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Similar to a reorder buffer, but at the task level 
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  Key requirements for speculative execution: 

 Fast commits 

 Large speculative window  Small per-task speculative state 

 

  Eager versioning + timestamp-based conflict detection 

 Bloom filters for cheap read/write sets [Yen, HPCA 2007] 

 Uses hierarchical memory system to filter conflict checks 

  Enables two helpful properties 

1.  Forwarding of still-speculative data 

2.  On rollback, corrective writes abort dependent tasks only 
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  Event-driven, sequential, Pin-based simulator 

  Target system: 64-core, 16-tile chip 
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  Event-driven, sequential, Pin-based simulator 

  Target system: 64-core, 16-tile chip 

  Scalability experiments from 1-64 cores 

 Scaled-down systems have fewer tiles 
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43x – 117x faster than serial versions 

3x – 18x faster than parallel versions 

Simple implicitly-parallel code 
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  Speculation adds moderate energy overheads:  

 15% extra network traffic 

 Conflict check logic triggered in 9-16% of cycles 
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Expressive execution model + large window =  
Only true data dependences limit parallelism 

Speculation unlocks plentiful ordered parallelism 
Can trade parallelism for efficiency (e.g., simpler cores) 
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