
JIGSAW:
SCALABLE SOFTWARE-DEFINED CACHES

NATHAN BECKMANN AND DANIEL SANCHEZ
MIT CSAIL

PACT’13 - EDINBURGH, SCOTLAND
SEP 11, 2013

Summary

¨  NUCA is giving us more capacity, but further away

¨  Applications have widely
varying cache behavior

¨  Cache organization should adapt to application

¨  Jigsaw uses physical cache resources as building blocks
of virtual caches, or shares

Cache Size
0 16MB

40

M
PK

I libquantum
zeusmp
sphinx3

Approach
3

¨  Jigsaw uses physical cache resources as building blocks
of virtual caches, or shares libquantum

zeusmp

sphinx3

Cache Size
0 16MB

40

M
PK

I

Tiled
Multicore

Bank

Agenda
4

¨  Introduction

¨  Background
¤ Goals
¤ Existing Approaches

¨  Jigsaw Design

¨  Evaluation

Goals
5

¨  Make effective use of cache capacity

¨  Place data for low latency

¨  Provide capacity isolation for performance

¨  Have a simple implementation

Existing Approaches: S-NUCA
6

Spread lines evenly across banks

¨  High Capacity
¨  High Latency
¨  No Isolation
¨  Simple

Existing Approaches: Partitioning
7

Isolate regions of cache between applications.

¨  High Capacity
¨  High Latency
¨  Isolation
¨  Simple

¨  Jigsaw needs partitioning; uses Vantage to get strong
guarantees with no loss in associativity

Existing Approaches: Private
8

Place lines in local bank

¨  Low Capacity
¨  Low Latency
¨  Isolation
¨  Complex – LLC directory

Existing Approaches: D-NUCA
9

Placement, migration, and replication heuristics

¨  High Capacity
¤ But beware of over-replication

and restrictive mappings
¨  Low Latency

¤ Don’t fully exploit capacity
vs. latency tradeoff

¨  No Isolation
¨  Complexity Varies

¤ Private-baseline schemes require LLC directory

Existing Approaches: Summary
10

S-NUCA Partitioning Private D-NUCA

High
Capacity Yes Yes No Yes

Low
Latency No No Yes Yes

Isolation No Yes Yes No

Simple Yes Yes No Depends

Jigsaw
11

¨  High Capacity – Any share can
take full capacity, no replication

¨  Low Latency – Shares allocated
near cores that use them

¨  Isolation – Partitions within each
bank

¨  Simple – Low overhead hardware, no LLC directory,
software-managed

Agenda
12

¨  Introduction

¨  Background

¨  Jigsaw Design
¤ Operation
¤ Monitoring
¤ Configuration

¨  Evaluation

Jigsaw Components
13

Operation

Monitoring Configuration

Miss Curves

Accesses Size & Placement

Jigsaw Components
14

Operation

Monitoring Configuration

Agenda
15

¨  Introduction

¨  Background

¨  Jigsaw Design
¤ Operation
¤ Monitoring
¤ Configuration

¨  Evaluation

Operation: Access
16

Classifier

STB

Share 1

Share 2

Share 3

Share N
...

TLB

Core

L1I L1D
L2

LLC

LD 0x5CA1AB1E

Data è shares, so no LLC coherence required

¨  Jigsaw classifies data based on access pattern
¤ Thread, Process, Global, and Kernel

¨  Data lazily re-classified on TLB miss
¤ Similar to R-NUCA but…

n R-NUCA: Classification è Location
n  Jigsaw: Classification è Share (sized & placed dynamically)

¤ Negligible overhead

Data Classification
17

Operating System

•  6 thread shares
•  2 process shares
•  1 global share
•  1 kernel share

Operation:
Share-bank Translation Buffer 18

STB Entry STB Entry STB Entry STB Entry

Address (from L1 miss) Share Id (from TLB)

1/3 3/5 1/3

H

0/8 …
1

Bank/
Part 0

Bank/
Part 63

Address 0x5CA1AB1E maps to
bank 3, partition 5

2706

4 entries, associative,
exception on miss

Share Config

0x5CA1AB1E

¨  Hash lines proportionally
q  Share:

q  STB:

¨  400 bytes; low overhead

A A B A A B

¨  Gives unique location of
the line in the LLC

¨  Address, Share è
Bank, Partition

Agenda
19

¨  Introduction

¨  Background

¨  Jigsaw Design
¤ Operation
¤ Monitoring
¤ Configuration

¨  Evaluation

Monitoring
20

¨  Software requires miss curves for each share

¨  Add utility monitors (UMONs) per tile to produce miss curves

¨  Dynamic sampling to model full LLC at each bank; see paper

0x3DF7AB 0xFE3D98 0xDD380B 0x3930EA …

0xB3D3GA 0x0E5A7B 0x123456 0x7890AB …

0xCDEF00 0x3173FC 0xCDC911 0xBAD031 …

0x7A5744 0x7A4A70 0xADD235 0x541302 …

717,543 117,030 213,021 32,103 …

…

…

Hit
Counters

Tag
Array

Way 0 Way N-1 …

Misses

Size
Cache Size

Configuration
21

¨  Software decides share configuration

¨  Approach: Size è Place
¤ Solving independently is simple
¤ Sizing is hard, placing is easy

PLACE

M
iss

es

Size LLC

SIZE

Configuration: Sizing
22

¨  Partitioning problem: Divide cache capacity of S among P
partitions/shares to maximize hits

¨  Use miss curves to describe partition behavior

¨  NP-complete in general

¨  Existing approaches:
¤ Hill climbing is fast but gets stuck in local optima
¤ UCP Lookahead is good but scales quadratically: O(P x S2)

Utility-based Cache Partitioning, Qureshi and Patt, MICRO’06

Can we scale Lookahead?

Configuration: Lookahead
23

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
24

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
25

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
26

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
27

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
28

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
29

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
30

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
31

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
32

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
33

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
34

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
35

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
36

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Configuration: Lookahead
37

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Maximum
cache utility

Configuration: Lookahead
38

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Maximum
cache utility

Configuration: Lookahead
39

¨  UCP Lookahead:
¤ Scan miss curves to find allocation that maximizes average

cache utility (hits per byte)

M
iss

es

Size LLC Size

Maximum
cache utility

Configuration: Lookahead
40

¨  Observation: Lookahead traces the convex hull of the miss
curve

M
iss

es

Size LLC Size

Maximum
cache utility

Convex Hulls
41

¨  The convex hull of a curve is the set containing all lines
between any two points on the curve, or “the curve
connecting the points along the bottom”

M
iss

es

Size LLC Size

M
iss

es

Size LLC Size

Configuration: Peekahead
42

¨  There are well-known linear algorithms to compute convex
hulls

¨  Peekahead algorithm is an exact, linear-time
implementation of UCP Lookahead

M
iss

es

Size LLC Size

M
iss

es

Size LLC Size

Configuration: Peekahead
43

¨  Peekahead computes all convex hulls encountered during
allocation in linear time
¤ Starting from every possible allocation
¤ Up to any remaining cache capacity

M
iss

es

Size LLC Size

M
iss

es

Size LLC Size

Configuration: Peekahead
44

¨  Knowing the convex hull, each allocation step is O(log P)
¤ Convex hulls have decreasing slope è decreasing average

cache utility è only consider next point on hull
¤ Use max-heap to compare between partitions

Best
Step?

Configuration: Peekahead
45

¨  Knowing the convex hull, each allocation step is O(log P)

Current
Allocation

Best
Step?

Configuration: Peekahead
46

¨  Knowing the convex hull, each allocation step is O(log P)

Best
Step

Current
Allocation

Configuration: Peekahead
47

¨  Knowing the convex hull, each allocation step is O(log P)

Best
Step?

Configuration: Peekahead
48

¨  Knowing the convex hull, each allocation step is O(log P)

Best
Step

Configuration: Peekahead
49

¨  Knowing the convex hull, each allocation step is O(log P)

Best
Step?

Configuration: Peekahead
50

¨  Knowing the convex hull, each allocation step is O(log P)

Best
Step

Configuration: Peekahead
51

¨  Knowing the convex hull, each allocation step is O(log P)

Best
Step

Configuration: Peekahead
52

¨  Full runtime is O(P x S)
¤ P – number of partitions
¤ S – cache size

¨  See paper for additional examples, algorithm, and
corner cases

¨  See technical report for additional detail, proofs, and
run-time analysis
¤  Jigsaw: Scalable Software-Defined Caches (Extended Version), Nathan Beckmann and Daniel

Sanchez, Technical Report MIT-CSAIL-TR-2013-017, Massachusetts Institute of Technology, July 2013

Re-configuration
53

¨  When STB changes, some addresses hash to different
banks

¨  Selective invalidation hardware walks the LLC and
invalidates lines that have moved

¨  Heavy-handed but infrequent and avoids directory
¤ Maximum of 300K cycles / 50M cycles = 0.6% overhead

1/3 1/3 3/5 1/3 1/3 3/5

H
0x5CA1AB1E

1/3 4/9 3/5 1/3 1/3 3/5

H
0x5CA1AB1E

Design: Hardware Summary
54

¨  Operation:
¤  Share-bank translation buffer (STB)

handles accesses
¤  TLB augmented with share id

¨  Monitoring HW: produces miss curves

¨  Configuration: invalidation HW

¨  Partitioning HW (Vantage)

Tile Organization

Jigsaw L3 Bank

NoC Router

Bank partitioning HW (Vantage)

Inv HW Monitoring HW

Core

STB

TLBs

L1I L1D
L2

Modified structures
New/added structures

Agenda
55

¨  Introduction

¨  Background

¨  Jigsaw Design

¨  Evaluation
¤ Methodology
¤ Performance
¤ Energy

Methodology
56

¨  Execution-driven simulation using zsim

¨  Workloads:
¤  16-core singlethreaded mixes of SPECCPU2006 workloads
¤  64-core multithreaded (4x16-thread) mixes of PARSEC

¨  Cache organizations
¤  LRU – shared S-NUCA cache with LRU replacement; baseline
¤ Vantage – S-NUCA with Vantage and UCP Lookahead
¤  R-NUCA – state-of-the-art shared-baseline D-NUCA organization
¤  IdealSPD (“shared-private D-NUCA”) – private L3 + shared L4

n  2x capacity of other schemes
n  Upper bound for private-baseline D-NUCA organizations

¤  Jigsaw

Evaluation: Performance
57

¨  16-core multiprogrammed mixes of SPECCPU2006

¨  Jigsaw achieves best performance
¤  Up to 50% improved throughput, 2.2x improved w. speedup
¤  Gmean +14% throughput, +18% w. speedup

¨  Jigsaw does even better on the most memory intensive mixes
¤  Top 20% of LRU MPKI
¤  Gmean +21% throughput, +29% w. speedup

Evaluation: Performance
58

¨  64-core multithreaded mixes of PARSEC

¨  Jigsaw achieves best performance
¤ Gmean +9% throughput, +9% w. speedup

¨  Remember IdealSPD is an upper bound with 2x capacity

Evaluation: Performance Breakdown
59

¨  16-core multiprogrammed mixes of SPECCPU2006

¨  Breakdown memory stalls into
network and DRAM
¤  Normalized to LRU

¨  R-NUCA is limited by capacity in these workloads
(private data è local bank)

¨  Vantage only benefits DRAM

¨  IdealSPD acts as either a private organization (benefit
network) or a shared organization (benefit DRAM)

¨  Jigsaw is the only scheme to simultaneously benefit
network and DRAM latency

Optimum

Evaluation: Energy
60

¨  16-core multiprogrammed mixes

¨  McPAT models of full-system energy (chip + DRAM)
¨  Jigsaw achieves best energy reduction

¤ Up to 72%, gmean of 11%
¤ Reduces both network and DRAM energy

Conclusion
¨  NUCA is giving us more capacity, but further away

¨  Applications have widely
varying cache behavior

¨  Cache organization should adapt
to meet application needs

¨  Jigsaw uses physical cache resources as
building blocks of virtual caches, or shares
¤  Sized to fit working set
¤  Placed near application for low latency

¨  Jigsaw improves performance up to 2.2x and reduces energy up
to 72%

Cache Size
0 16MB

40

M
PK

I

QUESTIONS

62

M
iss

es

Size LLC Size

0x3F7AB 0xFE3D98 0xD380B 0x3930EA …

0xBD3GA 0x0E5A7B 0x123456 0x7890AB …

0xCDEF00 0x3173FC 0xCDC911 0xBAD031 …

0x7A5744 0x74A70 0xAD235 0x541302 …

717,543 117,030 213,021 32,103 …

…

…

Hit Counters

Tag
Array

Way 0 Way N-1 …
Address

H3

Limit

<

Placement

¨  Greedy algorithm

¨  Each share is allocated budget

¨  Shares take turns grabbing space in “nearby” banks
¤ Banks ordered by distance from “center of mass” of cores

accessing share

¨  Repeat until budget & banks exhausted

Monitoring
64

¨  Software requires miss curves for each share

¨  Add UMONs per tile
¤  Small tag array that models LRU on sample of accesses
¤  Tracks # hits per way, # misses è miss curve

¨  Changing sampling rate
models a larger cache

¨  STB spreads lines proportionally to partition size, so sampling
rate must compensate

Lines Cache Modeled
Lines UMONRate Sampling =

Lines Cache Modeled
Lines UMON

sizePartition
size ShareRate Sampling ×=

Monitoring
65

¨  STB spreads addresses unevenly è change sampling rate to compensate

¨  Augment UMON with hash (shared with STB) and 32-bit limit register that
gives fine control over sampling rate

¨  UMON now models full LLC capacity exactly
¤  Shares require only one UMON
¤  Max four shares / bank è four UMONs / bank è 1.4% overhead

0x3DF7AB 0xFE3D98 0xDD380B 0x3930EA …

0xB3D3GA 0x0E5A7B 0x123456 0x7890AB …

0xCDEF00 0x3173FC 0xCDC911 0xBAD031 …

0x7A5744 0x7A4A70 0xADD235 0x541302 …

717,543 117,030 213,021 32,103 …

…

…

Hit
Counters

Tag
Array

Way 0 Way N-1 …
Address

H3

Limit

<

Evaluation: Extra
66

¨  See paper for:
¤ Out-of-order results
¤ Execution time breakdown
¤ Peekahead performance
¤ Sensitivity studies

