
A Scalable Architecture for
Ordered Parallelism

Mark Jeffrey, Suvinay Subramanian,
Cong Yan, Joel Emer, Daniel Sanchez

MICRO 2015

  

Multicores Target Easy Parallelism
2

  

  

  

Regular: known tasks and data

Multicores Target Easy Parallelism
2

  

  

  

Regular: known tasks and data

Multicores Target Easy Parallelism
2

 

  

  

Irregular: unknown tasks and data

Regular: known tasks and data

Multicores Target Easy Parallelism
2

 

  

  

Irregular: unknown tasks and data

Regular: known tasks and data

Unordered tasks

Multicores Target Easy Parallelism
2

 

  

  

Irregular: unknown tasks and data

Regular: known tasks and data

Unordered tasks

Multicores Target Easy Parallelism
2

 

Load-balancing

Synchronization ≈ 
  

  

Irregular: unknown tasks and data

Regular: known tasks and data

Unordered tasks Ordered tasks

Multicores Target Easy Parallelism
2

 

Load-balancing

Synchronization ≈ 
 

  

Irregular: unknown tasks and data

Regular: known tasks and data

Unordered tasks Ordered tasks

Multicores Target Easy Parallelism
2

 

Load-balancing

Synchronization ≈ 
 

Ordering is a simple and general form of synchronization

Irregular: unknown tasks and data

Regular: known tasks and data

Unordered tasks Ordered tasks

Multicores Target Easy Parallelism
2

  

  

Ordering is a simple and general form of synchronization

Irregular: unknown tasks and data

Regular: known tasks and data

Unordered tasks Ordered tasks

Support for order enables widespread parallelism

Multicores Target Easy Parallelism
2

  

  

Outline
3

 Understanding Ordered Parallelism

 Swarm

 Evaluation

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

Order = Distance from source node
0 1 2 3 4 5 6 7 8

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

Order = Distance from source node
0 1 2 3 4 5 6 7 8

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

A C

B

Order = Distance from source node
0 1 2 3 4 5 6 7 8

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

A C

B

Order = Distance from source node
0 1 2 3 4 5 6 7 8

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

C

2

A C

B

B D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

C

2

A C

B

B D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2

A C

B

B

D

D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2

A C

B

B

D

D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2

A C

B

B

D

D

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D
3

1

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D
3

1

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D

E

3

1

3

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D

E

3

1

3

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Example: Parallelism in Dijkstra’s Algorithm
4

Finds shortest-path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D

E

3

1

3

2

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks Data dependences

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

A C

B

B

D

D

E

E
Valid schedule

Data dependences

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

A C

B

B

D

D

E

E
Valid schedule

Data dependences

2x parallelism

(more in larger graphs)

Tasks and dependences

unknown in advance

Parallelism in Dijkstra’s Algorithm
5

Can execute independent tasks out of order

A C

B

B

D

D

E

Order = Distance from source node
0 1 2 3 4 5 6 7 8

E

Tasks

A C

B

B

D

D

E

E
Valid schedule

Data dependences

2x parallelism

(more in larger graphs)

Tasks and dependences

unknown in advance

Need speculative execution to elide order constraints

  

  

  

Insights about Ordered Parallelism
6

1. With perfect speculation, parallelism is plentiful

  

  

Insights about Ordered Parallelism
6

1. With perfect speculation, parallelism is plentiful

  

  

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Parallelism

max 800x

window=64 26x

window=1k 180x

1. With perfect speculation, parallelism is plentiful

  

  

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Parallelism

max 800x

window=64 26x

window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average

  

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Parallelism

max 800x

window=64 26x

window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Parallelism

max 800x

window=64 26x

window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Parallelism

max 800x

window=64 26x

window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Parallelism

max 800x

window=64 26x

window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Parallelism

max 800x

window=64 26x

window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Parallelism

max 800x

window=64 26x

window=1k 180x

1. With perfect speculation, parallelism is plentiful

2. Tasks are tiny: 32 instructions on average

3. Independent tasks are far away in program order

Insights about Ordered Parallelism
6

A C

B

B

D

D

E

E
Ideal schedule

Need a large window of speculation

A C B D E

N-task window

Can execute N tasks ahead
of the earliest active task

Prior Work Can’t Mine Ordered Parallelism

  

  

7

Prior Work Can’t Mine Ordered Parallelism

  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  

7

Prior Work Can’t Mine Ordered Parallelism

  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  

7

Max parallelism TLS parallelism

800x 1.1x

Prior Work Can’t Mine Ordered Parallelism

  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  

7

Max parallelism TLS parallelism

800x 1.1x

Execution order ≠ creation order

Prior Work Can’t Mine Ordered Parallelism

  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  

7

Max parallelism TLS parallelism

800x 1.1x
Task-scheduling priority queues
introduce false data dependences

Execution order ≠ creation order

Prior Work Can’t Mine Ordered Parallelism

  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  Sophisticated parallel algorithms yield limited speedup

7

Max parallelism TLS parallelism

800x 1.1x
Task-scheduling priority queues
introduce false data dependences

Execution order ≠ creation order

Prior Work Can’t Mine Ordered Parallelism

  Thread-Level Speculation (TLS) parallelizes loops and
function calls in sequential programs

  Sophisticated parallel algorithms yield limited speedup

7

Max parallelism TLS parallelism

800x 1.1x
Task-scheduling priority queues
introduce false data dependences

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Execution order ≠ creation order

Swarm Mines Ordered Parallelism
8

  

  

  

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm Mines Ordered Parallelism
8

  

  

  

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm Mines Ordered Parallelism
8

  Execution model based on timestamped tasks

  

  

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm Mines Ordered Parallelism
8

  Execution model based on timestamped tasks

  Architecture executes tasks speculatively out of order

 Leverages execution model to scale

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Outline
9

 Understanding Ordered Parallelism

 Swarm

 Evaluation

Swarm Execution Model
10

Programs consist of timestamped tasks

  

  

  

Swarm Execution Model
10

Programs consist of timestamped tasks

 Tasks can create children tasks with >= timestamp

 Tasks appear to execute in timestamp order

  

Swarm Execution Model
10

Programs consist of timestamped tasks

 Tasks can create children tasks with >= timestamp

 Tasks appear to execute in timestamp order

 Programmed with implicitly-parallel task API

0 2

3

4

4

6

7

5

swarm::enqueue(fptr, ts, args...);

Swarm Execution Model
10

Programs consist of timestamped tasks

 Tasks can create children tasks with >= timestamp

 Tasks appear to execute in timestamp order

 Programmed with implicitly-parallel task API

0 2

3

4

4

6

7

5

Conveys new work to hardware as soon as possible

swarm::enqueue(fptr, ts, args...);

Swarm Execution Model
10

Programs consist of timestamped tasks

 Tasks can create children tasks with >= timestamp

 Tasks appear to execute in timestamp order

 Programmed with implicitly-parallel task API

0 2

3

4

4

6

7

5

Conveys new work to hardware as soon as possible

swarm::enqueue(fptr, ts, args...);

Swarm Task Example: Dijkstra
11

void ssspTask(Timestamp dist, Vertex& v) {

 if (!v.isVisited()) {

 v.distance = dist;

 for (Vertex& u : v.neighbors) {

 Timestamp uDist = dist + edgeWeight(v, u);

 swarm::enqueue(&ssspTask, uDist, u);

 }

 }

}

  

  

Swarm Task Example: Dijkstra
11

void ssspTask(Timestamp dist, Vertex& v) {

 if (!v.isVisited()) {

 v.distance = dist;

 for (Vertex& u : v.neighbors) {

 Timestamp uDist = dist + edgeWeight(v, u);

 swarm::enqueue(&ssspTask, uDist, u);

 }

 }

}

  

  

Swarm Task Example: Dijkstra
11

void ssspTask(Timestamp dist, Vertex& v) {

 if (!v.isVisited()) {

 v.distance = dist;

 for (Vertex& u : v.neighbors) {

 Timestamp uDist = dist + edgeWeight(v, u);

 swarm::enqueue(&ssspTask, uDist, u);

 }

 }

}

  

  

Timestamp

Swarm Task Example: Dijkstra
11

void ssspTask(Timestamp dist, Vertex& v) {

 if (!v.isVisited()) {

 v.distance = dist;

 for (Vertex& u : v.neighbors) {

 Timestamp uDist = dist + edgeWeight(v, u);

 swarm::enqueue(&ssspTask, uDist, u);

 }

 }

}

swarm::enqueue(ssspTask, 0, sourceVertex);

swarm::run();

Timestamp

Swarm Architecture Overview
12

  

  

  

Tiled Multicore

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

Tile Organization

Swarm Architecture Overview
12

Per-tile task units:

  Task Queue: holds task descriptors

  Commit Queue: holds speculative state of finished tasks

Tiled Multicore

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

Tile Organization

TQ

Task Unit

CQ

Swarm Architecture Overview
12

Per-tile task units:

  Task Queue: holds task descriptors

  Commit Queue: holds speculative state of finished tasks

Tiled Multicore

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

Tile Organization

TQ

Task Unit

CQ

Commit queues provide the window of speculation

Task Unit Queues
13

  Task queue: holds task descriptors

  Commit Queue: holds speculative state of finished tasks

Task Queue

9, I
10, I
2, R
8, R
3, F

Cores Commit Queue

8

2

3

68 Task States: IDLE (I) RUNNING (R) FINISHED (F)

Task Unit Queues
13

  Task queue: holds task descriptors

  Commit Queue: holds speculative state of finished tasks

Task Queue

9, I
10, I
2, R
8, R
3, F

Cores Commit Queue

8

2

3

7, I (timestamp=7,

taskFn, args)

New Task

69 Task States: IDLE (I) RUNNING (R) FINISHED (F)

7

Task Unit Queues
14

  Task queue: holds task descriptors

  Commit Queue: holds speculative state of finished tasks

Task Queue

7, R

9, I
10, I
2, F

8, R
3, F

Cores Commit Queue

8
2
3

70 Task States: IDLE (I) RUNNING (R) FINISHED (F)

8

Task Unit Queues
15

  Task queue: holds task descriptors

  Commit Queue: holds speculative state of finished tasks

Task Queue

7, F

9, I
10, I
2, F
8, R
3, F

Cores Commit Queue

8

7

2
3

71 Task States: IDLE (I) RUNNING (R) FINISHED (F)

9 9

Task Unit Queues
16

  Task queue: holds task descriptors

  Commit Queue: holds speculative state of finished tasks

Task Queue

7, F

9, R

10, I
2, F
8, R
3, F

Cores Commit Queue

8

7

2
3

72 Task States: IDLE (I) RUNNING (R) FINISHED (F)

9 9

Task Unit Queues
16

  Task queue: holds task descriptors

  Commit Queue: holds speculative state of finished tasks

Task Queue

7, F

9, R

10, I
2, F
8, R
3, F

Cores Commit Queue

8

7

2
3

73 Task States: IDLE (I) RUNNING (R) FINISHED (F)

Similar to a reorder buffer, but at the task level

High-Throughput Ordered Commits
17

  Suppose 64-cycle tasks execute on 64 cores

 1 task commit/cycle to scale

 TLS commit schemes (successor lists, commit token) too slow

  

  

  

High-Throughput Ordered Commits
17

  Suppose 64-cycle tasks execute on 64 cores

 1 task commit/cycle to scale

 TLS commit schemes (successor lists, commit token) too slow

  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

…
  

  

High-Throughput Ordered Commits
17

  Suppose 64-cycle tasks execute on 64 cores

 1 task commit/cycle to scale

 TLS commit schemes (successor lists, commit token) too slow

  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

…
  Tiles periodically communicate to

find the earliest unfinished task

  

High-Throughput Ordered Commits
17

  Suppose 64-cycle tasks execute on 64 cores

 1 task commit/cycle to scale

 TLS commit schemes (successor lists, commit token) too slow

  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

…
  Tiles periodically communicate to

find the earliest unfinished task

  

High-Throughput Ordered Commits
17

  Suppose 64-cycle tasks execute on 64 cores

 1 task commit/cycle to scale

 TLS commit schemes (successor lists, commit token) too slow

  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

…
  Tiles periodically communicate to

find the earliest unfinished task

  Tiles commit all tasks that
precede it

High-Throughput Ordered Commits
17

  Suppose 64-cycle tasks execute on 64 cores

 1 task commit/cycle to scale

 TLS commit schemes (successor lists, commit token) too slow

  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

…
  Tiles periodically communicate to

find the earliest unfinished task

  Tiles commit all tasks that
precede it

With large commit queues, many tasks commit at once

Amortizes commit costs among many tasks

High-Throughput Ordered Commits
17

  Suppose 64-cycle tasks execute on 64 cores

 1 task commit/cycle to scale

 TLS commit schemes (successor lists, commit token) too slow

  We adapt “Virtual Time” [Jefferson, TOPLAS 1985]

GVT Arbiter

Tile
1

Tile
N

Tile
2

…
  Tiles periodically communicate to

find the earliest unfinished task

  Tiles commit all tasks that
precede it

With large commit queues, many tasks commit at once

Speculative Execution Example
18

  

  

  

0

Time

Core 0

Core 1

Core 2

0

Timestamp order

Speculative Execution Example
18

  

  

  

0 1

3

Time

Core 0

Core 1

Core 2

0 1

3

Timestamp order

Speculative Execution Example
18

  Tasks can execute even if parent is still speculative

 Uncovers more parallelism

  

0 1

3

Time

Core 0

Core 1

Core 2

0 1

3

Timestamp order

Speculative Execution Example
18

  Tasks can execute even if parent is still speculative

 Uncovers more parallelism

  

0 1

3
5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

Timestamp order

Speculative Execution Example
18

  Tasks can execute even if parent is still speculative

 Uncovers more parallelism

  

0 1

3

2

5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

2

Timestamp order

Speculative Execution Example
18

  Tasks can execute even if parent is still speculative

 Uncovers more parallelism

  

0 1

3

2

5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

2

Timestamp order

Data dependence

Speculative Execution Example
18

  Tasks can execute even if parent is still speculative

 Uncovers more parallelism

 May trigger cascading (but selective) aborts

0 1

3

2

5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

2

Timestamp order

Data dependence

Speculative Execution Example
18

  Tasks can execute even if parent is still speculative

 Uncovers more parallelism

 May trigger cascading (but selective) aborts

0 1

3

2

5

4

Time

Core 0

Core 1

Core 2

0 1

3 4

5

2

Timestamp order

Data dependence

Swarm Speculation Mechanisms
19

  Key requirements for speculative execution:

 Fast commits

 Large speculative window Small per-task speculative state

  

  

  

  

  

  

Swarm Speculation Mechanisms
19

  Key requirements for speculative execution:

 Fast commits

 Large speculative window Small per-task speculative state

  Eager versioning + timestamp-based conflict detection

 Bloom filters for cheap read/write sets [Yen, HPCA 2007]

  

  

  

  

Swarm Speculation Mechanisms
19

  Key requirements for speculative execution:

 Fast commits

 Large speculative window Small per-task speculative state

  Eager versioning + timestamp-based conflict detection

 Bloom filters for cheap read/write sets [Yen, HPCA 2007]

 Uses hierarchical memory system to filter conflict checks

  

  

  

Swarm Speculation Mechanisms
19

  Key requirements for speculative execution:

 Fast commits

 Large speculative window Small per-task speculative state

  Eager versioning + timestamp-based conflict detection

 Bloom filters for cheap read/write sets [Yen, HPCA 2007]

 Uses hierarchical memory system to filter conflict checks

  Enables two helpful properties

1.  Forwarding of still-speculative data

2.  On rollback, corrective writes abort dependent tasks only

Outline
20

 Understanding Ordered Parallelism

 Swarm

 Evaluation

Evaluation Methodology
21

  Event-driven, sequential, Pin-based simulator

  Target system: 64-core, 16-tile chip

  
  

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

16 MB shared L3 (1MB/tile)

256 KB per-tile L2s

32 KB per-core L1s

4096 task queue entries (64/core)
1024 commit queue entries (16/core)

256-byte, 8-way Bloom filters

Evaluation Methodology
21

  Event-driven, sequential, Pin-based simulator

  Target system: 64-core, 16-tile chip

  
  

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

16 MB shared L3 (1MB/tile)

256 KB per-tile L2s

32 KB per-core L1s

4096 task queue entries (64/core)
1024 commit queue entries (16/core)

256-byte, 8-way Bloom filters

Evaluation Methodology
21

  Event-driven, sequential, Pin-based simulator

  Target system: 64-core, 16-tile chip

  Scalability experiments from 1-64 cores

 Scaled-down systems have fewer tiles

M
e
m

o
ry

 co
n
tro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
n
tr

o
ll
e
r

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2 Cache

L3 Cache Bank Router

Task Unit

16 MB shared L3 (1MB/tile)

256 KB per-tile L2s

32 KB per-core L1s

4096 task queue entries (64/core)
1024 commit queue entries (16/core)

256-byte, 8-way Bloom filters

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm vs. Software Versions
22

  

  

  

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm vs. Software Versions
22

43x – 117x faster than serial versions

  

  

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm vs. Software Versions
22

43x – 117x faster than serial versions

3x – 18x faster than parallel versions

  

1

32

64

S
p
e
e
d
u
p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm vs. Software Versions
22

43x – 117x faster than serial versions

3x – 18x faster than parallel versions

Simple implicitly-parallel code

Swarm Uses Resources Efficiently
23

  

  

  

0

20

40

60

80

100

C
o
re

 c
y
c
le

s
 (

%
)

bfs sssp astar msf des silo

Commit Abort Queue Stall

Swarm Uses Resources Efficiently
23

  

  

  

0

20

40

60

80

100

C
o
re

 c
y
c
le

s
 (

%
)

bfs sssp astar msf des silo

Commit Abort Queue Stall

Most time spent executing tasks that commit

Swarm Uses Resources Efficiently
23

  

  

  

0

200

400

600

800

1000

1200

1400

A
v
g
 e

n
tr

ie
s
 u

s
e
d

bfs sssp astar msf des silo

2.6K 2.6K 2.3K 2.7K

Task queue Commit queue

0

20

40

60

80

100

C
o
re

 c
y
c
le

s
 (

%
)

bfs sssp astar msf des silo

Commit Abort Queue Stall

Most time spent executing tasks that commit Swarm speculates 200-800

tasks ahead on average

Swarm Uses Resources Efficiently
23

  Speculation adds moderate energy overheads:

 15% extra network traffic

 Conflict check logic triggered in 9-16% of cycles

0

200

400

600

800

1000

1200

1400

A
v
g
 e

n
tr

ie
s
 u

s
e
d

bfs sssp astar msf des silo

2.6K 2.6K 2.3K 2.7K

Task queue Commit queue

0

20

40

60

80

100

C
o
re

 c
y
c
le

s
 (

%
)

bfs sssp astar msf des silo

Commit Abort Queue Stall

Most time spent executing tasks that commit Swarm speculates 200-800

tasks ahead on average

Conclusions
24

  Swarm exploits ordered parallelism efficiently
 Necessary to parallelize many key algorithms

 Simplifies parallel programming in general

  

  

  

Irregular
Regular

Unordered Ordered

Conclusions
24

  Swarm exploits ordered parallelism efficiently
 Necessary to parallelize many key algorithms

 Simplifies parallel programming in general

  Conventional wisdom: Ordering limits parallelism

  

  

Irregular
Regular

Unordered Ordered

Conclusions
24

  Swarm exploits ordered parallelism efficiently
 Necessary to parallelize many key algorithms

 Simplifies parallel programming in general

  Conventional wisdom: Ordering limits parallelism

  

  

Expressive execution model + large window =
Only true data dependences limit parallelism

Irregular
Regular

Unordered Ordered

Conclusions
24

  Swarm exploits ordered parallelism efficiently
 Necessary to parallelize many key algorithms

 Simplifies parallel programming in general

  Conventional wisdom: Ordering limits parallelism

  Conventional wisdom: Speculation is wasteful

  

Expressive execution model + large window =
Only true data dependences limit parallelism

Irregular
Regular

Unordered Ordered

Conclusions
24

  Swarm exploits ordered parallelism efficiently
 Necessary to parallelize many key algorithms

 Simplifies parallel programming in general

  Conventional wisdom: Ordering limits parallelism

  Conventional wisdom: Speculation is wasteful

  

Expressive execution model + large window =
Only true data dependences limit parallelism

Speculation unlocks plentiful ordered parallelism
Can trade parallelism for efficiency (e.g., simpler cores)

Irregular
Regular

Unordered Ordered

Thanks for your attention!
Questions?

A Scalable Architecture for Ordered Parallelism

Mark Jeffrey, Suvinay Subramanian, Cong Yan,
Joel Emer, Daniel Sanchez

