
..

SCALABLE AND EFFICIENT
FINE-GRAINED CACHE

PARTITIONING WITH VANTAGE
..

THE VANTAGE CACHE-PARTITIONING TECHNIQUE ENABLES CONFIGURABILITY AND

QUALITY-OF-SERVICE GUARANTEES IN LARGE-SCALE CHIP MULTIPROCESSORS WITH

SHARED CACHES. CACHES CAN HAVE HUNDREDS OF PARTITIONS WITH SIZES SPECIFIED

AT CACHE LINE GRANULARITY, WHILE MAINTAINING HIGH ASSOCIATIVITY AND STRICT

ISOLATION AMONG PARTITIONS.

......Shared caches are pervasive in
chip multiprocessors (CMPs). In particular,
CMPs almost always feature a large, fully
shared last-level cache (LLC) to mitigate
the high latency, high energy, and limited
bandwidth of main memory. A shared LLC
has several advantages over multiple, private
LLCs: it increases cache utilization, acceler-
ates intercore communication (which hap-
pens through the cache instead of main
memory), and reduces the cost of coherence
(because only non-fully-shared caches must
be kept coherent). Unfortunately, these
advantages come at a significant cost. When
multiple applications share the CMP, they
suffer from interference in shared caches.
This causes large performance variations, pre-
cluding quality-of-service (QoS) guarantees,
and can degrade cache utilization, hurting
overall throughput. Interference can cause
performance variations of over 3� in systems
with few cores,1 and is a growing concern due
to the increasing number of cores per chip
and the emergence of cloud computing.

We can eliminate interference by using
cache partitioning to divide the cache explicitly

among competing workloads. A cache-
partitioning solution has two components:
an allocation policy that decides each parti-
tion’s size to achieve a specific objective
(maximizing throughput, improving fairness,
meeting QoS requirements, and so on), and
a partitioning scheme that enforces those
sizes. Although allocation policies are gener-
ally simple and efficient,1-3 current partition-
ing schemes have serious drawbacks. In this
work, we focus on the partitioning scheme.

Ideally, a partitioning scheme should sat-
isfy several desirable properties. First, it
should be scalable and fine-grained, capable
of maintaining many fine-grained partitions
(for instance, hundreds of partitions of tens
or hundreds of lines each). Second, it should
maintain strict isolation among partitions,
with no reduction of cache performance
(that is, without hurting associativity or re-
placement policy performance). Third, it
should be dynamic, allowing quick creation,
deletion, and resizing of partitions. Finally, it
should be simple to implement.

Unfortunately, prior partitioning schemes
fail to meet these properties. Several schemes

mmi2012030026.3d 15/5/012 10:27 Page 26

Daniel Sanchez

Christos Kozyrakis

Stanford University

..

26 Published by the IEEE Computer Society 0272-1732/12/$31.00 �c 2012 IEEE

partition the cache strictly by restricting line
placement. For example, way partitioning
assigns a subset of the ways to each partition.
However, these schemes are limited to few
coarse-grained partitions, and partitioning
often hurts performance (for instance, by
degrading associativity). Other schemes
modify the replacement policy to provide
some control over partition sizes, but this
partitioning is approximate and often
hurts replacement policy performance.

Most importantly, current partitioning
schemes aren’t scalable or fine-grained (for
more information, see the ‘‘Related Work
on Cache Partitioning’’ sidebar). Shared
LLCs are already used in commercial large-
scale CMPs with hundreds of threads and
cores,4,5 and are included in thousand-core
research prototypes,6 thus stressing the need
for scalable partitioning.

In our paper presented at the 38th An-
nual International Symposium on Computer

[3B2-9] mmi2012030026.3d 16/5/012 16:47 Page 27

..

Related Work on Cache Partitioning

Partitioning requires an allocation policy to decide the number and

size of partitions, and a partitioning scheme to enforce them. This article

focuses on the latter. There are generally two approaches for partitioning

a cache: strict partitioning by restricting line placement and soft parti-

tioning by controlling the insertion and/or replacement policies.

Strict partitioning
Schemes with strict guarantees rely on restricting the locations where

a line can reside depending on its partition. Way partitioning divides the

cache by ways, restricting insertions from each partition to its assigned

subset of ways.1 This scheme is simple but has several problems: par-

titions are coarsely sized (in multiples of way size), and partition asso-

ciativity is proportional to way count, sacrificing performance for

isolation. Way partitioning needs significantly more ways than partitions

to work well, so it is not scalable.

To avoid losing associativity, reconfigurable caches2 and molecular

caches3 partition the cache by sets instead of ways. However, these

approaches require significant changes to cache arrays, and they must

flush or move data when resizing partitions. Most importantly, they

only work with fully disjoint address spaces, which are not common

in chip multiprocessors (CMPs), because even processes with separate

address spaces share library and operating system code and data.

Finally, virtual memory and page coloring can constrain the physical

pages of a process to map to specific cache sets.4 Although this scheme

doesn’t require hardware support, it is limited to coarse-grained partitions,

it is incompatible with superpages and caches indexed using hashing

(common in modern processors), and repartitioning requires costly recol-

oring (copying) of physical pages and thus must be done infrequently.4

Soft partitioning
Other schemes partition a cache approximately by modifying the in-

sertion or replacement policies. These schemes avoid some of the issues

of restricting line placement, but they provide limited control over parti-

tion sizes and interference. They’re useful when approximate partitioning

is sufficient, but not when strict guarantees are required.

In decay-based replacement policies, lines from different partitions

age at different rates; adjusting these rates provides some control

over partition sizes.5 Promotion-insertion pseudo-partitioning (PIPP)

assigns each partition a different insertion position in the least recently

used (LRU) chain and slowly promotes lines on hits (for example, promot-

ing one position per hit rather than moving the line to the head of the

LRU chain).6 With an additional mechanism to restrict pollution of thrash-

ing applications, PIPP approximately attains the desired partition sizes.

PIPP is co-designed to work with utility-based cache partitioning as

the allocation policy and, due to the limited size of LRU chains, is not

scalable.

References

1. D. Chiou et al., ‘‘Application-Specific Memory Management

for Embedded Systems Using Software-Controlled Caches,’’

Proc. 37th Design Automation Conf. (DAC 00), ACM Press,

2000, pp. 416-419.

2. P. Ranganathan, S. Adve, and N.P. Jouppi, ‘‘Reconfigurable

Caches and Their Application to Media Processing,’’ Proc.

27th Ann. Int’l Symp. Computer Architecture (ISCA 00),

ACM, 2000, pp. 214-224.

3. K. Varadarajan et al., ‘‘Molecular Caches: A Caching Struc-

ture for Dynamic Creation of Application-Specific Heteroge-

neous Cache Regions,’’ Proc. 39th Ann. IEEE/ACM Int’l

Symp. Microarchitecture, IEEE CS, 2006, pp. 433-442.

4. J. Lin et al., ‘‘Gaining Insights into Multicore Cache Partitioning:

Bridging the Gap between Simulation and Real Systems,’’

Proc. 14th Int’l Symp. High-Performance Computer Architec-

ture (HPCA 08), IEEE CS, 2008, pp. 367-378.

5. C.-J. Wu and M. Martonosi, ‘‘A Comparison of Capacity Man-

agement Schemes for Shared CMP Caches,’’ Proc. 7th Ann.

Workshop Duplicating, Deconstructing, and Debunking

(WDDD 08), IEEE CS, 2008; http://www.princeton.edu/

~carolewu/WDDD08-CJW.pdf.

6. Y. Xie and G.H. Loh, ‘‘PIPP: Promotion/Insertion Pseudo-

partitioning of Multi-core Shared Caches,’’ Proc. 36th Ann.

Int’l Symp. Computer Architecture (ISCA 09), ACM, 2009,

pp. 174-183.

..

MAY/JUNE 2012 27

Architecture (ISCA 2011),7 we introduced
Vantage, a partitioning scheme that over-
comes the drawbacks of prior techniques.
Vantage can maintain hundreds of partitions
defined at cache line granularity, provides
strict isolation among partitions, maintains
high cache performance, and is simple to im-
plement, working with conventional cache
arrays and requiring minimal overhead. Un-
like other techniques, Vantage is designed
and fully characterized by accurate analytical
models. Vantage doesn’t physically restrict
line placement, side-stepping the problems
of previous strict partitioning techniques,
and it leverages its analytical models to pro-
vide strict guarantees on partition sizes and
interference independently of workload be-
havior. Thanks to these features, Vantage
enables performance isolation and QoS in
current and future large-scale CMPs, and
can be used for several other purposes, such
as cache-pinning critical data or implement-
ing flexible local stores through application-
controlled partitions.

Vantage overview
Vantage achieves its strict analytical guar-

antees by using caches with high associativity
and good hashing, such as skew-associative
caches8 and zcaches.9 These caches remove
the influence of the workload’s access pattern
from cache performance, and can be charac-
terized accurately via workload-independent
analytical models. These caches have a sur-
prising property: they can avoid evictions to
a large subset of the lines with very high
probability. For example, we can select an
arbitrary 90 percent of cache lines, and
constrain practically all evictions to the
remaining 10 percent. Vantage exploits this
property by reserving a small portion of the
cache, called the unmanaged region, leaving
it unpartitioned, and partitioning the remain-
ing portion (for example, 90 percent), which
is effectively pinned to the cache. So that the
unmanaged region’s size can be maintained,
lines are first inserted into their partition,
eventually demoted to the unmanaged region,
and evicted from there. The unmanaged re-
gion is still used, acting as a victim cache
for the partitions, but it isn’t partitioned.

Vantage controls partition sizes in a scal-
able fashion. On each miss, Vantage evicts

one of the replacement candidates from the
unmanaged region and inserts the incoming
line into its partition. Additionally, to keep
partition sizes constant, Vantage would
need to perform a demotion from the same
partition as the incoming line. However,
this approach is not scalable: with many par-
titions (for instance, 100 partitions and 64
candidates), the current set of candidates
most likely doesn’t have a line from the
inserting partition. Nevertheless, the set of
replacement candidates often includes good
candidates from other partitions (that is,
lines that the owning partition would have
to demote anyway). To be scalable, Vantage
relaxes this restriction. It allows partitions to
grow slightly over their target sizes (bor-
rowing space from the unmanaged region,
not from one another), and controls sizes
by matching the rate at which it demotes
lines from each partition to match that parti-
tion’s insertion rate. Using analytical models,
we show that this approach controls partition
sizes accurately and maintains high associa-
tivity in all cases.

Finally, the analytical models use several
metrics that are expensive to compute in
practice. To simplify the design, we use neg-
ative feedback to derive these quantities
cheaply and implicitly, achieving an imple-
mentation with minimal overhead that main-
tains analytical guarantees.

Vantage techniques
Vantage addresses the drawbacks of prior

techniques by leveraging efficient highly as-
sociative caches that provide analytical guar-
antees, dividing the cache into a managed
and an unmanaged region, and logically par-
titioning the managed region through churn-
based management.

Efficient highly associative caches
Vantage achieves strict analytical guaran-

tees with highly associative caches, such
as skew-associative caches8 and zcaches.9

Skew-associative caches index each way
with a different hash function, spreading
out conflicts. Zcaches enhance skew associa-
tivity with a replacement process that obtains
an arbitrarily large number of candidates
with only a few ways. We focus on zcaches
because they achieve high associativity far

mmi2012030026.3d 15/5/012 10:27 Page 28

..

28 IEEE MICRO

...

TOP PICKS

more cheaply (for example, 64-way associa-
tivity with the area, latency, and hit energy
of a 4-way cache, and miss energy similar
to a 64-way cache).

Zcaches provide high associativity by
increasing the number of replacement candi-
dates, but they keep the number of positions
where a block can be located as low as the
number of ways. To evaluate this approach,
we developed a framework to compare asso-
ciativity across cache designs independently
of the replacement policy.9 We realize that,
conceptually, all replacement policies simply
rank lines globally by how much they would
like to evict them. By convention, we express
this rank through a uniformly distributed
number in the range [0, 1], the eviction pri-
ority e. For example, with a least recently
used (LRU) policy, the most recently used
line in the entire cache would have an evic-
tion priority of e ¼ 0.0, the least recently
used line would have e ¼ 1.0, and every
other line in the cache would be somewhere
in between. On each miss, the cache array
retrieves a given number of replacement can-
didates and evicts the one with the highest
eviction priority. We then characterize asso-
ciativity as a probability distribution: the dis-
tribution of the eviction priorities of evicted
lines. Intuitively, the higher the associativity,
the higher these eviction priorities are, and
the more skewed the distribution is toward
1.0. This model decouples replacement pol-
icy performance from cache associativity, let-
ting us study associativity in isolation.

In zcaches, the set of replacement candi-
dates examined on every eviction is statisti-
cally very close to a uniform random
selection of lines, independent of the work-
load’s access pattern or the replacement
policy.9 Hence, their associativity distribu-
tion can be derived analytically. If the array
gives R uniformly distributed replacement
candidates, its cumulative distribution func-
tion (CDF) is9

FA(x) ¼ Prob(A � x) ¼ xR, x 2 [0, 1]

Figure 1 plots this distribution for differ-
ent values of R. Note that associativity
depends on the number of replacement can-
didates, not the number of ways. Moreover,
Figure 1 shows that the probability of evict-
ing lines with low eviction priority quickly

becomes negligible. For example, with
R ¼ 64, the probability of evicting a line
with e < 0.8 is FA(0.8) ¼ 10�6. Hence, by
controlling how lines are ranked, we can
guarantee that they won’t be evicted with
very high probability. This doesn’t apply to
set-associative caches, which perform signifi-
cantly worse.9

We used the analytical guarantees of
zcaches to design Vantage. We can also use
Vantage with set-associative arrays, with
some performance degradation and no analyt-
ical guarantees.7 Zcaches, like skew-associative
caches, have no sets, so they cannot use re-
placement policies that rely on set ordering.
Nevertheless, most replacement policies can
be implemented efficiently. For example,
an LRU policy could be implemented with
8-bit coarse-grained time stamps.9 To keep
Vantage independent of the replacement pol-
icy, we design it assuming that we know
every candidate’s eviction priority. Although
tracking eviction priorities would be expen-
sive in practice, we will show that it is unnec-
essary if we adapt Vantage to the specific
replacement policy used.

Managed-unmanaged region division
Vantage divides the cache into two logical

regions—a managed region and an unman-
aged region—by simply tagging each line
as either managed or unmanaged. On an

mmi2012030026.3d 15/5/012 10:27 Page 29

0 0.2 0.4 0.6 0.8 1.0

Eviction priority

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

A
s
s
o
c
ia

ti
v
it
y

C
D

F

R = 8
R = 16
R = 32
R = 64

Figure 1. Associativity cumulative distribu-

tion function (CDF) (FA(x) ¼ xR, x 2 [0, 1])

for R ¼ 8, 16, 32, and 64 uniformly

distributed replacement candidates, in a

semilogarithmic scale. With a large number

of candidates, the probability of evicting

lines with a low eviction priority quickly

becomes negligible.

..

MAY/JUNE 2012 29

eviction, Vantage always prioritizes unman-
aged lines for eviction over managed lines.
The unmanaged region is sized to capture
most evictions, making evictions in the man-
aged region negligible. Vantage maintains re-
gion sizes by controlling the flow of lines
between both regions.

Figure 2a illustrates this setup. It shows
the associativity distribution of a cache with
R¼ 16 candidates, divided into the managed
and unmanaged regions, and the flow of lines
between the two. To make evictions in the
managed region negligible (. 10�3 probabil-
ity), the unmanaged region is sized to 30 per-
cent of the cache. Caches with R > 16
require a smaller unmanaged region. In-
coming lines are inserted into the managed
region, eventually demoted to the unman-
aged region, and either evicted from there
or promoted if they get a hit. Promotions
and demotions don’t move the line; they
just change its tag. The unmanaged region
acts as a victim cache for the managed re-
gion. Evicting a line requires that it be
demoted first (except for the rare case
when all candidates come from the man-
aged region).

In the rest of the discussion, we ignore the
flow of promotions to simplify the analysis.
Promotions are rare compared to evictions,
so we treat them as a small modeling error,
and we address this error when implement-
ing the controller. Thus, we can perform
demotions at replacement time only—that
is, together with evictions.

To keep the sizes of both regions con-
stant, Vantage would have to demote one
line on each replacement. However, to
maintain region sizes under control, it suffi-
ces to demote one candidate per eviction
on average. For example, some evictions
might not yield any high-priority candidates
from the managed region, whereas others
might find two or more. To implement
this scheme, Vantage selects a threshold
value, which we call aperture (A), and
demotes every candidate over that thresh-
old. For example, if A ¼ 0.05, Vantage
demotes every candidate that is in the top
5 percent of eviction priorities (e � 1� A ¼
0.95). We denote the fractional sizes of
the managed and unmanaged regions as m
and u (for example, in Figure 2a, m ¼ 0.7
and u ¼ 0.3). On average, R � m of the can-
didates are from the managed region, so
maintaining the sizes requires an aperture
of A ¼ 1

R �m.
We can derive the associativity distribu-

tion for demotions much like we derive the
associativity distribution for evictions (see
the full paper for the derivations7). Figure 2
shows the distribution for demotions, both
when one candidate is always demoted per
eviction (Figure 2b) and when one candi-
date is demoted on average (Figure 2c).
Demoting one candidate on average signifi-
cantly improves associativity. For example,
with R ¼ 16 candidates, only lines with evic-
tion priority e > 0.9 are demoted. Mean-
while, when always demoting one line per

mmi2012030026.3d 15/5/012 10:27 Page 30

Eviction priority

(a) (b) (c)

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

A
s
s
o
c
ia

ti
v
it
y
 C

D
F

Insertions Evictions

Demotions

Promotions

Managed
region

Unmanaged
region

0 0.2 0.4 0.6 0.8 1.0

Demotion priority
(in managed region)

0

0.2

0.4

0.6

0.8

1.0

A
s
s
o
c
ia

ti
v
it
y
 C

D
F R = 16

R = 32
R = 64

0 0.2 0.4 0.6 0.8 1.0

Demotion priority
(in managed region)

0

0.2

0.4

0.6

0.8

1.0

A
s
s
o
c
ia

ti
v
it
y
 C

D
F R = 16

R = 32
R = 64

Figure 2. Managed-unmanaged region division (assuming 30 percent of the cache is unmanaged): managed-unmanaged

region division for a cache with R = 16 replacement candidates, and flows between regions (a); associativity CDF in the

managed region when doing exactly one demotion per eviction (b); and associativity CDF in the managed region when

doing one demotion per eviction on average (c).

..

30 IEEE MICRO

...

TOP PICKS

eviction, 60 percent of the demotions occur
to lines with e < 0.9.

Churn-based management
Vantage logically partitions the managed

region. We have P partitions of target sizes
T1, ..., TP , so that

PP
i¼1 Ti ¼ m (that is,

partition sizes are expressed as a fraction of
total cache size). The allocation policy (for
example, utility-based partitioning) sets
these target sizes. Partitions have actual
sizes S1, ..., SP , and insertion rates, which
we call churns, C1, ..., CP (a partition’s
churn is measured in insertions per unit of
time).

Churn-based management keeps each par-
tition’s actual size close to its target by
matching its demotion rate with its churn.
Rather than having one aperture for the
managed region, there is one aperture per
partition, Ai. On each replacement, all the
candidates below their partitions’ apertures
are demoted. Unlike way partitioning,
which achieves isolation by always evicting
a line from the inserting partition, Vantage
allows a partition’s incoming line to demote
other partitions’ lines.

Apertures depend on the sizes and churns
of all partitions. Intuitively, a partition with
an above-average churn needs a larger aper-
ture, because its lines must be demoted at a
higher frequency; a partition with a below-
average size also needs a larger aperture, be-
cause replacement candidates from that par-
tition will be found more rarely. In general,
out of the R � m candidates per demotion
that fall into the managed region, a fraction,

SiPP

k¼1
Sk

, are from partition i, and we need to

demote its lines at a fractional rate of
CiPP

k¼1
Ck

. Therefore,

Ai ¼
Ci

PP
k¼1 Ck

PP
k¼1 Sk

Si

1

R � m ð1Þ

If a partition has a large Ci/Si ratio (for
example, a one-line partition with very fre-
quent misses), adjusting its aperture might
not be enough to maintain its size, even if
we are willing to sacrifice associativity by
setting the aperture to 1.0 (demoting every
candidate from this partition). Because

completely sacrificing associativity is undesir-
able, we set a maximum aperture Amax (for
instance, Amax ¼ 0.4 yields an associativity
similar to a 16-candidate cache). If a parti-
tion requires Ai > Amax, we set Ai ¼ Amax

and let it grow over its target. At first glance,
this could lead to borrowing too much space
from the unmanaged region, making it too
small and leading to frequent forced evic-
tions from the managed region. However,
using analytical models, we find that the
maximum amount of space that all partitions
can borrow from the unmanaged region is

1
AmaxR of the cache (see the full paper for the
derivation7).

Intuitively, this happens for two reasons.
First, a partition with aperture Amax never
grows beyond 1

AmaxR , even in the worst case
(that is, if all misses come from this parti-
tion). Second, when multiple partitions
need Ai > Amax, they help one another de-
mote lines, so the sum of the growths over
their targets never exceeds 1

AmaxR . This quan-
tity is small and independent of the number
of partitions. Therefore, sizing the unman-
aged region with an extra 1

AmaxR guarantees
negligible managed-region evictions, even
in the worst case. For example, if the cache
has R ¼ 52 candidates, with Amax ¼ 0.4,
we need to assign an extra 1

0:4� 52 ¼ 4.8 per-
cent to the unmanaged region.

Vantage cache controller
In theory, we could implement Vantage

using the previous analysis alone. However,
three reasons make this impractical. First,
obtaining the apertures using Equation 1 is
too computationally intensive and requires
estimating the churns. Second, our analysis
makes two approximations: replacement can-
didates are not exactly independent and uni-
formly distributed (although they are close9),
and we have ignored promotions, which
have no matching demotion. Without cor-
rection, these modeling errors would cause
partition sizes to slowly drift away from
their targets. Third, although eviction prior-
ities are a useful conceptual tool, tracking
them would be expensive.

We address these issues with two tech-
niques. First, feedback-based aperture control
enables a simple and robust controller that
finds apertures implicitly using negative

mmi2012030026.3d 15/5/012 10:27 Page 31

..

MAY/JUNE 2012 31

feedback instead of calculating them explic-
itly. Second, setpoint-based demotions lets us
demote the lines below the aperture without
knowing their eviction priorities. Using these
techniques, we design a controller with min-
imal overhead and complexity that still
maintains analytical guarantees.

Feedback-based aperture control
We can derive apertures cheaply and

implicitly using negative feedback. We let
partitions slightly outgrow their target sizes,
borrowing space from the unmanaged re-
gion, and we adjust their apertures according
to how much they outgrow them. Specifi-
cally, we derive each aperture Ai as a linear
transfer function of actual size Si , shown in
Figure 3a. Partitions below their target Ti

have a zero aperture. Over Ti , the aperture
increases linearly, until Si reaches (1þ slack)Ti,
at which point Amax is used.

This is a classic application of negative
feedback: an increase in size causes a larger

aperture, attenuating the size increase. The
slack parameter modulates the feedback
loop: a larger slack reduces the effect of in-
stantaneous size variations, causing more
stable apertures, but requires a larger unman-
aged region, as partitions outgrow their tar-
get sizes further. Using analytical models,
we find that partitions borrow an additional
slack

AmaxR fraction of the cache from the unman-
aged region. This is fairly small; for example,
with R ¼ 52, slack ¼ 0.1, and Amax ¼ 0.4,
this fraction is 0.48 percent of the cache.

Setpoint-based demotions
Using setpoint-based demotions lets us

demote the lines below the aperture without
tracking eviction priorities. This requires tak-
ing the replacement policy into account.
Here, we describe the implementation of set-
point-based demotions for an LRU policy,
but the scheme is extensible to other policies,
such as least frequently used (LFU) and
re-reference interval prediction (RRIP).7

mmi2012030026.3d 15/5/012 10:27 Page 32

Amax

A
p

e
rt

u
re

, A
i

A
p

e
rt

u
re

, A
i

Ti (1+slack) Ti

Actual size, Si

Actual size, Si

(a) (b)

(c)

P
a
rt

it
io

n
 l
in

e
s
 d

is
tr

ib
u
ti
o
n

Time stamp 2550

Setpoint TS

KeepDemote Demote

Current TS

0.5

1,000 1,100

Si range
(lines)

Demotions per
256 candidates

321,000–1,033

1,034–1,066 64

96

128

1,067–1,100

1,101+

Figure 3. Feedback-based aperture control and setpoint-based demotions: linear transfer

function used in feedback-based aperture control (a); setpoint-based demotions, in which

candidates are selected below the setpoint (in modulo arithmetic) (b); and four-entry demotion

thresholds lookup table for 1,000-line partition with 10 percent slack (c). (TS: time stamp.)

..

32 IEEE MICRO

...

TOP PICKS

The per-partition replacement policy imple-
ments an LRU policy using coarse-grained
time stamps.9 Each partition has a current
time stamp counter that is incremented
every ki accesses, and accessed lines are
tagged with the current time stamp value.
We choose 8-bit time stamps with ki ¼
1/16 of the partition size, making wrap-
arounds rare.

To perform demotions, we choose a setpoint
time stamp, and all candidates below it (in
modulo 256 arithmetic) are demoted if the
partition exceeds its target size, as Figure 3b
shows. Vantage adjusts the setpoint by count-
ing both the candidates seen (CandsSeen)
and demoted (CandsDemoted) for each
partition. When the controller has seen a rea-
sonably large number of candidates from a
partition, it adjusts the setpoint to keep
that CandsDemoted/CandsSeen ratio
as close to the aperture as possible. There-
fore, the setpoint is increased if the ratio is
over the aperture (covering fewer lines),
and decreased if below. Both counters are
then reset. In our experiments, we’ve found
that performing this procedure every 256

candidates seen works well. Additionally,
we increase the setpoint every time the cur-
rent time stamp is increased (that is, every
ki accesses), so the distance between both
counters remains constant.

Finally, we can completely avoid comput-
ing apertures, simplifying the implementa-
tion even further. We use a small eight-
entry demotion thresholds lookup table
that stores the CandsDemoted thresholds
for different size ranges. Figure 3c shows a
concrete example for a partition with Ti ¼
1,000 lines and slack ¼ 10 percent. For ex-
ample, when 256 candidates from this parti-
tion have been seen, if its size is anywhere
between 1,034 and 1,066 lines, and more
or less than 64 candidates have been
demoted, the setpoint is incremented or
decremented, respectively. This per-partition
table is filled at resize time, and is used every
256 candidates seen.

Putting it all together
With these techniques, Vantage can be

implemented with minimal state and logic
overheads. Figure 4 shows the state required.

mmi2012030026.3d 15/5/012 10:27 Page 33

Tag fields

Per-partition state

Implement coarse-grained LRU policy
Used on accesses

Implement setpoint-based demotions
Used on replacements

8-entry demotion thresholds lookup table
Used to adjust SetpointTS (sparingly)

ThrSize0 (16 bits)

ThrSize7 (16 bits)

ThrDems0 (8 bits)

.
.
.

. . .

ThrDems7 (8 bits)

CurrentTS (8 bits)

AccessCounter (16 bits)

ActualSize (16 bits)

TargetSize (16 bits)

SetpointTS (8 bits)

CandsSeen (8 bits)

CandsDemoted (8 bits)

Partition
(6 bits)

Coherence,
valid bits

Time stamp
(8 bits)

Line address

Tag
array

Data
array

Vantage controller

Partition 0

state (256 bits)
Partition 31

state (256 bits)

Figure 4. State required to implement Vantage, including tag fields and per-partition registers. Additional state over an

unpartitioned baseline is shown in shaded boxes. Each field or register shows its size in bits.

..

MAY/JUNE 2012 33

Each line must be tagged with its partition
ID, adding a few bits per tag. Additionally,
Vantage must maintain a few per-partition
registers to implement the replacement policy
and setpoint-based demotions. These registers
require about 256 bits per partition. Dividing
the 8-Mbyte, four-bank LLC that we evaluate
in 32 partitions requires 96 Kbytes for the
per-tag ID, and 4 Kbytes for the per-partition
state, a 1.1 percent overhead.

Logic overhead in Vantage is also mini-
mal. The algorithm requires counter updates
and comparisons on either 8- or 16-bit regis-
ters, so a few narrow adders and comparators
suffice to implement it. Vantage runs on
misses, so hits are unaffected, and its logic
is off the critical path.

Comparison of partitioning schemes
We simulate four- and 32-core CMPs

with private L1 caches and a shared L2
cache. We compare Vantage, way partition-
ing,10 and promotion-insertion pseudo-
partitioning (PIPP),11 with utility-based
cache partitioning2 (UCP) as the partitioning
policy. UCP allocates more space to the cores

that can use it better, with the goal of max-
imizing system throughput. Therefore, we
use throughput as our evaluation metric.
We use 350 multiprogrammed mixes of
four and 32 applications each, using SPEC
CPU2006 benchmarks. The complete de-
scription of our methodology is available in
the full paper.7

Small-scale configuration
Figure 5 compares performance across the

350 workload mixes on the four-core system.
Each line shows the throughput (

P
IPCi) of

a different scheme, normalized to a 16-way
set-associative cache using an LRU policy.
For each line, workloads (x-axis) are sorted
by the improvement achieved. Way parti-
tioning and PIPP use a hashed 16-way set-
associative cache, whereas Vantage uses a
4-way zcache with 52 replacement candidates
(Z4/52), with a u ¼ 5 percent unmanaged
region, Amax ¼ 0.5, and slack ¼ 0.1.

Figure 5 shows that, although way parti-
tioning and PIPP can improve throughput,
they also degrade it, often significantly, for
about 45 percent of the workloads. These
workloads already share the cache efficiently
with the LRU policy, and partitioning
hurts performance by decreasing associativ-
ity. When using a 64-way set-associative
cache instead (not shown), this degradation
practically disappears. Vantage uses a more
associative (but cheaper) zcache, which al-
ready improves throughput for most work-
loads, as Figure 5 shows. However, most of
the throughput improvements come from
Vantage, which achieves a 6.2 percent geo-
metric mean and up to 40 percent speedups,
and improves performance for practically
all workloads because it maintains high
associativity.

Large-scale configuration
Figure 6 shows the throughput improve-

ments of different partitioning schemes for
the 32-core system in the same fashion as
Figure 5. The baseline, way partitioning,
and PIPP schemes use a 64-way cache,
whereas Vantage uses the same Z4/52 zcache
and configuration as in the four-core experi-
ments. Results showcase Vantage’s scalabil-
ity. Whereas way partitioning and PIPP
degrade performance for most workloads,

mmi2012030026.3d 15/5/012 10:27 Page 34

0 50 100 150 200 250 300 350

Workload mix

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

T
h
ro

u
g

h
p

u
t
v
s
.
u
n
p

a
rt

it
io

n
e
d

 1
6
-w

a
y
 S

A

Way partitioning on 16-way SA

PIPP on 16-way SA

Unpartitioned Z4/52

Vantage on Z4/52

Figure 5. Throughput improvements over an unpartitioned 16-way set-

associative (SA) Level-2 (L2) cache with a least recently used (LRU) policy,

on the four-core configuration. Whereas way partitioning and promotion-

insertion pseudo-partitioning (PIPP) often degrade throughput, Vantage

improves throughput significantly for practically all workloads using a

4-way zcache with 52 replacement candidates (Z4/52).

..

34 IEEE MICRO

...

TOP PICKS

even with their barely implementable 64-
way caches, Vantage still provides significant
improvements on most workloads (an 8.0
percent geometric mean and up to 20 per-
cent) with the same 4-way cache as in the
four-core system. (For more details regarding
why Vantage outperforms previous parti-
tioning schemes, see the ‘‘Partition Sizes
and Associativity’’ sidebar.)

W e have presented Vantage, a cache-
partitioning scheme that addresses

the drawbacks of prior techniques. Vantage
addresses the scalability issues of other
techniques, where implementing more than
a few partitions significantly degrades per-
formance. With 100-core CMPs that share
an LLC already on the market, Vantage
addresses a fundamental problem. Vantage’s
analytically driven design methodology is
also worth noting. Architects typically rely
on empirical observation and intuition to
optimize the common-case behavior. Analy-
tical models are derived a posteriori, if ever,
and are often approximate. Instead, we begin
with a component that is accurately char-
acterized by analytical models (zcache) and
use them to drive the design. This leads to a
solution that is fully characterized by
analytical models, so it not only performs
better in the common case but also can make
strict guarantees in all scenarios, which is
crucial to providing performance isolation.
We hope that the design methodology and
insights of Vantage inspire architects to
design future systems that can provide strict
QoS, system-level isolation, predictability,
and efficient use of resources. MICR O

Acknowledgments
We thank Woongki Baek, Asaf Cidon,

Christina Delimitrou, Jacob Leverich, David
Lo, Tomer London, and the anonymous
reviewers for their useful feedback. Daniel
Sanchez was supported by a Hewlett-Packard
Stanford School of Engineering fellowship.

..
References

1. L.R. Hsu et al., ‘‘Communist, Utilitarian,

and Capitalist Cache Policies on CMPs:

Caches as a Shared Resource,’’ Proc.

15th Int’l Conf. Parallel Architectures and

Compilation Techniques (PACT 06), ACM,

2006, pp. 13-22.

2. M.K. Qureshi and Y.N. Patt, ‘‘Utility-Based

Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Parti-

tion Shared Caches,’’ Proc. 39th Ann.

IEEE/ACM Int’l Symp. Microarchitecture,

IEEE CS, 2006, pp. 423-432.

3. G.E. Suh, S. Devadas, and L. Rudolph, ‘‘A

New Memory Monitoring Scheme for Mem-

ory-Aware Scheduling and Partitioning,’’

Proc. 8th Int’l Symp. High-Performance

Computer Architecture (HPCA 08), IEEE

CS, 2002, pp. 117-128.

4. J.L. Shin et al., ‘‘A 40nm 16-Core 128-

Thread CMT SPARC SoC Processor,’’

Proc. IEEE Int’l Solid-State Circuits Conf.

(ISSCC 10), IEEE Press, pp. 98-99.

5. ‘‘TILE-Gx 3000 Series Overview,’’ Tilera,

2011; http://www.tilera.com/sites/default/

files/productbriefs/TILE-Gx%203000%

20Series%20Brief.pdf.

6. J.H. Kelm et al., ‘‘Rigel: An Architecture and

Scalable Programming Interface for a 1000-

Core Accelerator,’’ Proc. 36th Ann. Int’l

Symp. Computer Architecture (ISCA 09),

ACM, 2009, pp. 140-151.

mmi2012030026.3d 15/5/012 10:27 Page 35

0 50 100 150 200 250 300 350

Workload mix

0.8

0.9

1.0

1.1

1.2

1.3

T
h
ro

u
g

h
p

u
t
v
s
.
u
n
p

a
rt

it
io

n
e
d

 6
4
-w

a
y
 S

A

Way partitioning on 16-way SA

PIPP on 16-way SA

Unpartitioned Z4/52

Vantage on Z4/52

Figure 6. Throughput improvements over an unpartitioned 64-way set-

associative L2 with an LRU policy, on the 32-core configuration. Way

partitioning and PIPP degrade throughput for most workloads, despite the

higher associativity, whereas Vantage improves performance using the

same associativity as in the four-core system.

..

MAY/JUNE 2012 35

mmi2012030026.3d 15/5/012 10:27 Page 36

...

Partition Sizes and Associativity

For each partitioning scheme that we compared, Figure A shows the

target and actual partition sizes as a function of time for a specific parti-

tion and execution in the four-core system. We can make several obser-

vations. First, Vantage works with fine-grained allocations, whereas way

partitioning and promotion-insertion pseudo-partitioning (PIPP) work with

coarse-grained allocations (one way, 2,048 lines). Second, way partitioning

and Vantage closely track target size, whereas PIPP only approximates it.

Third, way partitioning has far longer transients: when target allocations

change, reaching the new allocations can take a long time (100 Mcycles).

This happens because the new owner of the reallocated ways must access

all their sets and evict the previous owner’s lines. In contrast, Vantage has

far faster transients, because it works on global, not per-set, allocations.

Finally, in Vantage, utility-based cache partitioning (UCP) sometimes gives

a very small target allocation (128 lines). Vantage can’t keep the partition

that small, so it grows to its minimum stable size, which hovers at around

400 to 700 lines. In this cache, the worst-case minimum stable size is
1

AmaxR ¼ 1
0:5� 52 ¼ 3.8 percent (1,260 lines), but replacements caused

by other partitions help keep this partition smaller.

Figure B shows the time-varying behavior of the associativity distribu-

tions on way partitioning and Vantage using heat maps. For each million

cycles, we plot the empirical associativity cumulative distribution func-

tions (CDFs)—that is, the fraction of evictions or demotions that happen

to lines below a given eviction or demotion priority. Vantage achieves far

higher associativity than way partitioning. With a large allocation (seven

ways at 200 to 400 Mcycles), way partitioning achieves acceptable asso-

ciativity. However, when given one way, evictions have almost uniformly

distributed priorities in [0, 1], and even worse at times (for instance, 700

to 800 Mcycles). In contrast, Vantage maintains very high associativity

with a large allocation (at 200 to 400 Mcycles, the aperture hovers around

3 percent) because the churn/size ratio is low. Even when given a minimal

allocation, demoted lines are uniformly distributed in [0.5, 1] by virtue of

the maximum aperture, giving an acceptable worst-case associativity.

Figure A. Comparison of way partitioning (a), Vantage (b),

and promotion-insertion pseudo-partitioning (PIPP) (c) for a

specific partition in a four-core mix. Plots show target parti-

tion size (as set by utility-based cache partitioning) and

actual size for the three schemes.

Figure B. Heat maps of the measured associativity cumula-

tive distribution function on the partition from Figure A for

way partitioning (a) and Vantage (b). For a given point in

time (x-axis), the higher in the y-axis that the heat map

starts becoming darker, the more skewed the demotion or

eviction priorities are toward 1.0, and the higher the asso-

ciativity is.

0 200 400 600 800 1,000 1,200 1,400 1,600

Time (Mcycles)(a)

(b)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

S
iz

e
 (

c
a

c
h

e
 l
in

e
s
)

0 200 400 600 800 1,000 1,200 1,400

Time (Mcycles)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

S
iz

e
 (

c
a

c
h

e
 l
in

e
s
)

Actual
Target

(c)

0 500 1,000 1,500

Time (Mcycles)

0

5,000

10,000

15,000

20,000

S
iz

e
 (

c
a

c
h

e
 l
in

e
s
)

Actual
Target

Actual
Target

(a)

(b)

0 200 400 600 800 1,000 1,200 1,400 1,600

Time (Mcycles)

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

E
v
ic

ti
o

n
 p

ri
o

ri
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
s
s
o

c
ia

ti
v
it
y
 C

D
F

0 200 400 600 800 1,000 1,200 1,400

Time (Mcycles)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
s
s
o

c
ia

ti
v
it
y
 C

D
F

D
e
m

o
ti
o

n
 p

ri
o

ri
ty

7. D. Sanchez and C. Kozyrakis, ‘‘Vantage:

Scalable and Efficient Fine-Grain Cache Par-

titioning,’’ Proc. 38th Ann. Int’l Symp. Com-

puter Architecture (ISCA 11), ACM, 2011,

pp. 57-68.

8. A. Seznec, ‘‘A Case for Two-Way Skewed-

Associative Caches,’’ Proc. 20th Ann. Int’l

Symp. Computer Architecture (ISCA 93),

ACM, 1993, pp. 169-178.

9. D. Sanchez and C. Kozyrakis, ‘‘The ZCache:

Decoupling Ways and Associativity,’’ Proc.

43rd Ann. IEEE/ACM Int’l Symp. Microarch-

itecture, IEEE CS, 2010, pp. 187-198.

10. D. Chiou et al., ‘‘Application-Specific Mem-

ory Management for Embedded Systems

Using Software-Controlled Caches,’’ Proc.

37th Design Automation Conf. (DAC 00),

ACM, 2000, pp. 416-419.

11. Y. Xie and G.H. Loh, ‘‘PIPP: Promotion/

Insertion Pseudo-partitioning of Multi-core

Shared Caches,’’ Proc. 36th Ann. Int’l

Symp. Computer Architecture (ISCA 09),

ACM, 2009, pp. 174-183.

Daniel Sanchez is a PhD student in the
Department of Electrical Engineering at

Stanford University. His research focuses
on large-scale chip multiprocessors, specifi-
cally on scalable and dynamic fine-grained
runtimes and schedulers, hardware support
for scheduling, scalable and efficient memory
hierarchies, and architectures with quality-of-
service guarantees. Sanchez has an MS in
electrical engineering from Stanford Univer-
sity. He is a student member of IEEE.

Christos Kozyrakis is an associate professor
of electrical engineering and computer
science and the Willard R. and Inez Kerr
Bell faculty scholar at Stanford University.
His research interests include energy-efficient
data centers, architecture and runtime en-
vironments for large-scale chip multiproces-
sors, hardware and software techniques for
transactional memory, and security systems.
Kozyrakis has a PhD in computer science
from the University of California, Berkeley.
He is a senior member of IEEE and ACM.

Direct comments and questions about
this article to Daniel Sanchez, Gates Hall,
353 Serra Mall, Room 354, Stanford, CA
94305; sanchezd@stanford.edu.

mmi2012030026.3d 15/5/012 10:27 Page 37

..

MAY/JUNE 2012 37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

