
SCALING HARDWARE AND SOFTWARE
FOR THOUSAND-CORE SYSTEMS

Daniel Sanchez

Electrical Engineering
Stanford University

Multicore Scalability
2

  Multicore is key to future of computing

  Scaling performance is hard, even with a lot of
parallelism

Transistors
(Millions)

Core performance
(MIPS)

Multicore performance
(MIPS)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1990 2000 2010 2020

Cores

106

105

104

103

102

10

1

Memory is Critical
3

  Memory limits performance and energy efficiency

  Basic indicators:

 64-bit FP op: ~1ns latency, ~20pJ energy

 Shared cache access: ~10ns latency, ~1nJ energy

 DRAM access: ~100ns latency, ~20nJ energy

  HW & SW must optimize memory performance

Multicore Memory Hierarchy
4

  Per-core private caches

 Fast access to critical working set

 Should satisfy most accesses

  Shared last-level cache

  Increases utilization

 Accelerates communication

 Can be partitioned for isolation

  Coherence protocol

 Makes caches transparent to SW

 Uses directory to track sharers

Shared Cache

Core Core Core Core

Coherence Directory

Main Memory

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Memory Hierarchy Challenges at 1K Cores
5

  Cache hierarchy is hard to scale

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Memory Hierarchy Challenges at 1K Cores
6

  Cache hierarchy is hard to scale

1.  Directories scale poorly

 Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Memory Hierarchy Challenges at 1K Cores
7

  Cache hierarchy is hard to scale

1.  Directories scale poorly

2.  Conflicts in caches & directory
are more frequent

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Shared Cache

Memory Hierarchy Challenges at 1K Cores
8

  Cache hierarchy is hard to scale

1.  Directories scale poorly

2.  Conflicts in caches & directory
are more frequent

3.  Shared cache cannot be
partitioned efficiently

Core

1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Shared Cache

Memory Hierarchy Challenges at 1K Cores
9

  Cache hierarchy is hard to scale

1.  Directories scale poorly

2.  Conflicts in caches & directory
are more frequent

3.  Shared cache cannot be
partitioned efficiently

4.  No isolation or QoS due to
shared cache and directory

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Scaling Parallel Runtimes
10

  Parallel runtime maps application
to hardware

 Resource management

 Scheduling

  Runtime is fundamental to scale
with manageable complexity

Parallel Application

Parallel Runtime

Operating System

Hardware

Scheduling Parallel Applications
11

  Application Parallel tasks

 Different requirements

 May have dependences
Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Scheduling Parallel Applications
12

  Application Parallel tasks

 Different requirements

 May have dependences

  Scheduler assigns tasks to cores

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Runtime & Scheduling Challenges
13

  Constrained parallelism

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Runtime & Scheduling Challenges
14

  Constrained parallelism

 Coarser tasks

 Unneeded serialization

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Runtime & Scheduling Challenges
15

  Constrained parallelism

  Increased cache misses
Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Runtime & Scheduling Challenges
16

  Constrained parallelism

  Increased cache misses

  Load imbalance

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Runtime & Scheduling Challenges
17

  Constrained parallelism

  Increased cache misses

  Load imbalance

  Scheduling overheads

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Sched

Application Tasks

Sched

Runtime & Scheduling Challenges
18

  Constrained parallelism

  Increased cache misses

  Load imbalance

  Scheduling overheads

  Excessive memory footprint
(crash!)

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Runtime & Scheduling Challenges
19

  Constrained parallelism

  Increased cache misses

  Load imbalance

  Scheduling overheads

  Excessive memory footprint
(crash!)

  Conflicting issues Need smart
algorithms!

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Contributions
20

  Scalable cache hierarchies:

 Efficient highly-associative caches [MICRO 10]

 Scalable cache partitioning [ISCA 11, Top Picks 12]

 Scalable coherence directories [HPCA 12]

  Scalable scheduling:

 Efficient dynamic scheduling by leveraging programming
model information [PACT 11]

 Hardware-accelerated scheduling [ASPLOS 10]

This Talk
21

  Scalable cache hierarchies:

 Efficient highly-associative caches [MICRO 10]

 Scalable cache partitioning [ISCA 11, Top Picks 12]

 Scalable coherence directories [HPCA 12]

  Scalable scheduling:

 Efficient dynamic scheduling by leveraging programming
model information [PACT 11]

 Hardware-accelerated scheduling [ASPLOS 10]

Rethinking Common-Case Design
22

  Conventional approach: Make the common case fast

 Based on patterns of past and current workloads

 Overprovision to mitigate worst case or for future workloads

  Multicore demands going beyond the common case

 Shared resources Need guarantees on all cases

 Overprovisioning alone is insufficient and wasteful

 Some overprovisioning simplifies design

 Must provide guarantees with minimal overprovisioning

 Root cause: Empirical design Limited understanding of
system behavior

Solution: Analytical Design Approach
23

  Design basic components that are easily analyzable

 Simple, accurate, workload-independent analytical models

 Easy to understand, reason about behavior

  Use models to design systems that work well in all cases

 Scalability and QoS guaranteed in all scenarios

 Outperform conventional techniques in the common case

  Need to revisit fundamental aspects of our systems
(associativity, coherence, …)

Set-Associative Caches
24

  Basic building block of caches, directories

  Problems:

 Reducing conflicts (higher associativity) more ways

 Higher energy, latency, area

 Conflicts depend on workload’s access patterns

H
Line

address Index

Hash
Function

Way 1 Way 2 Way 3 Way 4

Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7
Set 8

ZCache

  One hash function per way

  Hits require a single lookup low hit energy and latency

  Misses exploit the multiple hash functions to obtain an arbitrarily
large number of replacement candidates

  Multi-step process, draws on prior research on Cuckoo hashing

  Happens infrequently (on misses) and off the critical path

Indexes

H1

H2

H3

Line
address

25

Way 1 Way 2 Way 3

D

M

ZCache Replacement

U

F

N

B

P

A

G

V

C

D

E

K

Z

T

M

X

J

R

H

Q

I

H1

H2

H3

L O S

0

1

2

3

4

5

6

7

Y

5

4

0
A

MISS

Way 1 Way 2 Way 3

26

ZCache Replacement

U

F

N

B

P

A

G

V

C

D

E

K

Z

T

M

X

J

R

H

Q

I

H1

H2

H3

L O S

0

1

2

3

4

5

6

7

Y

5

4

0

Way 1 Way 2 Way 3

D

M

A

27

ZCache Replacement

  Instead of evicting A, can move it and evict K or X

 Similarly, can move K or X more candidates

U

F

N

B

P

A

G

V

C

D

E

K

Z

T

M

X

J

R

H

Q

I

H1

H2

H3

L O S

0

1

2

3

4

5

6

7

A

5

2

1

Way 1 Way 2 Way 3

A

K

X

28

ZCache Replacement

Y

A

K X

L M N E

D

B Z

T X G R

M

P S

E Q F K

Chosen by replacement policy (LRU/LFU/RRIP…)

29

ZCache Replacement

Y

A

K X

L M N E

U

F

N

B

P

A

G

V

C

D

E

K

Z

T

M

X

J

R

H

Q

I

L O S

Y

21 3

4

D

B Z

T X G R

M

P S

E Q F K

30

ZCache Replacement

Y

A

K X

L M N E

U

F

B

P

A

G

V

C

D

E

K

Z

T

M

X J

R

H

Q

I

L O S

Y

D

B Z

T X G R

M

P S

E Q F K

31

ZCache Replacement

  Hits always take a single lookup

U

F

B

P

A

G

V

C

D

E

K

Z

T

M

X J

R

H

Q

I

L O S

Y

H1

H2

H3

Y

5

4

0

D

M

Y

0

1

2

3

4

5

6

7

Way 1 Way 2 Way 3

  Replacements do not affect hit latency, are simple to
implement

32

HIT

Methodology
33

  zsim: A fast, 1000-core, microarchitectural x86 simulator

 Fast: Parallel, leverages dynamic binary translation (Pin)

 15-60 Minstrs/s per host core, 600 Minstrs/s on 12-core Xeon

 Scalable: Phase-based sync, simulates thousands of cores

 Validated: Within 10% of Atom and Nehalem systems

 Simple: ~20 KLoC, used in research and courses at Stanford

  Integrate zsim with existing area, energy, and latency
models (McPAT, CACTI)

ZCache Benefits
34

  ZCache = Scalable associativity at low cost
 Cost of 4-way cache

 Associativity > 64-way cache

  8MB shared LLC optimized for area ∙ latency ∙ energy, 32nm:

0

1

2

3

4

5

6

SA
4

SA
32

Z
4/52

La
te

n
cy

 (
n
s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

SA
4

SA
32

Z
4/52

H
it
 E

n
e
rg

y
 (

n
J)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SA
4

SA
32

Z
4/52

P
e
rf

o
rm

a
n
ce

 v
s

S
A

 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SA
4

SA
32

Z
4/52

E
n
e
rg

y
 e

ff
.
v
s

S
A

 4

ZCache Associativity
35

  ZCache associativity depends only on the number of
replacement candidates (R)
  Independent of ways, workload, and replacement policy

  Problems in defining associativity: Cache array +
replacement policy

  Insight 1: With ZCache, replacement candidates are very
close to uniformly distributed over the array

  Insight 2: All policies do the same thing, rank cache lines
  Eviction priority: Rank of a line normalized to [0,1]

  Example: With LRU policy, LRU line has 1.0 priority, MRU has 0.0

ZCache Associativity
36

  Associativity: Probability distribution of eviction priorities of
evicted lines

  ZCache associativity depends only on the number of
replacement candidates (R):

With R=8, 2% of evictions in
60% of least evictable lines

With R=64, only 10-6 of evictions in
80% of least evictable lines

]1,0[,)Pr()(∈=≤= xxxAxF
R

A

ZCache Analytical Models
37

  Analytical models are accurate in practice:

14 workloads, 1024 cores

Theory: 1 in a million
Practice: 1 in 5

Cache Partitioning
38

Shared Cache

Core Core Core Core Core Core Core

Directory

Main Memory

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Core

Private
Cache

Cache Partitioning
39

  Cache partitioning techniques divide cache space explicitly
  Isolation: Virtualize cache among applications, VMs

  Efficiency: Improve performance, fairness

 Configurability: SW-controlled buffers (performance, security)

Core Core Core Core Core Core Core

Directory

Main Memory

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Core

Private
Cache

VM1 VM2 VM3 VM4 VM5 VM6

L2 L2 L2 L2 L2 L2 L2 L2
Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Shared Cache

Cache Partitioning Techniques
40

  Strict partitioning schemes: Based on restricting line placement
  Way partitioning: Restrict insertions to specific ways
  Strict, but supports few partitions and degrades associativity

  Soft partitioning schemes: Based on tweaking the replacement policy
  PIPP: Insert and promote lines in LRU chain depending on their partition

  Simple, but approximate partitioning and degrades replacement performance

Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7 Way 8

Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7 Way 8

Cache Partitioning with Vantage
41

  Previous partitioning techniques have major drawbacks

 Not scalable, support few partitions

 Degrade performance

  Vantage solves deficiencies of previous techniques

 Scalable: Supports hundreds of fine-grain partitions

 Maintains high associativity and strict isolation among
partitions (QoS)

Vantage Design
42

  Vantage partitions most of the cache logically by
modifying the replacement process

 No restrictions on line placement

Managed

region

Unmanaged

region

Vantage Design
43

  Vantage partitions the managed region
  Incoming lines (misses) inserted in partition
  Each partition demotes least wanted lines to unmanaged region
  Evict only from unmanaged region no interference

Insertions

Partition 0
Unmanaged

region
Partition 1

Partition 2

Partition 3

Evictions

Demotions

Controlling Demotions
44

  Always demoting from inserting partition does not scale with
number of partitions

  Instead, maintain sizes by matching demotion rate to miss rate

Access B (partition 0) MISS

Get replacement candidates (16)

5 P1 2 P2 6 P3 3 unmgd

Evict from unmanaged region

Insert new line (in partition 0)

Demote?

No No No No No No No No No No No No

Demoting with Apertures
45

  Aperture: Portion of candidates to demote from each partition

Partition 0 MISS

No No No No No No No No No No Yes No No

Replacement candidates

Over
aperture? Evict

Demote (in top 11% of P3)

Partition 0 Partition 1 Partition 2 Partition 3

23% 15% 5% 11% Apertures

Over
aperture? Evict

Nothing is demoted (all candidates above apertures!)

Over
aperture?

Evict
Demote (in top 23% of P0) Demote (in top 15% of P1)

No Yes No No No No No Yes No No No No

Managing Apertures
46

  Partition apertures can be derived analytically:

  Intuition: Aperture ~ miss rate (Mi)/size (Si)

  Apertures are also capped to Amax

 Higher aperture ↔ lower partition associativity

 Amax ensures high minimum associativity
 e.g., Amax =40% ~ R=16 associativity

 We just let partitions that need Ai > Amax grow

A
i
=

M
i

M
k

k=1

P

∑

S
k

k=1

P

∑
S
i

1

R ⋅m

Bounds on Size and Interference
47

  The worst-case total growth of all partitions over their
target sizes is bounded and small:

  Intuition: A ∆-sized partition is always stable, and multiple
unstable partitions help each other demote

  Independent of the number of partitions!

  Assign an extra ∆ to unmanaged region
 With R=52 and Amax=0.4, ∆=5% of the cache

 Bounded worst-case sizes & interference

RA

11

max

=Δ

A Simple Vantage Controller
48

  Use negative feedback loop to derive apertures

  Use timestamps to determine lines within aperture

  Practical implementation that maintains analytical guarantees

Cache Controller

Partition 0
state (256b)

Partition P-1
state (256b)

…

Data
Array

Tag
Array

256 bits of state per partition

Line Address
Coherence/
Valid Bits

Timestamp
(8b)

Tags: Extra partition ID field

Partition
(6b)

Vantage Replacement Logic
Simple logic, ~10 adders and comparators

Logic not on critical path

~1% extra storage, grows with log(partitions)

Vantage Evaluation
49

  350 mixes on a 32-core CMP with a shared LLC (32 partitions)

  Partitions sized to maximize throughput (utility-based partitioning)

  Each line shows throughput vs unpartitioned 64-way baseline

  Way-partitioning, PIPP degrade throughput for most workloads

Worse than
unpartitioned

Better than
unpartitioned

Vantage Evaluation
50

  Vantage improves throughput for most workloads using a
4-way/52-candidate Zcache

  Other schemes cannot scale beyond a few cores

Worse than
unpartitioned

Better than
unpartitioned

Scaling Directories
51

  Scaling directories is hard:

 Excessive latency, energy, area overheads, or too complex

  Introduce invalidations Interference

Shared Cache

Core Core Core Core Core Core Core

Directory

Main Memory

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Core

Private
Cache

Scalable Coherence Directory
52

  Insights:

 Flexible sharer set encoding: Lines with few sharers use one
entry, widely shared lines use multiple entries Scalability

 Use ZCache Efficient high associativity, analytical models

 Negligible invalidations with minimal overprovisioning (~10%)

  SCD achieves scalability and performance guarantees

 Area, energy grow with log(cores), constant latency

 Simple: No modifications to coherence protocol

 At 1024 cores, SCD is 13x smaller than a sparse directory,
2x smaller, faster and simpler than a hierarchical directory

Scalable Scheduling
53

  Scheduling requirements:
  Expose enough parallelism

  Locality-aware

  Load balancing

  Low overheads

  Bounded memory footprint

  Dynamic vs static schedulers:
  Dynamic: Poor locality, footprint not

bounded if non-trivial dependences

  Static: Great compile-time schedules, but
no load-balancing, only regular apps

Shared Cache

Core
1

Coherence Directory

Main Memory

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Application Tasks

Insight: Leverage Programming Model
54

  Solution: Dynamic fine-grain scheduling techniques that leverage
programming model information to satisfy requirements
  Expose all parallelism through fine-grain tasks

  Locality-aware task queuing and load-balancing

  Bounded footprint

  Make dynamic scheduling practical in rich programming models
(StreamIt, GRAMPS, Delite)

  Significant improvements over state-of-the-art schedulers on
existing 12-core, 24-thread Xeon SMP:
  Up to 17x over dynamic (more parallelism, locality-aware, footprint)

  Up to 5.3x over static (no load imbalance)

  Scheduler choice becomes more critical as we scale up!

Hardware-Accelerated Schedulers
55

  Fine-grain scheduling with 100+ threads is slow in software

 Hardware schedulers (e.g., GPUs): Fast but inflexible

  Insight: Software schedulers dominated by communication

  Solution: Accelerate communication with simple hardware

 ADM: Asynchronous, register-register messages between threads

  Small and scalable costs (~1KB buffers per core), virtualizable

 ADM-accelerated fine-grain schedulers:

  Achieve speed and scalability of HW + flexibility of SW

  At 512 threads, 6.4x faster than SW and 70% faster than HW

 ADM can accelerate other primitives (e.g., barriers, IPC)

Contributions
56

  Scalable cache hierarchies:

 Efficient highly-associative caches [MICRO 10]

 Scalable cache partitioning [ISCA 11, Top Picks 12]

 Scalable coherence directories [HPCA 12]

  Scalable scheduling:

 Efficient dynamic scheduling by leveraging programming
model information [PACT 11]

 Hardware-accelerated scheduling [ASPLOS 10]

Conclusions
57

  Scaling to 1000 cores requires HW and SW techniques:

 Scale hardware with highly efficient caches with scalable
partitioning and coherence

 Scale software with dynamic, fine-grain, HW-accelerated
scheduling

Acknowledgements
58

  Christos

  Research group: Jacob, David, Richard, Christina,
Woongki, Austen, Mike, Hari

  PPL faculty: Kunle, Bill, Mark, Pat, Mendel, John, Alex

  PPL students: George, Jeremy, …

  Defense committee: Bill, Kunle, Nick

  Family & friends
 Borja, Gemma, Idoia, Carlos, Felix, Dani, Manuel, Gonzalo,

Adrian, Christina, George, Yiannis, Sotiria, Alexandros,
Nadine, Martin, Elliot, Nick, Steph, Olivier, Leen, John, Sam,
Mario, Nicole, Cristina, Kshipra, Robert, Erik, …

THANK YOU FOR
YOUR ATTENTION

QUESTIONS?

