
RUBIK: FAST ANALYTICAL POWER MANAGEMENT 

FOR LATENCY-CRITICAL SYSTEMS 

HARSHAD KASTURE, DAVIDE BARTOLINI, NATHAN BECKMANN, 
DANIEL SANCHEZ 

MICRO 2015 



Motivation 
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 Low server utilization in today’s datacenters results in 
resource and energy inefficiency 

 Stringent latency requirements of user-facing services is a 
major contributing factor 

 Power management for these services is challenging 
 Strict requirements on tail latency 

 Inherent variability in request arrival and service times 

 Rubik uses statistical modeling to adapt to short-term 
variations 
 Respond to abrupt load changes 

 Improve power efficiency 

 Allow colocation of latency-critical and batch applications 



Understanding Latency-Critical Applications 
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Understanding Latency-Critical Applications 
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 The few slowest responses determine user-perceived latency 
 Tail latency (e.g., 95th / 99th percentile), not mean latency, determines 

performance 
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Prior Schemes Fall Short 
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 Traditional DVFS schemes (cpufreq, TurboBoost…) 
 React to coarse grained metrics like processor utilization, 

oblivious to short-term performance requirements 

 

 Power management for embedded systems (PACE, 
GRACE…) 
 Do not consider queuing 

 

 Schemes designed specifically for latency-critical systems 
(PEGASUS [Lo ISCA’14], Adrenaline [Hsu HPCA’15]) 
 Rely on application-specific heuristics 

 Too conservative 

 



Insight 1: Short-Term Load Variations 
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 Latency-critical applications have significant short-term load 
variations 

 

 

 

 

 

 

 

 

 PEGASUS [Lo ISCA’14] uses feedback control to adapt frequency 
setting to diurnal load variations 
 Deduce server load from observed request latency 

 Cannot adapt to short-term variations 
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Insight 2: Queuing Matters! 
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 Tail latency is often determined 
by queuing, not the length of 
individual requests 

 

 

 Adrenaline [Hsu HPCA’15] uses 
application-level hints to 
distinguish long requests from 
short ones 

 Long requests boosted (sped up) 

 Frequency settings must be 
conservative to handle queuing 

 

moses 



Rubik Overview 
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 Use queue length as a measure of instantaneous system 
load 

 Update frequency whenever queue length changes 
 Adapt to short-term load variations 
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Goal: Reshaping Latency Distribution 
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Key Factors in Setting Frequencies 
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 Distribution of cycle requirements of individual requests 

 Larger variance  more conservative frequency setting 

 

 

 How long has a request spent in the queue? 

 Longer wait times  higher frequency 

 

 

  How many requests are queued waiting for service 

 Longer queues  higher frequency 



There’s Math! 
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Efficient Implementation 
14 

 Pre-computed tables store most of the required quantities 

 

 

 

 

 

 

 Table contents are independent of system load! 

 Implemented as a software runtime 
 Hardware support: fast, per-core DVFS, performance counters 

for CPI stacks 
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Evaluation 
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 Microarchitectural simulations using zsim 
 Power model tuned to a real system 

 

 

 

 

 

 

 

 Compare Rubik against two oracular schemes: 
 StaticOracle: Pick the lowest static frequency that meets latency 

targets for a given request trace 
 AdrenalineOracle: Assume oracular knowledge of long and short 

requests, use offline training to pick frequencies for each 
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o Westmere-like OOO cores 
o Fast per-core DVFS 
o CPI stack counters 
o Pin threads to cores 



Evaluation 
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 Five diverse latency-critical applications 

 xapian (search engine) 

 masstree (in-memory key-value store) 

 moses (statistical machine translation) 

 shore-mt (OLTP) 

 specjbb (java middleware) 

 

 

 For each application, latency target set at the tail latency 
achieved at nominal frequency (2.4 GHz) at 50% 
utilization 

 



Tail Latency 
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Core Power Savings 
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 All three schemes save significant power at low utilization 

 Rubik performs best, reducing core power by up to 66% 
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Core Power Savings 
21 

 All three schemes save significant power at low utilization 

 Rubik performs best, reducing core power by up to 66% 

 Rubik’s relative savings increase as short-term adaptation 
becomes more important 

 Rubik saves significant power even at high utilization 

 17% on average, and up to 34% 



Real Machine Power Savings 
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 V/F transition latencies of >100 µs even with integrated 
voltage controllers 

 Likely due to inefficiencies in firmware 

 Rubik successfully adapts to higher V/F transition 
latencies 



Static Power Limits Efficiency 
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RubikColoc: Colocation Using Rubik 
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RubikColoc Savings 
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 RubikColoc saves significant power and resources over a 
segregated datacenter baseline 
 17% reduction in datacenter power consumption; 19% fewer 

machines at high load 

 31% reduction in datacenter power consumption, 41% fewer 
machines at high load 



Conclusions 
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 Rubik uses fine-grained power management to reduce 
active core power consumption by up to 66% 

 

 Rubik uses statistical modeling to account for various 
sources of uncertainty, and avoids application-specific 
heuristics 

 

 RubikColoc uses Rubik to colocate latency-critical and 
batch applications, reducing datacenter power 
consumption by up to 31% while using up to 41% fewer 
machines 
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