
SCD: A SCALABLE COHERENCE DIRECTORY
WITH FLEXIBLE SHARER SET ENCODING

Daniel Sanchez and Christos Kozyrakis

Stanford University

HPCA-18, February 27th 2012

Executive Summary
2

 Directories are hard to scale, degrade performance

 SCD: A scalable directory with performance guarantees

 Flexible sharer set encoding: Lines with few sharers use one
entry, widely shared lines use multiple entries  Scalability

 Use ZCache  Efficient high associativity, analytical models

 Negligible invalidations with minimal overprovisioning (~10%)

 At 1024 cores, SCD is 13x smaller than a sparse directory,
and 2x smaller, faster, simpler than a hierarchical directory

Outline
3

 Introduction

 SCD Design

 Analytical Bounds on Overprovisioning

 Evaluation

Directory-Based Coherence
4

 Scalable coherence protocols use a directory
 Tracks contents of private caches

 Ordering point for conflicting requests

Shared L3

Core Core Core Core Core Core Core

Directory

Main Memory

Core

Private
L2

Private
L2

Private
L2

Private
L2

Private
L2

Private
L2

Private
L2

Private
L2

Directory-Induced Invalidations
5

Shared L3

Core 0 Core 1 Core 2 Core 3 Core 4 Core 6 Core 7

Directory

Main Memory

Core 5

Private
L2 0

Private
L2 1

Private
L2 2

Private
L2 3

Private
L2 4

Private
L2 6

Private
L2 7

Private
L2 5

GET A

ld A

GET A INV B
Limited associativity  To track
A, must invalidate B, C, D, or E

INV B

INV B INV B

ld B  MISS

Desirable Directory Properties
6

1. Scalability
 Latency, energy, area

 Constant or log(cores) growth

2. Minimal complexity
 No changes to coherence protocol

3. Exact sharer information

4. Negligible directory-induced invalidations
 With minimal, bounded overprovisioning

Sparse Full-Map Directories
7

 Associative array indexed by address

 Sharer sets encoded in a bit-vector

0xF00 Shared

Line Address Coherence State Sharer Set

0 1 0 0 1 1 0 0

Single lookup  Low latency, energy-efficient
 Bit-vectors grow with # cores  Area scales poorly
 Limited associativity  Directory-induced invalidations,

overprovisioning (~2x)

Directory Entry Format

Way 1 Way 2 Way 3 Way 4

Hierarchical Sparse Directories
8

 Multi-level hierarchy of sparse directories

Level-2
Directory

32 Level-1
Directories

…

…

Cores 0-31 Cores 32-63 Cores 992-1023

L1 Dirs 0-31

Small bit-vectors  Scalable area & energy
 Multiple lookups in critical path  Additional latency
 Needs hierarchical coherence protocol  More complexity
 Directory-induced invalidations more expensive

Single-Level Dirs with Inexact Sharer Sets
9

 Coarse-grain bit-vectors (e.g., 1 bit for every 4 cores)

 Limited pointers: Maintain a few sharer pointers,
invalidate or broadcast on overflow

 Tagless [MICRO 09]: Encode sharers with Bloom filters

 SPACE [PACT 10]: De-duplicate sharing patterns

Reduced area & energy overheads
 Overheads still not scalable
 Inexact sharers  Broadcasts, invalidations or spurious lookups

Efficient Highly-Associative Caches
10

 ZCache [MICRO 10]: High-associativity cache with few ways
 Draws from skew-associativity and Cuckoo hashing
 Hits take a single lookup
 In a miss, replacement process

provides many candidates
 Provides cheap high associativity

(e.g., 64-way associativity with 4 ways)
 Described by simple & accurate analytical models

 Cuckoo Directory [Ferdman et al., HPCA 11]:
 Apply Cuckoo hashing to sparse directories
 Empirically show that smaller overprovisioning (~25%) eliminates

most invalidations

Indexes

H1

H2

H3

Line
address

Way1 Way2 Way3

Outline
11

 Introduction

 SCD Design

 Analytical Bounds on Overprovisioning

 Evaluation

Scalable Coherence Directory: Insights
12

 Use ZCache

 Cheap high associativity

 Analytical models  Bounds on overprovisioning

 Negligible difference with ideal directory regardless of workload

 Validated in simulation

 Provision space per tracked sharer, not line

 Flexible sharer set encoding: Lines with few sharers use a
single entry, widely shared lines use additional entries

SCD Array
13

 ZCache array indexed by (Line Address, Entry Number)

 Allows multiple entries per line

 Insertions walk array until an unused entry is found, or a
limit of candidates (R) is reached, then invalidate one

 Could use a replacement policy to decide victim

 Evictions are negligible  no need for replacement policy

Indexes

H1

H2

H3

(Line Address, Entry Number)

Way1 Way2 Way3

SCD Entry Formats
14

 Lines with one or few sharers use a limited pointer entry

 Lines with >3 sharers use root + leaves bit-vector entries

Line Address
(44b)

37b

Unused
(37b)

0 0 INVALID

Coherence State
(5b)

#ptrs
(2b)

3x 10-bit sharer pointers
(30b)

0 1 LIMITED POINTERS

Coherence State
(5b)

1 0 ROOT BIT-VECTOR
Root bit-vector

(32b)

Leaf number
(5b)

1 1 LEAF BIT-VECTOR
Leaf bit-vector

(32b)

Type
(2b)

 Example: 1024 sharers

Example: Adding a Sharer
15

1

0x5CA1AB1E S 3 01 37 265 267

Add sharer 64 to address 0x5CA1AB1E :

Lookup (0x5CA1AB1E, 0), all pointers are used  switch to multi-entry format

2 Allocate entries (0x5CA1AB1E, leafNum+1) with leafNum=1,2,8

4 Write (0x5CA1AB1E, 0) as a root bit-vector

(LIMPTRS)

3 Write leaf bit-vectors

2 11 10000000 00000000 0…0 0…0 0x5CA1AB1E

8 11 00000000 10100000 0…0 0…0 0x5CA1AB1E

S 01100000 10000000 0…0 0…0 10 0x5CA1AB1E

(ROOT)

1 11 00000010 00000000 0…0 0…0 0x5CA1AB1E

(LEAF)

SCD & Desirable Properties
16

1. Scalability

 Flexible sharer set encoding  Scalable energy and area

 Coherence state stored in a single entry  Most operations
have 1 lookup on critical path  Scalable latency

2. Minimal complexity

 All entries in the same array  No coherence protocol changes

3. Exact sharer information

4. Negligible directory-induced invalidations
 With minimal, bounded overprovisioning

?

Outline
17

 Introduction

 SCD Design

 Analytical Bounds on Overprovisioning

 Evaluation

Analytical Models
18

 Directories built with ZCache arrays can be characterized with simple,
workload-independent analytical models

W

R

occ

occ
AvgLookups





1

1
R

inv
occP 

Fraction of insertions that

cause a directory invalidation

Average lookups

per replacement

W Ways

R Replacement candidates

occ Occupancy (fraction of used entries)

Determines performance
impact, interference

Determines replacement
latency and energy

Bounding Invalidations
19

 SCD bounds invalidations with minimal overprovisioning

 Bounded worst-case behavior independent of workload

 For Pinv=10-3  W=4, R=64, 11% overprovisioning

 Max directory occupancy 90%

 Overprovisioning is:

 Smaller than previous empirical results (25%-2x)

 Bounded  Strict guarantees, no design-time uncertainty

Outline
20

 Introduction

 SCD Design

 Analytical Bounds on Overprovisioning

 Evaluation

Methodology
21

 Simulated system: 1024-core tiled CMP

 In-order cores with split L1s

 Private inclusive L2s, 128KB/core

 Shared non-inclusive L3, 256MB

 MESI directory protocol

 Directory implementations:

 Sparse, 2-level Hierarchical, SCD

 Directories 100%-provisioned for L2s

 All directories use ZCache arrays 
negligible invalidations

 14 workloads from PARSEC, SPLASH2,
SPECOMP/JBB, BioParallel suites

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

L3 Bank

Mem

Ctrl

Router

Dir

Bank

C
o
re

16-core tile

64-tile CMP (1024 cores)

Area
22

 Area given as a percentage of L2 caches

 At 1024 cores, SCD is:
 13x smaller than Sparse

 2x smaller than Hierarchical

 Takes ~3% of total die area

Cores Sparse Hierarchical SCD Sparse/SCD Hier/SCD

128 34.2% 21.1% 10.9% 3.12x 1.93x

256 59.2% 24.2% 12.5% 4.73x 1.94x

512 109.2% 27.0% 13.9% 7.87x 1.95x

1024 209.2% 30.9% 15.8% 13.22x 1.95x

Performance
23

 Hierarchical up to 10% slower than Ideal

 Sparse has Ideal-like performance, but too expensive

 SCD as fast as Ideal & Sparse, cheapest

0

2

4

6

8

10

12

bscholes applu jbb ocean svm canneal

S
lo

w
d
o
w

n
 o

v
e
r

Id
e
a
l
D

ir
e
ct

o
ry

 (
%

)

Hierarchical

Sparse

SCD

Energy Efficiency
24

 Directory energy = Accesses * Energy/access

 SCD performs slightly more accesses (lookups, writes) than Sparse
 Some operations require multiple lookups

 SCD has higher occupancy, replacements take longer

 SCD energy/access is smaller (narrow entries)

0

5

10

15

20

25

bscholes applu jbb ocean svm canneal

S
C

D
 a

rr
a
y
 a

cc
e
ss

e
s

o
v
e
r

S
p
a
rs

e
 (

%
)

97%

Analytical Models
25

 Empirical results on invalidations match analytical models
 Bounds worst-case invalidations with minimal overprovisioning

 Can provision directory using simple formulas

 Set-associative arrays do not meet analytical models
 Need significant overprovisioning (~2x), no bounds

 Similar results for Sparse & Hierarchical

Conclusions
26

 SCD insights:

 Use a variable number of entries/line  Keep entries small

 Use ZCache  High associativity + Analytical models

 SCD = Scalability + Performance guarantees

 Scalable area, energy, latency

 Simple: No modifications to coherence protocol

 Negligible invalidations with bounded overprovisioning

 At 1024 cores, SCD is 13x smaller than Sparse, and 2x
smaller, faster and simpler than Hierarchical

THANK YOU FOR
YOUR ATTENTION

QUESTIONS?

