-—g T
\

:

:

W

C
C
g o
g 2
o 9V
en
mn O
c 2
(0]
= ¢
O O
Z 0O

CSAIL

=

Il

A SIMPLE WAY TO REMOVE

TALUS

PERFORMANCE CLIFFS IN CACHES

CACHES HAVE PERFORMANCE CLIFFS

100% miss
100% miss

100% miss
100% miss

0% miss

libquantum

100%

Miss rate

e

Cache size

‘32 MB
~ 7

CLIFFS ARE A PROBLEM

Cliffs are wasteful

Cliffs cause annoying performance bugs libquantum

Cliffs complicate cache partitioning
* NP-hard problem

Miss rate

Cache size

PRIOR WORK: HIGH-PERFORMANCE

REPLACEMENT VS. CACHE PARTITIONING

Individual apps: High-performance replacement
" E.g., RRIP [ISCA’'10]

Shared caches: Cache partitioning
- E.g., UCP [MICRO’06]

For shared
" Both in perf

nt

Partitioning
replacemer

nce

Can partitic

Miss rate

Iluqn’rum

Cache size

— LRU
— SRRIP
— DRRIP

IN THIS TALK WE WILL. ..

Give a simple technique to eliminate cliffs (Talus)
* Talus partitions within a single access stream

Prove it works under simple assumptions
= Agnostic to app or replacement policy

No cliffs = Simpler cache partitioning

Talus combines the benefits of high-performance replacement
and partitioning

Miss rate

libquantum

Cache size

LRU
Talus

ROAD MAP

Talus example
Theory
Implementation

Evaluation

TALUS USES MISS CURVES

libquantum cactusADM

>
>

LRU
— SRRIP

Miss rate
Miss rate

>

Cache size Cache size

Cliffs occur under a variety of access pattern and replacement policies

Talus works on miss curves only;
Talus is agnostic to app and replacement policy

TALUS EXAMPLE

Misses (MPKI)

6

Cache size (MB)

TALUS EXAMPLE

Misses (MPKI)

25

— Original
— Talus

a
Cache size

6

(MB)

10

TALUS EXAMPLE

Misses (MPKI)

25

20

15+

10+

I Target: /

6 MPKI @ 4MB

— Original
— Talus

a
Cache size

6

(MB)

10

10

TALUS EXAMPLE

Misses (MPKI)

25

20

15+

10+

I Target: /

6 MPKI @ 4MB

5MB

— Original
— Talus

a
Cache size

6

(MB)

10

11

(HYPOTHETICAL) BASELINE CACHE AT 2 MB

sssssss (APKI)

' 2
T

(Vp)

12

| (HYPOTHETICAL) BASELINE CACHE AT 2 MB

Accesses (APKI)

=

13

(HYPOTHETICAL) BASELINE CACHE AT 5 MB

Accesses (APKI) Misses (MPKI)

=)

=

14

| (HYPOTHETICAL) BASELINE CACHE AT 5 MB

15

TALUS AT 4 MB

Combine hypothetical baseline 2 MB & 5 MB

Misses (MPKI)

| TALUS AT 4 MB

51 7
%) 3 3 8
Cache size (MB)

Spread accesses disproportionally across partitions to match baselines

Accesses (APKI)

Misses (MPKI)

17

EXAMPLE SUMMARY

Talus avoids cliffs by combining efficient cache sizes of baseline

Does not know or care about app or replacement details

= Just needs miss curve!

Nothing special about set partitioning; Talus works on other partitioning techniques

But how to choose partition configuration?

18

ROAD MAP

Talus example

Theory
= Proof sketch

* Talus vs prior policies
Implementation

Evaluation

19

GOAL: CONVEXITY NNOIDS CLIFFS

libquantum cactusADM

A

Miss rate
Miss rate

\\\ -

Cache size Cache size

Convex miss curves do not have cliffs

>

LRU
— Convex

20

SHADOW PARTITIONING

Talus divides the cache (of size s) into shadow partitions, invisible to software

a: Sq lines

Accesses

Total misses

f:s — sq lines

Talus ensures convexity under simple assumptions

21

ASSUMPTIONS

Miss curves are stable (eg, across tens of milliseconds)

Cache size is the dominant factor in miss rate (ie, not associativity)

Pseudo-random sampling of an access stream yields a statistically self-similar stream

These assumptions are implicit in prior work (see paper)

12

| SAMPLING SCALES THE MISS CURVE

(MPKI)

Misses

13

SHADOW PARTITIONING INTERPOLATES MPKI1 OF
THE ORIGINAL MISS CURVE

(MPKI)

Misses

24

TALUS GUARANTEES CONVEXITY

Just interpolate the convex
hull of the original miss

— Original
— Talus

curvel

Misses (MPKI)

5MB

°[Target: /

6 MPKI @ 4MB

6

Cache size (MB)

25

THERE™S MATH!

Miss curve scaling:

m'(s')=pm (S—’)

p

Shadow partitioned miss rate:

Mghadow(s) — P M (5;1) +(1—p) m(

How to interpolate between a and f:

S—S1
1-p

)

26

ROAD MAP

Motivation
Talus example

Theory
" Proof sketch
* Talus vs prior policies

Implementation

Evaluation

2]

PRIOR TECHNIQUE: BYPASSING

Bypassing is a common replacement technique to avoid thrashing
" E.g., BIP [ISCA’'07] bypasses 31/32 accesses

We compute optimal bypassing rate from miss curve
Bypassing handles some kinds of cliffs, but not all

=>» Talus outperforms bypassing on some access patterns

28

BYPASSING PRODUCES COMPETING EFFECTS

(MPKI)

Misses

29

BYPASSING PRODUCES COMPETING EFFECTS

— Not bypassed (sampled)

Bypassing reduces misses
for sampled accesses

Misses (MPKI)

6

Cache size (MB)

30

BYPASSING PRODUCES COMPETING EFFECTS

Bypassing reduces misses
for sampled accesses

...But adds misses for
bypassed accesses

Misses (MPKI)

25

20

15+

10+

— Original
— Not bypassed (sampled)
— Including bypassing

Bypassing @ 4MB:
8 MPKI

\

6 8

Cache size (MB)

10

See paper for details!

31

TALUS VS BYPASSING

Talus reduces miss rate

Talus is convex

" |.e., avoids cliffs!

Misses (MPKI)

25

20

15+

10+

— Original
— Talus
— Optimal bypassing | |

Cache size (MB)

32

ROAD MAP

Talus example
Theory
Implementation

Evaluation

33

CONVENTIONAL PARTITIONED CACHE

Hardware - \ Software

Eg, UCP [MICRO’06]

34

EFFICIENT TALUS IMPLEMENTATION

35

EFFICIENT TALUS IMPLEMENTATION

SSSSSSSSS

I Pre

red allocatio
Post-
— processing

Shadow partition
& sampling rate

36

EFFICIENT TALUS IMPLEMENTATION

Miss curves

)

Miss curve

Pre-
- Software

processing

Hardware .
monitors

Partitioned Cache Convex hulls

Partitioning

@ Algorithm

s Desired allocations
o

(a8

Post-
processing
B
Shadow partition sizes

& sampling rate

37

EFFICIENT TALUS IMPLEMENTATION

0x074705 we—) e

38

TALUS IMPOSES LOW OVERHEADS

Computing convex hulls is cheap: O(N)

Computing shadow partition sizes is cheap: 0(1)

Talus reduces software overheads by making simple algorithms perform well _

Shadow partitioning is cheap: similar monitors to prior work (see paper), 1 bit per tag, 8 bits
per partition, simple hash function

Talus improves cache performance and adds <1% state

910M}}OS

—_

39

SIOMPIDH

EVALUATION CLATMS

We compare Talus to high-performance replacement policies and partitioning schemes
Talus is convex in practice
Single-program: Talus gets similar performance to prior replacement policies

Multi-program: Talus greatly simplifies cache partitioning and slightly outperforms prior,
complex partitioning algorithms

Talus combines the benefits of high-performance replacement and partitioning

40

METHODOLOGY

Evaluate 1- and 8-core system similar to Silvermont on zsim

= See paper for details

Individual SPEC CPU2006 benchmarks + random mixes

Talk only shows Talus on LRU with Vantage partitioning (Talus +V/LRU)

4]

MPKI

EVALUATION: SINGLE-THREADED

30
25
20
15
10

5

0
0

1 2
LLC Size

3 4

LLC Size (MB)

| 35
xalancbmk 30
25
g 20
s 15
10
5
5 6 7 8 0
1.5 .
v erlbench
< 1.0} P |
=
0.5}
00 | | | | | | \
01 2 3 45 66 8

— |RU
I} Ib\m_
01 2 3 45 6 8
LLC Size (MB) _
15}
X 10|
p=3
5]
0 |
0 1

2 3 45 6 8
LLC Size (MB)

41

MPKI

EVALUATION: SINGLE-THREADED

— LRU — Talus +V/LRU

30 T T T T - 35
25 xalancbmk 30
20 25 . . .|
15 g 20 Talus is convex in practice!
10 s 15
10} .
5 5| |
012345678 %0132 345678
LLC Size LLC Size (MB) I
1.5 - 15L cf
= erlbench —
X 1.0} P - < 10})
= =
05} 5F .
00 | | | | | | \ 0 | | | | | | |
01 2 3 45 o 8 01 2 3 45 o 8
LLC Size (MB) LLC Size (MB)

43

MPKI

EVALUATION: SINGLE-THREADED

30
25
20
15
10

O U

2 3 4
LLC Size

LLC Size (MB)

— LRU

— Talus +V/LRU

— PDP

PDP performs similarly but is
not always convex

35
xalancbmk 30
25
g 20
s 15
10|
51
0
5 6 7 8 0
1.5 .
v erlbench
< 161 P i
=
05k .
00 | | | | | | T
c.1 2 3 4 5 6 8

1 2 3 45 6 7
LLC Size (MB)

MPKI

15| cf |
10+ -

0
01 2 3 456 8
LLC Size (MB)

44

MPKI

EVALUATION: SINGLE-THREADED

30
25
20
15
10

5

0
0

xalancbmk

1 2 3 4
LLC Size

LLC Size (MB)

— LRU — Talus +V/LRU —- PDP SRRIP
] 35
- 30
1 2> RRIP polici id
| < 20 policies avoid most
] % 15 cliffs, but their performance
10}] depends on access pattern
i s | |
——b—l. - 6' ‘ | | | | ! | |
6 7 8 01 2 3456 e
LLC Size (MB) __ -
1.5\ _ 5] cf
= erlbench v,
X 1.0 P - X 10}]
= \ =
0.5} \ 1 5 |
0.0 | | | | | P — 0 | ‘ ‘ | |
01 2 3 456 7 8 01 2 3 456 8

LLC Size (MB)

45

MPKI

EVALUATION: SINGLE-THREADED

— LRU — Talus +V/LRU — PDP SRRIP —— DRRIP
30 | | | |] 35
25 xalancbmk 30
ig i = %(5) RRIP policies avoid most
10 : % 15 cliffs, but their performance
. 10}] depends on access pattern
i s | |
0 | | | ' 6' \ l | | | ! | |
012 3 456 7 8 01 2 374756 8
LLC Size LLC Size (MB) — T T T T T T
1.5 i 15 \ cf
= erlbench v,
£ 1.0 P - X 10t .
= =
0.5} 5k i
.0 l l l l l ‘I | l l l | | l l
01 2 3 456 8 01 2 3 456 8
LLC Size (MB) LLC Size (MB)

46

GMEAN [PC IMPROVEMENT VS LRU

IPC Speedup vs LRU (%)

IPC Speedup vs LRU (%)

1.2

8 MB

Talus on LRU gets similar
speedups to prior policies.

47

| MULTI-PROGRAMMED PERFORMANCE

|

— LRU

Weighted Speedup

2|0 4‘0 6IO Sb
Workload Mix

48

MULTI-PROGRAMMED PERFORMANCE

— LRU — Talus +V/LRU (Hill)

Talus is convex 2 naive hill
climbing yields large
performance gains

Weighted Speedup

60 80 100

40
Workload Mix

0 20

49

MULTI-PROGRAMMED PERFORMANCE

— LRU — Talus +V/LRU (Hill) — Hill

O 14|

>

U . . .

) 13l Hill climbing alone does not
8_ | improve performance much
wn

o) 1.2+

Q

i’

L 1.1}

Ao)

=

60 80 100

40
Workload Mix

0 20

50

MULTI-PROGRAMMED PERFORMANCE

— LRU — Talus +V/LRU (Hill) — Hill Lookahead

O 4l

>

U .

) 13l Lookahead is close to Talus,
8_ | but more expensive
)

o) 1.2+ .

()

)

L 1.1} 1

Ao) :

O,

< 10

o

20 60 80 100

40
Workload Mix

51

MULTI-PROGRAMMED PERFORMANCE

— LRU — Talus +V/LRU (Hill) — Hill Lookahead —— TA-DRRIP

O 14|

>

..l Partitioning techniques
8_ | outperform high-performance
@p policies on shared caches
o) 1.2}

)

i’

L 11}

2

O,

< 10

60 80 100

40
Workload Mix

0 20

52

TALUS SIMPLIFIES PARTITIONING ALGORITHMS
AND REDUCES OVERHEADS

A

o — Hill climbing

o

_“E’ Lookahead
Efficient alternatives to o

Lookahead add o — 300X @ 256 cores

significant complexity! §

%

n

= -
>

53

MULTI-PROGRAMMED FAIRNESS

— LRU — Talus +V/LRU (Fair)

1.0}
8x xalancbmk

Talus with fair (equal-sized) partitions

ol | decreases execution time without
degrading fairness.

0.6
See paper for other apps & schemes!

Execution Time

0.2

0 10 20 30 40 50 60 70 80

Cache Size (MB)

54

MORE CONTENT IN PAPER!

Detailed proofs
Prove optimal replacement is convex

Evaluation:

" Talus works on way partitioning
" Talus works with SRRIP

* More benchmarks

" Talus works with pre-fetching and multi-threading

55

THANK YOU!

Talus avoids cliffs and ensures
convexity
* Proven under simple assumptions

* Verified by experiment

Analysis of shadow partitioning
shows advantages vs bypassing

Talus improves performance
and simplifies cache
partitioning

Talus combines the benefits of
high-performance replacement
and partitioning

56

