ZSIM: FAST AND ACCURATE MICROARCHITECTURAL
SIMULATION OF THOUSAND-CORE SYSTEMS

DANIEL SANCHEZ CHRISTOS KOZYRAKIS
MIT STANFORD

ISCA-40
JUNE 27, 2013

|) | Se Massachusetts Gtanford

Technology University

Introduction

Current detailed simulators are slow (~200 KIPS)

Simulation performance wall
More complex targets (multicore, memory hierarchy, ...)
Hard to parallelize

Problem: Time to simulate 1000 cores @ 2GHz for 1s at
200 KIPS: 4 months
200 MIPS:

Alternatives?
FPGAs: , good progress, but still hard to use
Simplified /abstract models: but inaccurate

ZSim Techniques

Three techniques to make 1000-core simulation practical:

Detailed DBT-accelerated core models to speed up sequential
simulation

Bound-weave to scale parallel simulation

Lightweight user-level virtualization to bridge user-level /full-
system gap

ZSim achieves high performance and accuracy:
Simulates 1024-core systems at 10s-1000s of MIPS
100-1000x faster than current simulators

Validated against real Westmere system, avg error ~10%

This Presentation is Also a Demo!

ZSim is simulating these slides
OOO cores @ 2 GHz

3-level cache hierarchy

ZSim performance relevant when busy
A Running 2-core laptop CPU
~12x slower than 16-core server Idle (< 0.1 cores active) .

0.1 < cores active < 0.9

Busy (> 0.9 cores active) .

Total cycles and

instructions simulated Current simulation speed and basic stats
(in billions) (updated every 500ms)
Cycles: 1.4 B Sim Speed: 172.4 MCPS Avg Act Cores: 1.00
Instrs: 1.3 B Sim Speed: 169.2 MIPS Avg Core IPC: 0.98

Main Design Decisions

1 General execution-driven simulator:

Timing

model

Emulation? (e.g., gem5, MARSSx86) Cycle-driven?
[Instrumentation? (e.g., Graphite, Sniper) Event-driven?
Dynamic Binary Translation (Pin) DBT-accelerated,
v Functional model “for free” instruction-driven core
X Base ISA = Host ISA (x86) +

Event-driven uncore

Qutline

1 Introduction
1 Detailed DBT-accelerated core models
1 Bound-weave parallelization

11 Lightweight user-level virtualization

Accelerating Core Models

Shift most of the work to DBT instrumentation phase

Basic block =) Instrumented basic block + Basic block descriptor
mov (3rbp), Srcx Load (addr = (orbp)) Insépop decoding

add %rax, $rbx mov (%rbp), %src .

mov $rdx, (Srbp) add %rax, $rdx Mop dependenaes,

Ja 40530a Store(addr = (%rbp)) functional units, latency

mov S$rdx, (srbp)
BasicBlock (BBLDescriptor)
Ja 10840530a

Front-end delays

Instruction-driven models: Simulate all stages at once for each
instruction/ Jop
Accurate even with OOOQ if instruction window prioritizes older instructions
, but more complex than cycle-driven

See paper for details

Detailed OOO Model

1 OOO core modeled and validated against Westmere

— N N)

—— N

|

—

Main Features

Wrong-path fetches
Branch Prediction

Front-end delays (predecoder, decoder)
Detailed instruction to Pyop decoding

Rename /capture stalls
IW with limited size and width

Functional unit delays and contention
Detailed LSU (forwarding, fences,...)

Reorder buffer with limited size and width

Detailed OOO Model

1 OOO core modeled and validated against Westmere

Fundamentally Hard to Model

Wrong-path execution

In Westmere, wrong-path instructions don’t

affect recovery latency or pollute caches
Skipping OK

Not Modeled (Yet)

— N N)
— N

Rarely used
instructions

BTB
LSD
TLBs

 Comnit_

Single-Thread Accuracy

1 29 SPEC CPU2006 apps for 50 Billion instructions
7 Real: Xeon L5640 (Westmere), 3x DDR3-1333, no HT
0 Simulated: OOO cores @ 2.27 GHz, detailed uncore

25

+2% -2% +2% -2% -3% +4% -4% +5% -6% +6% -6% -T¥% 7% -8% -9% +9% 49% 49% -11% +11%+12%+13%+13%+13%+15% -16% -18% -21% +24%

" | Real
|3 Simulated| |

IPC

) T L T S . B o T | Y= S (RN QUL S o
AR L LA L L N o"g o oC (B et® (@5P pi€ 0P B 0P 8l P 2P o W O g (0 o o
o ¢ :;“ oi'“?.a{\“egfb“e eV’ “ﬁ; PRAES o qa':"' o T 08T B o o @0‘0 c‘aﬂ_\f,?* 0¥ oV :ﬁ\a“{p

1 9.7% average IPC error, max 24%, 18/29 within 10%

10

Single-Thread Performance -

Host: E5-2670 @ 2.6 GHz (single-thread simulation)

29 SPEC CPU2006 apps for 50 Billion instructions

90 T T T T T 7
solL| — IPC1l-SimpleUncore | . = .
—— 00O0O-DetailedUncore

R R =
e St e e e

=] R— R) _ ______________________________

E o) /I~3xbeiween least and

r0| I o . WS ¥.._most detailed models!
10| : : {---1-2-MI-P—S-h§mean
00 5 10 15 20 25 30
Application ~10-100x faster

Qutline

1 Introduction
1 Detailed DBT-accelerated core models
1 Bound-weave parallelization

11 Lightweight user-level virtualization

12

Parallelization Techniques s

o Parallel Discrete Event Simulation (PDES): Host Host

Vi Thread O Thread 1
Divide components across host threads rea rea

Execute events from each component s 15

maintaining illusion of full order

v’ Accurate s

Skew < 10 cycles L0 |5
X Not scalable

11 Lax synchronization: Allow skews above inter-component
latencies, tolerate ordering violations

v’ Scalable
X |naccurate

Characterizing Interference

14
Path-altering interference Path-preserving interference
If we simulate two accesses out of order, their If we simulate two accesses out of order, their
paths through the memory hierarchy change timing changes but their paths do not

1

GETS A
MISS

O O

GETSA GETS A
HIT HIT

1 1

GETS A GETS A
MISS MISS

O O

GETS B GETS A GETS A
HIT MISS

In small intervals (1-10K cycles), path-altering

interference is extremely rare (<1 in 10K accesses)

Bound-Weave Parallelization .

o1 Divide simulation in small intervals (e.g., 1000 cycles)

o1 Two parallel phases per interval: Bound and weave

Bound phase: Find paths

Weave phase: Find timings

Bound-Weave equivalent to PDES

for path-preserving interference

Bound-Weave Example ”

11 2-core host simulating Mem Ctrl O : Mem Ctrl 1
4-core system

1 1000-cycle intervals

-1 Divide components
among 2 domains

Domain O i Domain 1

Bound Phase: Parallel simulation until cycle Feedback: Adjust core cycles
1000, gather access traces /

Host Thread O Core O Core 1 Core 3 Core 1

Host Thread 1 Core 3 Core 2 i Core 2 Core O

Weave Phase: Parallel event-driven simulation of Bound Phase
gathered traces until actual cycle 1000 (until cycle 2000)

~ Host
Time

Bound-Weave Take-Aways

Minimal synchronization:
Bound phase: Unordered accesses (like lax)

Weave: Only sync on actual dependencies
No ordering violations in weave phase

Works with standard event-driven models
e.g., 110 lines to integrate with DRAMSim?2

See paper for details!

17

Multithreaded Accuracy

18
23 apps: PARSEC, SPLASH-2, SPEC OMP2001, STREAM

Perf Error
.
.
I
g
g
g
=
=
=
/]
/]
oy
I
[]

36(. oL 6‘- G(. b"& \S q-_,’(. oL ot b D“L 6(. G‘- Dﬁ- 6& 6& oL Gi. 6" 6" ot 6"- ¢

W \% & @- c, /'c.\ 6(\ AV ac:‘?f @3‘5 ’xN 95 508 " c.‘° Q"a(
S 2 9{(g\ﬂ\N Q ((\ ‘ ((\ &\0\6 <\<(\ \o\a

11.2% avg perf error (not IPC), 10/23 within 10%

Similar differences as single-core results

Scalability, contention model validation = see paper

1024-Core Performance

19
Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)
Results for the 14/23 parallel apps that scale
1600 | I | |
1400 - - IPC1-BoundOnly | . .
— 00O0O-BoundWeave
20D e e -
= 1000 oot L
E BOO | -vvii-vorerieooi. 200. MIPS hrhean
oy 000 ------- ------- ’;i-~j5x-be-iween least and
N ' ' ' ' Y vost detailed models!

0 2 4 6 8 10 12 14
Application ~100-1000x faster

Bound-Weave Scalability

20

=
(o)

1 sncketl 2 sockets

=
5
T
i

NP O
I

=
N
I

)

ZSim speedup

— """""" i """ ;"1'0;21“-1'3.5'6X'si|oeedup @ 16 cores

| —— |PC1-BoundOnly []
B S - — 0O0O-BoundWeave |-

2 4 6 8 10 12 14 16
Host threads

Qutline

1 Introduction
1 Detailed DBT-accelerated core models
1 Bound-weave parallelization

0 Lightweight user-level virtualization

21

Lightweight User-Level Virtualization _,

No 1Kcore OSs } ZSim has to be

No parallel full-system DBT user-level for now

Problem: User-level simulators limited to simple workloads

Lightweight user-level virtualization: Bridge the gap with
full-system simulation

Simulate accurately if time spent in OS is minimal

Lightweight User-Level Virtualization

Multiprocess workloads
Scheduler (threads > cores)
Time virtualization

System virtualization

See paper for:

Simulator-OS deadlock
avoidance

Signals
ISA extensions

Fast-forwarding

Lightweight User-Level Virtualization _,

Multiprocess workloads &)@ xeerm

~/zsim_demo$ 1s
blackscholes fib.py scala

Scheduler (threads > cores)

PARSEC Benchmark Suite
[PARSEC] Benchmark begin

Time ViI‘TUG“ZGTion Mum of Runs: 108

Size of data: 16
. . . [PARSEC] ROI begin
System virtualization {0051 ROT begin

See paper for:
Simulator-OS deadlock

avoidance

Signals

ISA extensions

Fast-forwarding
Cycles: 4.5 B Sim Speed: 5.8 MCPS Avg Act Cores: 4.00 .
Instrs: 6.4 B Sim Speed: 35.6 MIPS Avg Core IPC: 1.53

Lightweight User-Level Virtualization

Multiprocess workloads Y@ xerm

PARSEC Benchmark Suite
Scheduler (Threqu > Cores) [P_J!'.HSE[_:] Benchmark t]Eglﬂ

Mum of Runs: 108
Size of data: 16

Time virtualization [PARSECT ROI begin
[HOOKS] ROI begin

System virtualization

See paper for:

Simulator-OS deadlock
avoidance

Signals
ISA extensions

Fast-forwarding

Sim Speed: 1.4 MCPS Avg Act Cores: 16.00

Cycles: 4.
7 Sim Speed: 33.7 MIPS Avg Core IPC: 1.53

Instrs:

Lightweight User-Level Virtualization

Multiprocess workloads Sl eerm

~/zsim_demo$ date
Thu Jun 27 18:53:47 UTC 2813
~fzsim_demo$ 1s
SChedUIer (Threads > COI‘eS) blackscholes fib.py scala
~/zsim_demo$ date
1—- o Io o Thu Jun 27 18:53:47 UTC 2813
ime VII‘TUCI IZCITIOI’] ~/zsim_demo$ date -Ins

06-27T18:53:47,153157684+0000

. . . ~f demo$ date -Ins
Sys_l_em V|I“|'UC1|IZC11'|0n 2013-06-27T18:53:47,160757684+0008

~/zsim_demo$ [}

See paper for:

Simulator-OS deadlock
avoidance

Signals
ISA extensions

Fast-forwarding

Cycles: 5.2 B Sim Speed: 4.9 MCPS Avg Act Cores: 0.00
Instrs: 8.8 B Sim Speed: 0.0 MIPS Avg Core IPC: 1.02

Lightweight User-Level Virtualization

1ahf_1m dtherm t
bogomips

Fast-forwarding

k. T
M) o Xterm
Multiprocess workloads :
processor ;@
vendor_id : Genuinelntel
Scheduler (threads > cores) [EeRiEEEEE:
model name : Intel(R) Xeon(R) CPU
° ° . . @ 2.00GHz
T|me VII’TUCI|IZC11'I0n stepping 2
cpu MHz : 1995.1209
o o o cache size : 4096 KB
System virtualization physical id 0
siblings : 16
S f core id : @
. cpu cores : 16
ee pqper or: apicid : @
. initial apicid : @
Simulator-OS deadlock fpu s
fpu_exception :oyes
. cpuid level : 10
avoidance o e
flags : fpu vme de pse tsc msr pae mce cx8 a
. pic sep mtrr pge mca cmov pat pse36 clflush dts acpi m
Slgnd|s mx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_t
sc arch_perfmon pebs bts rep_good nopl aperfmperf pni
ISA eXTenSionS dtes64 monitor ds_cpl vmx tm2 sssed cx16 xtpr pdcm dca

Cycles:
Instrs:

Sim Speed: 1

5.6 MCPS Avg Act Cores: .00
Sim Speed: 0.0

IPS Avg Core IPC: 0.00

oo
w oo
o o

ZSim Limitations

Not implemented yet:
Multithreaded cores

Detailed NoC models
Virtual memory (TLBs)

Fundamentally hard:
Simulating speculation (e.g., transactional memory)
Fine-grained message-passing across whole chip

Kernel-intensive applications

28

Conclusions o

Three techniques to make 1Kcore simulation practical
DBT-accelerated models: 10-100x faster core models

Bound-weave parallelization: ~10-15x speedup from
parallelization with minimal accuracy loss

Lightweight user-level virtualization: Simulate complex
workloads without full-system support

ZSim achieves high performance and accuracy:
Simulates 1024-core systems at 10s-1000s of MIPS

Validated against real Westmere system, avg error ~10%

Source code available soon at

http://zsim.csail.mit.edu/

THANKS FOR YOUR ATTENTION!

QUESTIONS?

[l sese Stanford

Technology University

