
TALUS: A SIMPLE WAY TO REMOVE
PERFORMANCE CLIFFS IN CACHES

Nathan Beckmann

Daniel Sanchez

CACHES HAVE PERFORMANCE CLIFFS

2

32 MB array

4 MB LLC

libquantum

100% miss
8 MB LLC100% miss

16 MB LLC100% miss

31 MB LLC100% miss 32 MB LLC

0% miss

Cache size

M
is

s
ra

te

100%

32 MB

CLIFFS ARE A PROBLEM

Cliffs are wasteful

Cliffs cause annoying performance bugs

Cliffs complicate cache partitioning
 NP-hard problem

3

Cache size

M
is

s
ra

te

libquantum

PRIOR WORK: HIGH-PERFORMANCE
REPLACEMENT VS. CACHE PARTITIONING

Individual apps: High-performance replacement
 E.g., RRIP [ISCA’10]

Shared caches: Cache partitioning
 E.g., UCP [MICRO’06]

For shared caches, partitioning > replacement
 Both in performance & flexibility

Partitioning is hard to use with high-performance
replacement!

Can partitioning help individual apps?

4

LRU

DRRIP

Cache size

M
is

s
ra

te

libquantum
SRRIP

32 MB LLC

16 MB

libquantum #1

100% miss

16 MB

libquantum #2

100% miss

32 MB

libquantum #1

0% miss

IN THIS TALK WE WILL…
Give a simple technique to eliminate cliffs (Talus) Talus partitions within a single access stream

Prove it works under simple assumptions Agnostic to app or replacement policy

No cliffs  Simpler cache partitioning

Talus combines the benefits of high-performance replacement
and partitioning

5

LRU
Talus

Cache size

M
is

s
ra

te

libquantum

ROAD MAP

Talus example

Theory

Implementation

Evaluation

6

TALUS USES MISS CURVES

Cliffs occur under a variety of access pattern and replacement policies

7

Cache size

M
is

s
ra

te
libquantum cactusADM

Cache size

M
is

s
ra

te

LRU
SRRIP

Talus works on miss curves only;
Talus is agnostic to app and replacement policy

TALUS EXAMPLE

8

TALUS EXAMPLE

9

TALUS EXAMPLE

10

TALUS EXAMPLE

11

(HYPOTHETICAL) BASELINE CACHE AT 2 MB

12

24

Accesses (APKI)

12

Misses (MPKI)

S
e
ts

Ways

(HYPOTHETICAL) BASELINE CACHE AT 2 MB

13

24

Accesses (APKI)

12

Misses (MPKI)

4/3 MB

2/3 MB
Th

ir
d

Tw
o
-t

hi
rd

s

(HYPOTHETICAL) BASELINE CACHE AT 5 MB

14

24

Accesses (APKI)

3

Misses (MPKI)

(HYPOTHETICAL) BASELINE CACHE AT 5 MB

15

24

Accesses (APKI)

3

Misses (MPKI)

5/3 MB

10/3 MB

TALUS AT 4 MB

16

5/3 MB

10/3 MB

2/3 MB

4/3 MB

10/3 MB

2/3 MB

Combine hypothetical baseline 2 MB & 5 MB

TALUS AT 4 MB

17

10/3 MB

2/3 MB

Spread accesses disproportionally across partitions to match baselines

24

Accesses (APKI)

6

Misses (MPKI)

???

EXAMPLE SUMMARY

Talus avoids cliffs by combining efficient cache sizes of baseline

Does not know or care about app or replacement details
 Just needs miss curve!

Nothing special about set partitioning; Talus works on other partitioning techniques

But how to choose partition configuration?

18

ROAD MAP

Talus example

Theory
 Proof sketch

 Talus vs prior policies

Implementation

Evaluation

19

GOAL: CONVEXITY AVOIDS CLIFFS

Convex miss curves do not have cliffs

20

Cache size

M
is

s
ra

te
libquantum cactusADM

Cache size

M
is

s
ra

te

LRU
Convex

SHADOW PARTITIONING

Talus divides the cache (of size �) into shadow partitions, invisible to software

21

:ߚ � − �1 lines

Total misses
Accesses

:ߙ �1 lines

Talus ensures convexity under simple assumptions

ASSUMPTIONS

Miss curves are stable (eg, across tens of milliseconds)

Cache size is the dominant factor in miss rate (ie, not associativity)

Pseudo-random sampling of an access stream yields a statistically self-similar stream

These assumptions are implicit in prior work (see paper)

22

SAMPLING SCALES THE MISS CURVE

23

24

APKI

12

MPKI

4/3 MB

2/3 MB

8 15/3 MB

8 4

SHADOW PARTITIONING INTERPOLATES MPKI OF
THE ORIGINAL MISS CURVE

24

TALUS GUARANTEES CONVEXITY

Just interpolate the convex
hull of the original miss
curve!

25

THERE’S MATH!
Miss curve scaling: �′ �′ = � � �′�
Shadow partitioned miss rate:�shadow � = � � �1� + 1 − � � �−�11−�
How to interpolate between ߙ and ߚ:� = ఉ−�ఉ−ఈ , �1 = ߙ�

26

ROAD MAP

Motivation

Talus example

Theory Proof sketch
 Talus vs prior policies

Implementation

Evaluation

27

PRIOR TECHNIQUE: BYPASSING

Bypassing is a common replacement technique to avoid thrashing
 E.g., BIP [ISCA’07] bypasses 31/32 accesses

We compute optimal bypassing rate from miss curve

Bypassing handles some kinds of cliffs, but not all

 Talus outperforms bypassing on some access patterns

28

BYPASSING PRODUCES COMPETING EFFECTS

29

BYPASSING PRODUCES COMPETING EFFECTS

30

 Bypassing reduces misses

for sampled accesses

BYPASSING PRODUCES COMPETING EFFECTS

31

 Bypassing reduces misses

for sampled accesses

 …But adds misses for
bypassed accesses

See paper for details!

TALUS VS BYPASSING

Talus reduces miss rate

Talus is convex
 I.e., avoids cliffs!

32

ROAD MAP

Talus example

Theory

Implementation

Evaluation

33

CONVENTIONAL PARTITIONED CACHE

34

SoftwareHardware
Miss curve

monitors

Partitioning

Algorithm

Partitioned Cache

Pa
rt

it
io

n

Eg, UCP [MICRO’06]

EFFICIENT TALUS IMPLEMENTATION

35

SoftwareHardware
Miss curve

monitors
Pre-

processing

Partitioning

Algorithm

Post-

processing

Partitioned Cache

Pa
rt

it
io

n

Talus additions

EFFICIENT TALUS IMPLEMENTATION

36

SoftwareHardware
Miss curve

monitors

Partitioning

Algorithm

Desired allocations

Convex hulls

Shadow partition sizes
& sampling rate

Miss curves

Partitioned Cache

Pa
rt

it
io

n

Pre-

processing

Post-

processing

EFFICIENT TALUS IMPLEMENTATION

37

SoftwareHardware
Miss curve

monitors

Partitioning

Algorithm

Desired allocations

Convex hulls

Shadow partition sizes
& sampling rate

Miss curves

Partitioned Cache

Pa
rt

it
io

n

ߙ

ߚ

Pre-

processing

Post-

processing

EFFICIENT TALUS IMPLEMENTATION

38

H3

hash

Limit

Reg

Address

Limit

Reg

…

ߙ
ߚߙ
ߚ

Partitioned Cache

0x074705

TALUS IMPOSES LOW OVERHEADS

Computing convex hulls is cheap: ܱ ܰ
Computing shadow partition sizes is cheap: ܱ 1

Talus reduces software overheads by making simple algorithms perform well

Shadow partitioning is cheap: similar monitors to prior work (see paper), 1 bit per tag, 8 bits
per partition, simple hash function

Talus improves cache performance and adds <1% state

39

S
o
ftw

a
re

H
a

rd
w

a
re

EVALUATION CLAIMS

We compare Talus to high-performance replacement policies and partitioning schemes

Talus is convex in practice

Single-program: Talus gets similar performance to prior replacement policies

Multi-program: Talus greatly simplifies cache partitioning and slightly outperforms prior,
complex partitioning algorithms

Talus combines the benefits of high-performance replacement and partitioning

40

METHODOLOGY

Evaluate 1- and 8-core system similar to Silvermont on zsim
 See paper for details

Individual SPEC CPU2006 benchmarks + random mixes

Talk only shows Talus on LRU with Vantage partitioning (Talus +V/LRU)

41

EVALUATION: SINGLE-THREADED

42

lbm

mcf

xalancbmk

perlbench

EVALUATION: SINGLE-THREADED

43

lbm

mcf

Talus is convex in practice!

xalancbmk

perlbench

EVALUATION: SINGLE-THREADED

44

lbm

mcf

PDP performs similarly but is
not always convex

xalancbmk

perlbench

EVALUATION: SINGLE-THREADED

45

lbm

mcf

RRIP policies avoid most
cliffs, but their performance
depends on access pattern

xalancbmk

perlbench

EVALUATION: SINGLE-THREADED

46

xalancbmk lbm

mcf

RRIP policies avoid most
cliffs, but their performance
depends on access pattern

perlbench

GMEAN IPC IMPROVEMENT VS LRU

47

1 MB 8 MB

Talus on LRU gets similar
speedups to prior policies.

MULTI-PROGRAMMED PERFORMANCE

48

MULTI-PROGRAMMED PERFORMANCE

49

Talus is convex  naïve hill
climbing yields large
performance gains

MULTI-PROGRAMMED PERFORMANCE

50

Hill climbing alone does not
improve performance much

MULTI-PROGRAMMED PERFORMANCE

51

Lookahead is close to Talus,
but more expensive

MULTI-PROGRAMMED PERFORMANCE

52

Partitioning techniques
outperform high-performance
policies on shared caches

TALUS SIMPLIFIES PARTITIONING ALGORITHMS
AND REDUCES OVERHEADS

53

of cores

S
o
ft

w
a

re
 o

ve
rh

e
a

d Hill climbing

Lookahead

300X @ 256 cores
Efficient alternatives to

Lookahead add
significant complexity!

MULTI-PROGRAMMED FAIRNESS

54

Talus with fair (equal-sized) partitions
decreases execution time without

degrading fairness.

See paper for other apps & schemes!

8x xalancbmk

MORE CONTENT IN PAPER!

Detailed proofs

Prove optimal replacement is convex

Evaluation:
 Talus works on way partitioning

 Talus works with SRRIP

 More benchmarks

 Talus works with pre-fetching and multi-threading

55

THANK YOU!

• Talus avoids cliffs and ensures
convexity
• Proven under simple assumptions

• Verified by experiment

• Analysis of shadow partitioning
shows advantages vs bypassing

• Talus improves performance
and simplifies cache
partitioning

• Talus combines the benefits of
high-performance replacement
and partitioning

56

