!  Could demote from partition 0, but only 3 candidates 
!  With many partitions, might not even see a candidate from inserting partition! 

!  Instead, demote to match insertion rate (churn) and demotion rate 

1.  Access A (partition 2) " HIT 
2.  Access B (partition 0) " MISS 

Get replacement candidates (16) 

3 P0 4 P1 1 P2 5 P3 3 unmgd 

Evict from unmanaged region 

Insert new line (in partition 0) 



Churn-Based Management 
18 

!  Aperture: Portion of candidates to demote from each partition  

1) Partition 0 MISS 

0.1 0.5 0.4 0.3 0.7 0.1 0.2 0.6 0.1 0.3 0.9 0.2 0.4 0.3 0.7 0.8 

Replacement candidates 

Eviction 
priorities Evict 

Demote (in top 11% of P3) 

Partition 0 Partition 1 Partition 2 Partition 3 

23% 15% 12% 11% Apertures 

2) Partition 1 MISS 

0.3 0.6 0.7 0.4 0.1 0.3 0.2 0.8 0.3 0.7 0.4 0.2 0.2 0.7 0.3 0.6 

Eviction 
priorities Evict Nothing is demoted (all candidates above apertures!) 

3) Partition 3 MISS 

0.1 0.8 0.2 0.4 0. 0.9 0.2 0.9 0.1 0.3 0.8 0.7 0.4 0.3 0.3 0.6 

Eviction 
priorities Evict 

Demote (in top 23% of P0) Demote (in top 15% of P1) 



Managing Apertures 
19 

!  Set each aperture so that partition churn = demotion rate 
!  Instantaneous partition sizes vary a bit, but sizes are maintained 
! Unmanaged region prevents interference  

!  Each partition requires aperture proportional to its churn/
size ratio 
! Higher churn  More frequent insertions (and demotions!) 
!  Larger size  We see lines from that partition more often 

!  Partition aperture determines partition associativity 
! Higher aperture  less selective  lower associativity 



Stability 
20 

!  In partitions with high churn/size, controlling aperture is sometimes 
not enough to keep size 
!  e.g. 1-line partition that misses all the time 
!  To keep high associativity, set a maximum aperture Amax (e.g. 40%) 
!  If a partition needs Ai > Amax, we just let it grow 

!  Key result: Regardless of the number of partitions that need to 
grow beyond their target, the worst-case total growth over their 
target sizes is bounded and small! 

!  5% of the cache with R=52, Amax=0.4 
!  Simply size the unmanaged region with that much extra slack 
!  Stability and scalability are guaranteed 

RA
11

max



A Simple Vantage Controller 
21 

!  Directly implementing these techniques is impractical 
! Must constantly compute apertures, estimate churns 
! Need to know eviction priorities of every block 

!  Solution: Use negative feedback loops to derive 
apertures and the lines below aperture 
! Practical implementation 
! Maintains analytical guarantees 



Feedback-Based Aperture Control 
22 

!  Adjust aperture by letting partition size (Si) grow over its 
target (Ti): 

 
!  Need small extra space in unmanaged region 

! e.g. 0.5% of the cache with R=52, Amax=0.4, slack=10% 

Amax 

Ai 

Ti (1+slack)Ti 
Si 

Ai 



Implementation Costs 

!  See paper for detailed implementation 

Cache Controller 
Partition 0 

state (256b) 
Partition P-1 
state (256b) 

… 

Data 
Array 

Tag 
Array 256 bits of state per partition 

Line Address 
Coherence/
Valid Bits 

Timestamp 
(8b) 

Tags: Extra partition ID field 
Partition 

(6b) 

Vantage Replacement Logic 

Simple logic, ~10 adders and comparators 
Logic not on critical path 



Vantage Summary 
24 

!  Use a cache with associativity guarantees 

!  Maintain an unmanaged region 

!  Match insertion and demotion rates in each partition 
! Partitions help each other evict lines " maintain associativity 
! Unmanaged region guarantees isolation and stability 

!  Use negative feedback to simplify implementation 



Outline 
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!  Introduction 
!  Vantage Cache Partitioning 
!  Evaluation 



Methodology 
26 

!  Simulations of small (4-core) and large (32-core) systems 
! Private L1s, shared non-inclusive L2, 1 partition/core 

!  Partitioning policy: Utility-based partitioning [ISCA’06] 
! Assign more space to threads that can use it better 

!  Partitioning schemes: Way-partitioning, PIPP, Vantage 

!  Workloads: 350 multiprogrammed mixes from 
SPECCPU2006 (full suite) 



Small-Scale: 4 cores, 4 partitions 
27 

!  Each line shows throughput improvement versus an unpartitioned 
16-way set-associative cache 

!  Way-partitioning and PIPP degrade throughput for 45% of 
workloads  



Small-Scale: 4 cores, 4 partitions 
28 

!  Vantage works on best on zcaches 
!  We use Vantage on a 4-way zcache with R=52 replacement 

candidates 



Small-Scale: 4 cores, 4 partitions 
29 

!  Vantage improves throughput for most workloads 
!  6.2% throughput improvement (gmean), 26% for the 50 most 

memory-intensive workloads 



Large-Scale: 32 cores, 32 partitions 
30 

!  Way-partitioning and PIPP use a 64-way set-associative cache 
!  Both degrade throughput for most workloads 



Large-Scale: 32 cores, 32 partitions 
31 

!  Vantage uses the same Z4/52 cache as the 4-core system 
!  Vantage improves throughput for most workloads " scalable 



A Closer Look: Sizes & Associativity 
32 

Vantage Way-partitioning 

!  Vantage maintains strict partition sizes 
!  Vantage maintains high associativity even in the worst case 



Additional Results (see paper) 
33 

!  Vantage maintains strict control of partition sizes 
!  Vantage maintains high associativity 
!  Unmanaged region size vs isolation tradeoff 

! ~5% unmanaged region and moderate isolation 
! ~20% unmanaged region and strict isolation 

!  Validation of analytical models 
!  Vantage on set-associative caches 

! Loses analytical guarantees, but outperforms other schemes 

!  Vantage with other replacement policies (RRIP) 



Conclusions 
34 

!  Vantage enables cache partitioning for many-cores 
! Tens to hundreds of fine-grain partitions 
! High associativity per partition 
! Strict isolation among partitions 
! Derived from analytical models, bounds independent of 

number of partitions and cache ways 
! Simple to implement 
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Backup: Associativity Guarantees  
36 

!  Why does zcache produce uniform random replacement 
candidates, independently of access pattern? 

!  ZCache hashing and replacement scheme eliminates 
spatial locality 

!  Evictions have negligible temporal locality w.r.t. cache 
! Evictions to the same block are widely separated in time 
! NOTE: Invalidations (e.g. coherence) are not evictions 

!  No locality " uniform random 



Backup: Setpoint-Based Demotions 
37 

!  Derive portion of lines below aperture without tracking eviction priorities 
!  Coarse-grain timestamp LRU replacement 

!  Tag each block with an 8-bit LRU per-partition timestamp 
!  Increment timestamp every Si/16 accesses 

!  Demote every candidate below the setpoint timestamp 
!  Adjust setpoint using negative feedback 
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A Closer Look: Partition Sizes 
38 

Way-partitioning Vantage PIPP 

$  Coarse-grain partitions 

# Strict size 

$  Slow convergence 

$  Coarse-grain partitions 

$  Approximate size 

$  No convergence 

#  Fine-grain partitions 

#  Strict size 

#  Fast convergence 



Unmanaged Size vs Isolation Trade-off 
40 

!  A larger unmanaged region reduces UCP perfomance slightly, but gives excellent isolation 
!  Simulations match analytical models 
!  See paper for additional results (Vantage on set-associative caches, other replacement 

policies, etc.) 


