
SCALING DISTRIBUTED CACHE

HIERARCHIES THROUGH COMPUTATION

AND DATA CO-SCHEDULING

NATHAN BECKMANN, PO-AN TSAI AND DANIEL SANCHEZ

MIT CSAIL

Near



Executive Summary

2

Thread Private L2

Core

L1I L1D

LLC Bank

LLC Data

Private L2

Core

L1I L1D

LLC Bank

Private L2

Core

L1I L1D

LLC BankNear

FarFar

FarFar



Executive Summary

3

Thread

LLC Data

Many misses
Low hit latency

Moderate misses
Medium hit latency

Few misses
High hit latency

More capacity does not always 
mean better performance



Executive Summary

4

Threads access 
different data

Threads access 
same data



Executive Summary

5

 CDCS jointly places threads and data to reduce data 
movement

 Improves performance by 46% on average and by up to 76%
 Saves 36% of system energy
 Uses low-overhead algorithms that perform within 1% of 

impractical, idealized solutions



Agenda

6

 Background

 CDCS Design

 Evaluation



Capacity vs latency

7

App: 471.omnetpp
from SPECCPU2006

M
P
K
I

Cache size

85

0

6x6 mesh, 18MB NUCA

Thread running on this tile

A
cc

. 
La

te
nc

y

2.5MB



Capacity vs latency

8

App: 471.omnetpp
from SPECCPU2006

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

Place data in local bank



Capacity vs latency

9

App: 471.omnetpp
from SPECCPU2006

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

Use closest banks that just fit working set

3.7x speedup

Banks Perf

1 1x



Capacity vs latency

10

App: 471.omnetpp
from SPECCPU2006

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

Place data across the chip

2.4x speedup

Banks Perf

1 1x

5 3.7x

In NUCA, using more capacity 
than needed is detrimental!



Thread placement matters

11

App: 471.omnetpp
471.omnetpp
471.omnetpp
471.omnetpp

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

3.3x speedup each

Capacity contention changes 
achievable access latency!

Not contended

Contended

Banks Perf

1 1x

5 3.7x

36 2.4x



Thread placement matters

12

App: 471.omnetpp
471.omnetpp
471.omnetpp
471.omnetpp

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

3.7x speedup

Spread out threads

Banks Perf

1 1x

5 3.7x

36 2.4x



Thread placement matters

13

App: 4-thread 
from SPECOMP2012

M
P
K
I

Cache size

85

0 0.5MB

A
cc

. 
La

te
nc

y

Spread out threads

Threads are far-
away from data



Thread placement matters

14

App: 4-thread 
from SPECOMP2012

M
P
K
I

Cache size

85

0 0.5MB

A
cc

. 
La

te
nc

y

1.4x speedup

Cluster threads

Clustered

Spread

One scheduler does not fit 
all applications!



Dynamic NUCA

15

Mix: 
4 x 471.omnetpp
4-thread 

R-NUCA [Hardavellas’09]

Place data 

Control capacity

Place threads 



Partitioned NUCA

16

Mix: 
4 x 471.omnetpp
4-thread 

Jigsaw [Beckmann’13] 

Place data 

Control capacity

Place threads When capacity is managed well, 
thread placement becomes important!



CDCS

17

Mix: 
4 x 471.omnetpp
4-thread 

CDCS

Place data 

Control capacity

Place threads 



Agenda

18

 Background

 CDCS Design

 Operation

 Optimization

 Evaluation



CDCS Overview

19

Optimization

Steady-state
Operation

Monitoring

Place threads & data

Sample accesses

Miss curves

Hardware

Software



Operation

20

 Group partitions from different banks to create virtual 

caches (VCs)

 Similar to Jigsaw [Beckmann’13]

Private L2 VC1

VC3

VC2

…
…

4x4 mesh NUCA LLC

Core

L1I L1D

LLC Bank NoC



Optimization

21

 Minimize sum of on-chip latency and off-chip latency by deciding:

 Thread placement

 Virtual cache capacity

 Virtual cache data placement

 It’s an NP-hard problem

 Thread and data placement are interrelated 

 Similar to VLSI place & route, HPC cluster scheduling

Thread
Placement

Data
Placement



Insight: Decouple the dependency

22

Thread
Placement

By placing data twice, CDCS disentangles the dependencies

Data
Placement

Data
Placement

Optimistic
Data

Placement

Refined 
Data

Placement

Optimistic
Assumption

Done

inform



Latency-aware allocation

23

 Assume no contention

Best size

Virtual Cache size
La

te
nc

y

On-chip latency

Off-chip latency

Total latency

Miss curve x MemLatency



Latency-aware allocation

24

 Use total latency curve to partition cache among VCs

To
ta

l 
a
cc

e
ss

 l
a
te

nc
y

Cache size
0

VC2

VC3

VC1

Capacity



Optimistic VC placement

25

 Place VC as compactly as possible

Estimating contention 
of every bank for VC

VC placed around 
least-contended tile



Thread placement

26

 Place threads at center of mass of their accesses



Refined VC placement

27

Move/trade cache lines between VCs

Greedily place VC close to thread first



Scalable reconfiguration & monitoring

28

 Incremental reconfiguration
 Allows chip to reconfigure smoothly, without pausing cores

 Geometric monitor
 Monitors large LLC with low overhead

See paper for details



Agenda

29

 Background

 CDCS design

 Evaluation

 Methodology

 Performance

 Sensitivity



Methodology

30

 Systems:

 64-core, 512KB/L3 bank 

 OOO cores (Silvermont-like)

 8x8 Mesh network

 Similar to Knights Landing

 Zsim [Sanchez’13]: Pin-based simulator

 Workloads: SPEC CPU2006, SPEC OMP2012

M
e
m

/ IO

L3 Bank

OOO Core

L1I L1D

L2

Mem / IO

M
e
m

/ 
IO

Mem / IO
64-core; 8x8 mesh network



Methodology

31

 Schemes

S-NUCA (baseline) with clustering thread scheduler

R-NUCA with clustering thread scheduler

 Jigsaw

 Jigsaw+C: Jigsaw with clustering thread scheduler

 Jigsaw+R: Jigsaw with random thread scheduler

CDCS
D-NUCA

Partitioned 
NUCA CDCS

Place data 

Control capacity

Place threads 



Multi-programmed mixes

32

Workloads that do not share data

18% 
GMEAN

34% 
GMEAN

38% 
GMEAN

46% 

GMEAN

CDCS avoids capacity 
contention more effectively 
than random scheduler



Multi-threaded mixes

33

Workloads that share data
CDCS guards against 
pathological behavior 

incurred by fixed thread 
scheduling policies

9% 
GMEAN

14% 
GMEAN

19% 
GMEAN

21% 

GMEAN

Clustering is better now



Undercommitted multi-threaded mixes

34

 SPECOMP mixes using half of the cores

11% 
GMEAN

17% 
GMEAN

21% 
GMEAN

26% 

GMEAN

With more flexibility, 
CDCS dynamically clusters 
or spreads out threads



CDCS vs idealized algorithms

35

 Integer Linear Programming (ILP)

 Simulated annealing

Within 1%
Multi-programmed 
mixes

Same for multi-
threaded mixes

Algorithm runtime overhead (%)

0 0.08 0.08 0.2 6.8 196



See paper for additional results

36

 Under-committed system

 Traffic breakdown

 Energy breakdown

 Factor analysis

 Other sensitivity studies

 Reconfiguration interval sweep

 Incremental reconfiguration IPC trace



Conclusions

37

 Thread placement has a large impact on NUCA 
performance when capacity is well managed

 CDCS reduces the distance to data through joint thread 
and data placement

 CDCS outperforms state-of-the-art NUCA techniques with 
different thread scheduling policies and prevents 
pathological behavior of fixed policies



QUESTIONS

38


