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CACHES HAVE PERFORMANCE CLIFFS
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CLIFFS ARE A PROBLEM

Cliffs are wasteful

Cliffs cause annoying performance bugs

Cliffs complicate cache partitioning
 NP-hard problem
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PRIOR WORK: HIGH-PERFORMANCE 
REPLACEMENT VS. CACHE PARTITIONING

Individual apps: High-performance replacement 
 E.g., RRIP [ISCA’10]

Shared caches: Cache partitioning
 E.g., UCP [MICRO’06]

For shared caches, partitioning > replacement
 Both in performance & flexibility

Partitioning is hard to use with high-performance 
replacement!

Can partitioning help individual apps?
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IN THIS TALK WE WILL…
Give a simple technique to eliminate cliffs (Talus) Talus partitions within a single access stream

Prove it works under simple assumptions Agnostic to app or replacement policy

No cliffs  Simpler cache partitioning

Talus combines the benefits of high-performance replacement 
and partitioning
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ROAD MAP

Talus example

Theory

Implementation

Evaluation
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TALUS USES MISS CURVES

Cliffs occur under a variety of access pattern and replacement policies
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Talus works on miss curves only;
Talus is agnostic to app and replacement policy



TALUS EXAMPLE
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TALUS EXAMPLE
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TALUS EXAMPLE
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TALUS EXAMPLE
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(HYPOTHETICAL) BASELINE CACHE AT 2 MB
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(HYPOTHETICAL) BASELINE CACHE AT 2 MB
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(HYPOTHETICAL) BASELINE CACHE AT 5 MB
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(HYPOTHETICAL) BASELINE CACHE AT 5 MB
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TALUS AT 4 MB
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TALUS AT 4 MB
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EXAMPLE SUMMARY

Talus avoids cliffs by combining efficient cache sizes of baseline

Does not know or care about app or replacement details
 Just needs miss curve!

Nothing special about set partitioning; Talus works on other partitioning techniques

But how to choose partition configuration?
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ROAD MAP

Talus example

Theory
 Proof sketch

 Talus vs prior policies

Implementation

Evaluation
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GOAL: CONVEXITY AVOIDS CLIFFS

Convex miss curves do not have cliffs
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SHADOW PARTITIONING

Talus divides the cache (of size �) into shadow partitions, invisible to software
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ASSUMPTIONS

Miss curves are stable (eg, across tens of milliseconds)

Cache size is the dominant factor in miss rate (ie, not associativity)

Pseudo-random sampling of an access stream yields a statistically self-similar stream

These assumptions are implicit in prior work (see paper)
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SAMPLING SCALES THE MISS CURVE
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SHADOW PARTITIONING INTERPOLATES MPKI OF 
THE ORIGINAL MISS CURVE
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TALUS GUARANTEES CONVEXITY

Just interpolate the convex 
hull of the original miss 
curve!

25



THERE’S MATH!
Miss curve scaling: �′ �′ = � � �′�
Shadow partitioned miss rate:�shadow � = � � �1� + 1 − � � �−�11−�
How to interpolate between ߙ and ߚ:� = ఉ−�ఉ−ఈ , �1 = ߙ�
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ROAD MAP

Motivation

Talus example

Theory Proof sketch
 Talus vs prior policies

Implementation

Evaluation

27



PRIOR TECHNIQUE: BYPASSING

Bypassing is a common replacement technique to avoid thrashing
 E.g., BIP [ISCA’07] bypasses 31/32 accesses

We compute optimal bypassing rate from miss curve

Bypassing handles some kinds of cliffs, but not all

 Talus outperforms bypassing on some access patterns
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BYPASSING PRODUCES COMPETING EFFECTS
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BYPASSING PRODUCES COMPETING EFFECTS
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 Bypassing reduces misses 

for sampled accesses



BYPASSING PRODUCES COMPETING EFFECTS
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 Bypassing reduces misses 

for sampled accesses

 …But adds misses for 
bypassed accesses

See paper for details!



TALUS VS BYPASSING

Talus reduces miss rate

Talus is convex
 I.e., avoids cliffs!
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ROAD MAP

Talus example

Theory

Implementation

Evaluation
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CONVENTIONAL PARTITIONED CACHE
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EFFICIENT TALUS IMPLEMENTATION
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EFFICIENT TALUS IMPLEMENTATION
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EFFICIENT TALUS IMPLEMENTATION
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EFFICIENT TALUS IMPLEMENTATION
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TALUS IMPOSES LOW OVERHEADS

Computing convex hulls is cheap: ܱ ܰ
Computing shadow partition sizes is cheap: ܱ 1

Talus reduces software overheads by making simple algorithms perform well

Shadow partitioning is cheap: similar monitors to prior work (see paper), 1 bit per tag, 8 bits 
per partition, simple hash function

Talus improves cache performance and adds <1% state
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EVALUATION CLAIMS

We compare Talus to high-performance replacement policies and partitioning schemes

Talus is convex in practice

Single-program: Talus gets similar performance to prior replacement policies

Multi-program: Talus greatly simplifies cache partitioning and slightly outperforms prior, 
complex partitioning algorithms

Talus combines the benefits of high-performance replacement and partitioning
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METHODOLOGY

Evaluate 1- and 8-core system similar to Silvermont on zsim
 See paper for details

Individual SPEC CPU2006 benchmarks + random mixes

Talk only shows Talus on LRU with Vantage partitioning (Talus +V/LRU)
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EVALUATION: SINGLE-THREADED
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EVALUATION: SINGLE-THREADED
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EVALUATION: SINGLE-THREADED
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EVALUATION: SINGLE-THREADED
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EVALUATION: SINGLE-THREADED

46

xalancbmk lbm

mcf

RRIP policies avoid most 
cliffs, but their performance 
depends on access pattern

perlbench



GMEAN IPC IMPROVEMENT VS LRU

47

1 MB 8 MB

Talus on LRU gets similar 
speedups to prior policies.



MULTI-PROGRAMMED PERFORMANCE
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MULTI-PROGRAMMED PERFORMANCE
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Talus is convex  naïve hill 
climbing yields large 
performance gains



MULTI-PROGRAMMED PERFORMANCE
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Hill climbing alone does not 
improve performance much



MULTI-PROGRAMMED PERFORMANCE
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Lookahead is close to Talus, 
but more expensive



MULTI-PROGRAMMED PERFORMANCE
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Partitioning techniques 
outperform high-performance 
policies on shared caches



TALUS SIMPLIFIES PARTITIONING ALGORITHMS 
AND REDUCES OVERHEADS
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MULTI-PROGRAMMED FAIRNESS
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Talus with fair (equal-sized) partitions 
decreases execution time without 

degrading fairness.

See paper for other apps & schemes!
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MORE CONTENT IN PAPER!

Detailed proofs

Prove optimal replacement is convex

Evaluation:
 Talus works on way partitioning

 Talus works with SRRIP

 More benchmarks

 Talus works with pre-fetching and multi-threading
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THANK YOU!

• Talus avoids cliffs and ensures 
convexity
• Proven under simple assumptions

• Verified by experiment

• Analysis of shadow partitioning
shows advantages vs bypassing

• Talus improves performance 
and simplifies cache 
partitioning

• Talus combines the benefits of 
high-performance replacement 
and partitioning
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