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Executive Summary 
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 Directories are hard to scale, degrade performance 

 

 SCD: A scalable directory with performance guarantees 
 

 Flexible sharer set encoding: Lines with few sharers use one 
entry, widely shared lines use multiple entries  Scalability 

 

 Use ZCache  Efficient high associativity, analytical models 

 Negligible invalidations with minimal overprovisioning (~10%) 
 

 At 1024 cores, SCD is 13x smaller than a sparse directory, 
and 2x smaller, faster, simpler than a hierarchical directory 



Outline 
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 Introduction 

 SCD Design 

 Analytical Bounds on Overprovisioning 

 Evaluation 



Directory-Based Coherence 
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 Scalable coherence protocols use a directory 
 Tracks contents of private caches 

 Ordering point for conflicting requests 
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Directory-Induced Invalidations 
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Desirable Directory Properties 
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1. Scalability 
 Latency, energy, area 

 Constant or log(cores) growth 

 

2. Minimal complexity 
 No changes to coherence protocol 

 

3. Exact sharer information 
 

4. Negligible directory-induced invalidations 
 With minimal, bounded overprovisioning 



Sparse Full-Map Directories 
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 Associative array indexed by address 

 Sharer sets encoded in a bit-vector 

0xF00 Shared 

Line Address Coherence State Sharer Set 

0 1 0 0 1 1 0 0 

Single lookup  Low latency, energy-efficient 
 Bit-vectors grow with # cores  Area scales poorly 
 Limited associativity  Directory-induced invalidations, 

overprovisioning (~2x) 

Directory Entry Format 

Way 1 Way 2 Way 3 Way 4 



Hierarchical Sparse Directories 
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 Multi-level hierarchy of sparse directories 

Level-2 
Directory 

32 Level-1 
Directories 

… 

… 

Cores 0-31 Cores 32-63 Cores 992-1023 

L1 Dirs 0-31 

Small bit-vectors  Scalable area & energy 
 Multiple lookups in critical path  Additional latency 
 Needs hierarchical coherence protocol  More complexity 
 Directory-induced invalidations more expensive 



Single-Level Dirs with Inexact Sharer Sets 
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 Coarse-grain bit-vectors (e.g., 1 bit for every 4 cores) 

 Limited pointers: Maintain a few sharer pointers, 
invalidate or broadcast on overflow 

 Tagless [MICRO 09]: Encode sharers with Bloom filters 

 SPACE [PACT 10]: De-duplicate sharing patterns 

Reduced area & energy overheads 
 Overheads still not scalable 
 Inexact sharers  Broadcasts, invalidations or spurious lookups 



Efficient Highly-Associative Caches 
10 

 ZCache [MICRO 10]: High-associativity cache with few ways 
 Draws from skew-associativity and Cuckoo hashing 
 Hits take a single lookup 
 In a miss, replacement process 

provides many candidates 
 Provides cheap high associativity 

(e.g., 64-way associativity with 4 ways) 
 Described by simple & accurate analytical models 

 

 Cuckoo Directory [Ferdman et al., HPCA 11]: 
 Apply Cuckoo hashing to sparse directories 
 Empirically show that smaller overprovisioning (~25%) eliminates 

most invalidations 
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Outline 
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 Introduction 

 SCD Design 

 Analytical Bounds on Overprovisioning 

 Evaluation 



Scalable Coherence Directory: Insights 
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 Use ZCache 

 Cheap high associativity 

 Analytical models  Bounds on overprovisioning 

 Negligible difference with ideal directory regardless of workload 

 Validated in simulation 

 

 Provision space per tracked sharer, not line 

 Flexible sharer set encoding: Lines with few sharers use a 
single entry, widely shared lines use additional entries 

 



SCD Array 
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 ZCache array indexed by (Line Address, Entry Number) 

 Allows multiple entries per line  

 

 

 

 Insertions walk array until an unused entry is found, or a 
limit of candidates (R) is reached, then invalidate one 

 Could use a replacement policy to decide victim 

 Evictions are negligible  no need for replacement policy 
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SCD Entry Formats 
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 Lines with one or few sharers use a limited pointer entry 

 Lines with >3 sharers use root + leaves bit-vector entries 
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 Example: 1024 sharers 



Example: Adding a Sharer 
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1 

0x5CA1AB1E S 3 01 37 265 267 

Add sharer 64 to address 0x5CA1AB1E : 

Lookup (0x5CA1AB1E, 0), all pointers are used  switch to multi-entry format 

2 Allocate entries (0x5CA1AB1E, leafNum+1) with leafNum=1,2,8 

4 Write (0x5CA1AB1E, 0) as a root bit-vector 

(LIMPTRS) 

3 Write leaf bit-vectors 

2 11 10000000 00000000 0…0 0…0 0x5CA1AB1E 

8 11 00000000 10100000 0…0 0…0 0x5CA1AB1E 

S 01100000 10000000 0…0 0…0 10 0x5CA1AB1E 

(ROOT) 

1 11 00000010 00000000 0…0 0…0 0x5CA1AB1E 

(LEAF) 



SCD & Desirable Properties 
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1. Scalability 

 Flexible sharer set encoding  Scalable energy and area 

 Coherence state stored in a single entry  Most operations 
have 1 lookup on critical path  Scalable latency 

 

2. Minimal complexity 

 All entries in the same array  No coherence protocol changes 

 

3. Exact sharer information 
 

4. Negligible directory-induced invalidations 
 With minimal, bounded overprovisioning 

? 



Outline 
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 Introduction 

 SCD Design 

 Analytical Bounds on Overprovisioning 

 Evaluation 



Analytical Models 
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 Directories built with ZCache arrays can be characterized with simple, 
workload-independent analytical models 
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Bounding Invalidations 
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 SCD bounds invalidations with minimal overprovisioning 

 Bounded worst-case behavior independent of workload 

 For Pinv=10-3  W=4, R=64, 11% overprovisioning 

 Max directory occupancy 90% 

 

 Overprovisioning is: 

 Smaller than previous empirical results (25%-2x) 

 Bounded  Strict guarantees, no design-time uncertainty 



Outline 
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 Introduction 

 SCD Design 

 Analytical Bounds on Overprovisioning 

 Evaluation 



Methodology 
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 Simulated system: 1024-core tiled CMP 

 In-order cores with split L1s 

 Private inclusive L2s, 128KB/core 

 Shared non-inclusive L3, 256MB 

 MESI directory protocol 
 

 Directory implementations: 

 Sparse, 2-level Hierarchical, SCD 

 Directories 100%-provisioned for L2s 

 All directories use ZCache arrays  
negligible invalidations 

 

 14 workloads from PARSEC, SPLASH2, 
SPECOMP/JBB, BioParallel suites 
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Area 
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 Area given as a percentage of L2 caches 

 At 1024 cores, SCD is: 
 13x smaller than Sparse 

 2x smaller than Hierarchical 

 Takes ~3% of total die area 

Cores Sparse Hierarchical SCD Sparse/SCD Hier/SCD 

128 34.2% 21.1% 10.9% 3.12x 1.93x 

256 59.2% 24.2% 12.5% 4.73x 1.94x 

512 109.2% 27.0% 13.9% 7.87x 1.95x 

1024 209.2% 30.9% 15.8% 13.22x 1.95x 



Performance 
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 Hierarchical up to 10% slower than Ideal 

 Sparse has Ideal-like performance, but too expensive 

 SCD as fast as Ideal & Sparse, cheapest 
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Energy Efficiency 
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 Directory energy = Accesses * Energy/access 

 

 

 

 

 

 
 

 SCD performs slightly more accesses (lookups, writes) than Sparse 
 Some operations require multiple lookups 

 SCD has higher occupancy, replacements take longer 

 SCD energy/access is smaller (narrow entries) 
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Analytical Models 
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 Empirical results on invalidations match analytical models 
 Bounds worst-case invalidations with minimal overprovisioning 

 Can provision directory using simple formulas 

 Set-associative arrays do not meet analytical models 
 Need significant overprovisioning (~2x), no bounds 

 Similar results for Sparse & Hierarchical 



Conclusions 
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 SCD insights: 

 Use a variable number of entries/line  Keep entries small 

 Use ZCache  High associativity + Analytical models  

 

 SCD = Scalability + Performance guarantees 

 Scalable area, energy, latency 

 Simple: No modifications to coherence protocol 

 Negligible invalidations with bounded overprovisioning 

 At 1024 cores, SCD is 13x smaller than Sparse, and 2x 
smaller, faster and simpler than Hierarchical 
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