
SCALING HARDWARE AND SOFTWARE 
FOR THOUSAND-CORE SYSTEMS 

Daniel Sanchez 

 
Electrical Engineering 
Stanford University 



Multicore Scalability 
2 

  Multicore is key to future of computing 

  Scaling performance is hard, even with a lot of 
parallelism 
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Memory is Critical 
3 

  Memory limits performance and energy efficiency 

  Basic indicators: 

 64-bit FP op: ~1ns latency, ~20pJ energy 

 Shared cache access: ~10ns latency, ~1nJ energy 

 DRAM access: ~100ns latency, ~20nJ energy 

  HW & SW must optimize memory performance 



Multicore Memory Hierarchy 
4 

  Per-core private caches 

 Fast access to critical working set 

 Should satisfy most accesses 

  Shared last-level cache 

  Increases utilization 

 Accelerates communication 

 Can be partitioned for isolation 

  Coherence protocol 

 Makes caches transparent to SW 

 Uses directory to track sharers 
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Memory Hierarchy Challenges at 1K Cores 
5 

  Cache hierarchy is hard to scale 
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Memory Hierarchy Challenges at 1K Cores 
6 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 
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Memory Hierarchy Challenges at 1K Cores 
7 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 
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Memory Hierarchy Challenges at 1K Cores 
8 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 

3.  Shared cache cannot be 
partitioned efficiently 
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Memory Hierarchy Challenges at 1K Cores 
9 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 

3.  Shared cache cannot be 
partitioned efficiently 

4.  No isolation or QoS due to 
shared cache and directory 
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Scaling Parallel Runtimes  
10 

  Parallel runtime maps application 
to hardware 

 Resource management 

 Scheduling 

  Runtime is fundamental to scale 
with manageable complexity 
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Scheduling Parallel Applications 
11 

  Application  Parallel tasks 

 Different requirements 

 May have dependences 
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Scheduling Parallel Applications 
12 

  Application  Parallel tasks 

 Different requirements 

 May have dependences 

  Scheduler assigns tasks to cores 
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Runtime & Scheduling Challenges 
13 

  Constrained parallelism 
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Runtime & Scheduling Challenges 
14 

  Constrained parallelism 

 Coarser tasks 

 Unneeded serialization 
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Runtime & Scheduling Challenges 
15 

  Constrained parallelism 

  Increased cache misses 
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Runtime & Scheduling Challenges 
16 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 
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Runtime & Scheduling Challenges 
17 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 
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Runtime & Scheduling Challenges 
18 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 

  Excessive memory footprint 
(crash!) 
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Runtime & Scheduling Challenges 
19 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 

  Excessive memory footprint 
(crash!) 

  Conflicting issues  Need smart 
algorithms! 
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Contributions 
20 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



This Talk 
21 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



Rethinking Common-Case Design 
22 

  Conventional approach: Make the common case fast 

 Based on patterns of past and current workloads 

 Overprovision to mitigate worst case or for future workloads 

  Multicore demands going beyond the common case 

 Shared resources  Need guarantees on all cases 

 Overprovisioning alone is insufficient and wasteful 

 Some overprovisioning simplifies design 

 Must provide guarantees with minimal overprovisioning 

 Root cause: Empirical design  Limited understanding of 
system behavior 



Solution: Analytical Design Approach 
23 

  Design basic components that are easily analyzable 

 Simple, accurate, workload-independent analytical models 

 Easy to understand, reason about behavior 

  Use models to design systems that work well in all cases 

 Scalability and QoS guaranteed in all scenarios 

 Outperform conventional techniques in the common case 

  Need to revisit fundamental aspects of our systems 
(associativity, coherence, …) 



Set-Associative Caches 
24 

  Basic building block of caches, directories 

  Problems: 

 Reducing conflicts (higher associativity)  more ways 

 Higher energy, latency, area 

 Conflicts depend on workload’s access patterns 
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ZCache 

  One hash function per way 
  

  Hits require a single lookup  low hit energy and latency 

  Misses exploit the multiple hash functions to obtain an arbitrarily 
large number of replacement candidates 

  Multi-step process, draws on prior research on Cuckoo hashing 

  Happens infrequently (on misses) and off the critical path 
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ZCache Replacement 
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ZCache Replacement 

  Instead of evicting A, can move it and evict K or X 

 Similarly, can move K or X  more candidates 
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ZCache Replacement 
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ZCache Replacement 
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ZCache Replacement 
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ZCache Replacement 

  Hits always take a single lookup 
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  Replacements do not affect hit latency, are simple to 
implement 
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Methodology 
33 

  zsim: A fast, 1000-core, microarchitectural x86 simulator 

 Fast: Parallel, leverages dynamic binary translation (Pin) 

 15-60 Minstrs/s per host core, 600 Minstrs/s on 12-core Xeon 

 Scalable: Phase-based sync, simulates thousands of cores 

 Validated: Within 10% of Atom and Nehalem systems 

 Simple: ~20 KLoC, used in research and courses at Stanford 

  Integrate zsim with existing area, energy, and latency 
models (McPAT, CACTI) 



ZCache Benefits 
34 

  ZCache = Scalable associativity at low cost 
 Cost of 4-way cache 

 Associativity > 64-way cache 

  8MB shared LLC optimized for area ∙ latency ∙ energy, 32nm: 
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ZCache Associativity 
35 

  ZCache associativity depends only on the number of 
replacement candidates (R) 
  Independent of ways, workload, and replacement policy 

  Problems in defining associativity: Cache array + 
replacement policy 

  Insight 1: With ZCache, replacement candidates are very 
close to uniformly distributed over the array 

  Insight 2: All policies do the same thing, rank cache lines 
  Eviction priority: Rank of a line normalized to [0,1] 

  Example: With LRU policy, LRU line has 1.0 priority, MRU has 0.0 



ZCache Associativity 
36 

  Associativity: Probability distribution of eviction priorities of 
evicted lines 

  ZCache associativity depends only on the number of 
replacement candidates (R): 

With R=8, 2% of evictions in 
60% of least evictable lines 

With R=64, only 10-6 of evictions in 
80% of least evictable lines 
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ZCache Analytical Models 
37 

  Analytical models are accurate in practice: 

14 workloads, 1024 cores 

Theory: 1 in a million 
Practice: 1 in 5 



Cache Partitioning 
38 

Shared Cache 

Core Core Core Core Core Core Core 

Directory 

Main Memory 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Core 

Private 
Cache 



Cache Partitioning 
39 

  Cache partitioning techniques divide cache space explicitly 
  Isolation: Virtualize cache among applications, VMs 

  Efficiency: Improve performance, fairness 

 Configurability: SW-controlled buffers (performance, security) 
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Cache Partitioning Techniques 
40 

  Strict partitioning schemes: Based on restricting line placement 
  Way partitioning: Restrict insertions to specific ways 
  Strict, but supports few partitions and degrades associativity 

 

  Soft partitioning schemes: Based on tweaking the replacement policy 
  PIPP: Insert and promote lines in LRU chain depending on their partition 

  Simple, but approximate partitioning and degrades replacement performance 
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Cache Partitioning with Vantage 
41 

  Previous partitioning techniques have major drawbacks 

 Not scalable, support few partitions  

 Degrade performance 

  Vantage solves deficiencies of previous techniques 

 Scalable: Supports hundreds of fine-grain partitions 

 Maintains high associativity and strict isolation among 
partitions (QoS) 

 



Vantage Design 
42 

  Vantage partitions most of the cache logically by 
modifying the replacement process 

 No restrictions on line placement 
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Vantage Design 
43 

  Vantage partitions the managed region 
  Incoming lines (misses) inserted in partition 
  Each partition demotes least wanted lines to unmanaged region 
  Evict only from unmanaged region  no interference 
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Controlling Demotions 
44 

  Always demoting from inserting partition does not scale with 
number of partitions 

  Instead, maintain sizes by matching demotion rate to miss rate 
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Get replacement candidates (16) 
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Evict from unmanaged region 
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Demoting with Apertures 
45 

  Aperture: Portion of candidates to demote from each partition  

Partition 0 MISS 
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Managing Apertures 
46 

  Partition apertures can be derived analytically: 

  Intuition: Aperture ~ miss rate (Mi)/size (Si) 

  Apertures are also capped to Amax 

 Higher aperture ↔ lower partition associativity 

 Amax ensures high minimum associativity 
 e.g., Amax =40% ~ R=16 associativity 

 We just let partitions that need Ai > Amax  grow 
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Bounds on Size and Interference 
47 

  The worst-case total growth of all partitions over their 
target sizes is bounded and small: 

  Intuition: A ∆-sized partition is always stable, and multiple 
unstable partitions help each other demote 

  Independent of the number of partitions! 

  Assign an extra ∆ to unmanaged region 
 With R=52 and Amax=0.4, ∆=5% of the cache 

 Bounded worst-case sizes & interference 
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A Simple Vantage Controller 
48 

  Use negative feedback loop to derive apertures 

  Use timestamps to determine lines within aperture 

  Practical implementation that maintains analytical guarantees 
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Vantage Evaluation 
49 

  350 mixes on a 32-core CMP with a shared LLC (32 partitions) 

  Partitions sized to maximize throughput (utility-based partitioning) 

  Each line shows throughput vs unpartitioned 64-way baseline 

  Way-partitioning, PIPP degrade throughput for most workloads 
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Vantage Evaluation 
50 

  Vantage improves throughput for most workloads using a 
4-way/52-candidate Zcache 

  Other schemes cannot scale beyond a few cores 

Worse than 
unpartitioned 

Better than 
unpartitioned 



Scaling Directories 
51 

  Scaling directories is hard: 

 Excessive latency, energy, area overheads, or too complex 

  Introduce invalidations  Interference 
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Scalable Coherence Directory 
52 

  Insights: 

 Flexible sharer set encoding: Lines with few sharers use one 
entry, widely shared lines use multiple entries  Scalability 

 Use ZCache  Efficient high associativity, analytical models 

 Negligible invalidations with minimal overprovisioning (~10%) 

  SCD achieves scalability and performance guarantees 

 Area, energy grow with log(cores), constant latency 

 Simple: No modifications to coherence protocol 

 At 1024 cores, SCD is 13x smaller than a sparse directory, 
2x smaller, faster and simpler than a hierarchical directory 

 



Scalable Scheduling 
53 

  Scheduling requirements: 
  Expose enough parallelism 

  Locality-aware 

  Load balancing 

  Low overheads 

  Bounded memory footprint 

  Dynamic vs static schedulers: 
  Dynamic: Poor locality, footprint not 

bounded if non-trivial dependences 

  Static: Great compile-time schedules, but 
no load-balancing, only regular apps 
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Insight: Leverage Programming Model 
54 

  Solution: Dynamic fine-grain scheduling techniques that leverage 
programming model information to satisfy requirements 
  Expose all parallelism through fine-grain tasks 

  Locality-aware task queuing and load-balancing 

  Bounded footprint 

  Make dynamic scheduling practical in rich programming models 
(StreamIt, GRAMPS, Delite) 

  Significant improvements over state-of-the-art schedulers on 
existing 12-core, 24-thread Xeon SMP: 
  Up to 17x over dynamic (more parallelism, locality-aware, footprint) 

  Up to 5.3x over static (no load imbalance) 

  Scheduler choice becomes more critical as we scale up! 



Hardware-Accelerated Schedulers 
55 

  Fine-grain scheduling with 100+ threads is slow in software 

 Hardware schedulers (e.g., GPUs): Fast but inflexible 

  Insight: Software schedulers dominated by communication 

  Solution: Accelerate communication with simple hardware 

 ADM: Asynchronous, register-register messages between threads 

  Small and scalable costs (~1KB buffers per core), virtualizable 

 ADM-accelerated fine-grain schedulers: 

  Achieve speed and scalability of HW + flexibility of SW 

  At 512 threads, 6.4x faster than SW and 70% faster than HW 

 ADM can accelerate other primitives (e.g., barriers, IPC) 

 



Contributions 
56 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



Conclusions 
57 

  Scaling to 1000 cores requires HW and SW techniques:  

 Scale hardware with highly efficient caches with scalable 
partitioning and coherence 

 Scale software with dynamic, fine-grain, HW-accelerated 
scheduling 
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