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Summary 

¨  NUCA is giving us more capacity, but further away 

¨  Applications have widely 
varying cache behavior 
 

¨  Cache organization should adapt to application 

¨  Jigsaw uses physical cache resources as building blocks 
of virtual caches, or shares 
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Goals 
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¨  Make effective use of cache capacity 
 

¨  Place data for low latency 
 

¨  Provide capacity isolation for performance 
 

¨  Have a simple implementation 



Existing Approaches: S-NUCA 
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Spread lines evenly across banks 

¨  High Capacity 
¨  High Latency 
¨  No Isolation 
¨  Simple 



Existing Approaches: Partitioning 
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Isolate regions of cache between applications. 

¨  High Capacity 
¨  High Latency 
¨  Isolation 
¨  Simple 

¨  Jigsaw needs partitioning; uses Vantage to get strong 
guarantees with no loss in associativity 



Existing Approaches: Private 
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Place lines in local bank 

¨  Low Capacity 
¨  Low Latency 
¨  Isolation 
¨  Complex – LLC directory 



Existing Approaches: D-NUCA 
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Placement, migration, and replication heuristics 

¨  High Capacity  
¤ But beware of over-replication 

and restrictive mappings 
¨  Low Latency 

¤ Don’t fully exploit capacity 
vs. latency tradeoff 

¨  No Isolation 
¨  Complexity Varies 

¤ Private-baseline schemes require LLC directory 



Existing Approaches: Summary 
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S-NUCA Partitioning Private D-NUCA 

High 
Capacity Yes Yes No Yes 

Low 
Latency No No Yes Yes 

Isolation No Yes Yes No 

Simple Yes Yes No Depends 



Jigsaw 
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¨  High Capacity – Any share can 
take full capacity, no replication 

¨  Low Latency – Shares allocated 
near cores that use them 

¨  Isolation – Partitions within each 
bank 

¨  Simple – Low overhead hardware, no LLC directory, 
software-managed 
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Operation 

Monitoring Configuration 

Miss Curves 

Accesses Size & Placement 
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Operation: Access 
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Classifier 

STB 

Share 1 

Share 2 

Share 3 

Share N 
...

 

TLB 

Core 

L1I L1D 
L2 

LLC 

LD 0x5CA1AB1E 

Data è shares, so no LLC coherence required 



¨  Jigsaw classifies data based on access pattern 
¤ Thread, Process, Global, and Kernel 

¨  Data lazily re-classified on TLB miss 
¤ Similar to R-NUCA but… 

n R-NUCA: Classification è Location 
n  Jigsaw: Classification è Share (sized & placed dynamically) 

¤ Negligible overhead 

Data Classification 
17 

Operating System 

•  6 thread shares 
•  2 process shares 
•  1 global share 
•  1 kernel share 



Operation: 
Share-bank Translation Buffer 18 

STB Entry STB Entry STB Entry STB Entry 

Address (from L1 miss) Share Id (from TLB) 

1/3 3/5 1/3 

H 

0/8 … 
1 

Bank/ 
Part 0 

Bank/ 
Part 63 

Address 0x5CA1AB1E maps to 
bank 3, partition 5 

2706 

4 entries, associative, 
exception on miss 

Share Config 

0x5CA1AB1E 

¨  Hash lines proportionally 
q  Share: 

q  STB: 

¨  400 bytes; low overhead 

A A B A A B 

¨  Gives unique location of 
the line in the LLC 

¨  Address, Share è 
Bank, Partition 
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Monitoring 
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¨  Software requires miss curves for each share 

¨  Add utility monitors (UMONs) per tile to produce miss curves 

¨  Dynamic sampling to model full LLC at each bank; see paper 

0x3DF7AB 0xFE3D98 0xDD380B 0x3930EA … 

0xB3D3GA 0x0E5A7B 0x123456 0x7890AB … 

0xCDEF00 0x3173FC 0xCDC911 0xBAD031 … 

0x7A5744 0x7A4A70 0xADD235 0x541302 … 

717,543 117,030 213,021 32,103 … 

…
 

…
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Configuration 
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¨  Software decides share configuration 

¨  Approach: Size è Place 
¤ Solving independently is simple 
¤ Sizing is hard, placing is easy 
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Configuration: Sizing 
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¨  Partitioning problem: Divide cache capacity of S among P 
partitions/shares to maximize hits 

¨  Use miss curves to describe partition behavior 

¨  NP-complete in general 

¨  Existing approaches: 
¤ Hill climbing is fast but gets stuck in local optima 
¤ UCP Lookahead is good but scales quadratically: O(P x S2) 

Utility-based Cache Partitioning, Qureshi and Patt, MICRO’06 
 

Can we scale Lookahead? 



Configuration: Lookahead 
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¨  UCP Lookahead: 
¤ Scan miss curves to find allocation that maximizes average 

cache utility (hits per byte) 
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Configuration: Lookahead 
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¨  Observation: Lookahead traces the convex hull of the miss 
curve 
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Convex Hulls 
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¨  The convex hull of a curve is the set containing all lines 
between any two points on the curve, or “the curve 
connecting the points along the bottom” 
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Configuration: Peekahead 
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¨  There are well-known linear algorithms to compute convex 
hulls 

¨  Peekahead algorithm is an exact, linear-time 
implementation of UCP Lookahead 
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Configuration: Peekahead 
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¨  Peekahead computes all convex hulls encountered during 
allocation in linear time 
¤ Starting from every possible allocation 
¤ Up to any remaining cache capacity 
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Configuration: Peekahead 
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¨  Knowing the convex hull, each allocation step is O(log P) 
¤ Convex hulls have decreasing slope è decreasing average 

cache utility è only consider next point on hull 
¤ Use max-heap to compare between partitions 

Best 
Step? 
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¨  Knowing the convex hull, each allocation step is O(log P) 

Current 
Allocation 

Best 
Step? 
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¨  Knowing the convex hull, each allocation step is O(log P) 
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Configuration: Peekahead 
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¨  Full runtime is O(P x S) 
¤ P – number of partitions 
¤ S – cache size 

¨  See paper for additional examples, algorithm, and 
corner cases 

¨  See technical report for additional detail, proofs, and 
run-time analysis 
¤  Jigsaw: Scalable Software-Defined Caches (Extended Version), Nathan Beckmann and Daniel 

Sanchez, Technical Report MIT-CSAIL-TR-2013-017, Massachusetts Institute of Technology, July 2013  



Re-configuration 
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¨  When STB changes, some addresses hash to different 
banks 

¨  Selective invalidation hardware walks the LLC and 
invalidates lines that have moved 

¨  Heavy-handed but infrequent and avoids directory 
¤ Maximum of 300K cycles / 50M cycles = 0.6% overhead 

1/3 1/3 3/5 1/3 1/3 3/5 

H
0x5CA1AB1E 

1/3 4/9 3/5 1/3 1/3 3/5 

H
0x5CA1AB1E 



Design: Hardware Summary 
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¨  Operation: 
¤  Share-bank translation buffer (STB) 

handles accesses 
¤  TLB augmented with share id 

¨  Monitoring HW: produces miss curves 

¨  Configuration: invalidation HW 

¨  Partitioning HW (Vantage) 

Tile Organization 
 

Jigsaw L3 Bank 
 
 
 

NoC Router 

Bank partitioning HW (Vantage) 

Inv HW Monitoring HW 

Core 

STB 

TLBs 

L1I L1D 
L2 

 
 
 
 

 
 
 
 

Modified structures 
New/added structures 
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Methodology 
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¨  Execution-driven simulation using zsim 

¨  Workloads: 
¤  16-core singlethreaded mixes of SPECCPU2006 workloads 
¤  64-core multithreaded (4x16-thread) mixes of PARSEC 

¨  Cache organizations 
¤  LRU – shared S-NUCA cache with LRU replacement; baseline 
¤ Vantage – S-NUCA with Vantage and UCP Lookahead 
¤  R-NUCA – state-of-the-art shared-baseline D-NUCA organization 
¤  IdealSPD (“shared-private D-NUCA”) – private L3 + shared L4 

n  2x capacity of other schemes 
n  Upper bound for private-baseline D-NUCA organizations 

¤  Jigsaw 
 



Evaluation: Performance 
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¨  16-core multiprogrammed mixes of SPECCPU2006 

¨  Jigsaw achieves best performance 
¤  Up to 50% improved throughput, 2.2x improved w. speedup 
¤  Gmean +14% throughput, +18% w. speedup 

¨  Jigsaw does even better on the most memory intensive mixes 
¤  Top 20% of LRU MPKI 
¤  Gmean +21% throughput, +29% w. speedup 



Evaluation: Performance 
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¨  64-core multithreaded mixes of PARSEC 

¨  Jigsaw achieves best performance 
¤ Gmean +9% throughput, +9% w. speedup 

¨  Remember IdealSPD is an upper bound with 2x capacity 



Evaluation: Performance Breakdown 
59 

¨  16-core multiprogrammed mixes of SPECCPU2006 

¨  Breakdown memory stalls into 
network and DRAM 
¤  Normalized to LRU 

¨  R-NUCA is limited by capacity in these workloads 
(private data è local bank) 

¨  Vantage only benefits DRAM 

¨  IdealSPD acts as either a private organization (benefit 
network) or a shared organization (benefit DRAM) 

 

¨  Jigsaw is the only scheme to simultaneously benefit 
network and DRAM latency 

Optimum 



Evaluation: Energy 
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¨  16-core multiprogrammed mixes 

¨  McPAT models of full-system energy (chip + DRAM) 
¨  Jigsaw achieves best energy reduction 

¤ Up to 72%, gmean of 11% 
¤ Reduces both network and DRAM energy 



Conclusion 
¨  NUCA is giving us more capacity, but further away 

¨  Applications have widely 
varying cache behavior 

¨  Cache organization should adapt 
to meet application needs 

¨  Jigsaw uses physical cache resources as 
building blocks of virtual caches, or shares 
¤  Sized to fit working set 
¤  Placed near application for low latency 

¨  Jigsaw improves performance up to 2.2x and reduces energy up 
to 72% 
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Placement 

¨  Greedy algorithm 

¨  Each share is allocated budget 

¨  Shares take turns grabbing space in “nearby” banks 
¤ Banks ordered by distance from “center of mass” of cores 

accessing share 

¨  Repeat until budget & banks exhausted 



Monitoring 
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¨  Software requires miss curves for each share 

¨  Add UMONs per tile 
¤  Small tag array that models LRU on sample of accesses 
¤  Tracks # hits per way, # misses è miss curve 

¨  Changing sampling rate 
models a larger cache 

¨  STB spreads lines proportionally to partition size, so sampling 
rate must compensate 

Lines Cache Modeled
Lines UMONRate Sampling =

Lines Cache Modeled
Lines UMON

sizePartition 
size ShareRate Sampling ×=



Monitoring 
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¨  STB spreads addresses unevenly è change sampling rate to compensate 

¨  Augment UMON with hash (shared with STB) and 32-bit limit register that 
gives fine control over sampling rate 

¨  UMON now models full LLC capacity exactly 
¤  Shares require only one UMON 
¤  Max four shares / bank è four UMONs / bank è 1.4% overhead 

0x3DF7AB 0xFE3D98 0xDD380B 0x3930EA … 

0xB3D3GA 0x0E5A7B 0x123456 0x7890AB … 
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0x7A5744 0x7A4A70 0xADD235 0x541302 … 

717,543 117,030 213,021 32,103 … 

…
 

…
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Evaluation: Extra 
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¨  See paper for: 
¤ Out-of-order results 
¤ Execution time breakdown 
¤ Peekahead performance 
¤ Sensitivity studies 


