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CACHES HAVE PERFORMANCE CLIFFS
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CLIFFS ARE A PROBLEM

Cliffs are wasteful

Cliffs cause annoying performance bugs

Cliffs complicate cache partitioning
 NP-hard problem
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PRIOR WORK: HIGH-PERFORMANCE 
REPLACEMENT VS. CACHE PARTITIONING

Individual apps: High-performance replacement 
 E.g., RRIP [ISCA’10]

Shared caches: Cache partitioning
 E.g., UCP [MICRO’06]

For shared caches, partitioning > replacement
 Both in performance & flexibility

Partitioning is hard to use with high-performance 
replacement!

Can partitioning help individual apps?
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IN THIS TALK WE WILL…
Give a simple technique to eliminate cliffs (Talus) Talus partitions within a single access stream

Prove it works under simple assumptions Agnostic to app or replacement policy

No cliffs  Simpler cache partitioning

Talus combines the benefits of high-performance replacement 
and partitioning
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ROAD MAP

Talus example

Theory

Implementation

Evaluation
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TALUS USES MISS CURVES

Cliffs occur under a variety of access pattern and replacement policies
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Talus works on miss curves only;
Talus is agnostic to app and replacement policy



TALUS EXAMPLE
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TALUS EXAMPLE
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TALUS EXAMPLE
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TALUS EXAMPLE
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(HYPOTHETICAL) BASELINE CACHE AT 2 MB
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(HYPOTHETICAL) BASELINE CACHE AT 2 MB
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(HYPOTHETICAL) BASELINE CACHE AT 5 MB
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(HYPOTHETICAL) BASELINE CACHE AT 5 MB
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TALUS AT 4 MB
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TALUS AT 4 MB
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EXAMPLE SUMMARY

Talus avoids cliffs by combining efficient cache sizes of baseline

Does not know or care about app or replacement details
 Just needs miss curve!

Nothing special about set partitioning; Talus works on other partitioning techniques

But how to choose partition configuration?
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ROAD MAP

Talus example

Theory
 Proof sketch

 Talus vs prior policies

Implementation

Evaluation
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GOAL: CONVEXITY AVOIDS CLIFFS

Convex miss curves do not have cliffs
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SHADOW PARTITIONING

Talus divides the cache (of size �) into shadow partitions, invisible to software
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ASSUMPTIONS

Miss curves are stable (eg, across tens of milliseconds)

Cache size is the dominant factor in miss rate (ie, not associativity)

Pseudo-random sampling of an access stream yields a statistically self-similar stream

These assumptions are implicit in prior work (see paper)
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SAMPLING SCALES THE MISS CURVE
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SHADOW PARTITIONING INTERPOLATES MPKI OF 
THE ORIGINAL MISS CURVE
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TALUS GUARANTEES CONVEXITY

Just interpolate the convex 
hull of the original miss 
curve!
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THERE’S MATH!
Miss curve scaling: �′ �′ = � � �′�
Shadow partitioned miss rate:�shadow � = � � �1� + 1 − � � �−�11−�
How to interpolate between ߙ and ߚ:� = ఉ−�ఉ−ఈ , �1 = ߙ�
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ROAD MAP

Motivation

Talus example

Theory Proof sketch
 Talus vs prior policies

Implementation

Evaluation
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PRIOR TECHNIQUE: BYPASSING

Bypassing is a common replacement technique to avoid thrashing
 E.g., BIP [ISCA’07] bypasses 31/32 accesses

We compute optimal bypassing rate from miss curve

Bypassing handles some kinds of cliffs, but not all

 Talus outperforms bypassing on some access patterns

28



BYPASSING PRODUCES COMPETING EFFECTS
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BYPASSING PRODUCES COMPETING EFFECTS
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 Bypassing reduces misses 

for sampled accesses



BYPASSING PRODUCES COMPETING EFFECTS
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 Bypassing reduces misses 

for sampled accesses

 …But adds misses for 
bypassed accesses

See paper for details!



TALUS VS BYPASSING

Talus reduces miss rate

Talus is convex
 I.e., avoids cliffs!
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ROAD MAP

Talus example

Theory

Implementation

Evaluation
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CONVENTIONAL PARTITIONED CACHE
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EFFICIENT TALUS IMPLEMENTATION
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EFFICIENT TALUS IMPLEMENTATION
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EFFICIENT TALUS IMPLEMENTATION
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EFFICIENT TALUS IMPLEMENTATION
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TALUS IMPOSES LOW OVERHEADS

Computing convex hulls is cheap: ܱ ܰ
Computing shadow partition sizes is cheap: ܱ 1

Talus reduces software overheads by making simple algorithms perform well

Shadow partitioning is cheap: similar monitors to prior work (see paper), 1 bit per tag, 8 bits 
per partition, simple hash function

Talus improves cache performance and adds <1% state
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EVALUATION CLAIMS

We compare Talus to high-performance replacement policies and partitioning schemes

Talus is convex in practice

Single-program: Talus gets similar performance to prior replacement policies

Multi-program: Talus greatly simplifies cache partitioning and slightly outperforms prior, 
complex partitioning algorithms

Talus combines the benefits of high-performance replacement and partitioning
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METHODOLOGY

Evaluate 1- and 8-core system similar to Silvermont on zsim
 See paper for details

Individual SPEC CPU2006 benchmarks + random mixes

Talk only shows Talus on LRU with Vantage partitioning (Talus +V/LRU)
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EVALUATION: SINGLE-THREADED
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EVALUATION: SINGLE-THREADED
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EVALUATION: SINGLE-THREADED
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EVALUATION: SINGLE-THREADED
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EVALUATION: SINGLE-THREADED
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GMEAN IPC IMPROVEMENT VS LRU
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MULTI-PROGRAMMED PERFORMANCE
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MULTI-PROGRAMMED PERFORMANCE
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Talus is convex  naïve hill 
climbing yields large 
performance gains



MULTI-PROGRAMMED PERFORMANCE
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Hill climbing alone does not 
improve performance much



MULTI-PROGRAMMED PERFORMANCE
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Lookahead is close to Talus, 
but more expensive



MULTI-PROGRAMMED PERFORMANCE
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Partitioning techniques 
outperform high-performance 
policies on shared caches



TALUS SIMPLIFIES PARTITIONING ALGORITHMS 
AND REDUCES OVERHEADS
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MULTI-PROGRAMMED FAIRNESS
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Talus with fair (equal-sized) partitions 
decreases execution time without 

degrading fairness.

See paper for other apps & schemes!
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MORE CONTENT IN PAPER!

Detailed proofs

Prove optimal replacement is convex

Evaluation:
 Talus works on way partitioning

 Talus works with SRRIP

 More benchmarks

 Talus works with pre-fetching and multi-threading
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THANK YOU!

• Talus avoids cliffs and ensures 
convexity
• Proven under simple assumptions

• Verified by experiment

• Analysis of shadow partitioning
shows advantages vs bypassing

• Talus improves performance 
and simplifies cache 
partitioning

• Talus combines the benefits of 
high-performance replacement 
and partitioning
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