
TALUS: A SIMPLE WAY TO REMOVE
PERFORMANCE CLIFFS IN CACHES

Nathan Beckmann

Daniel Sanchez

CACHES HAVE PERFORMANCE CLIFFS

2

32 MB array

4 MB LLC

libquantum

100% miss
8 MB LLC100% miss

16 MB LLC100% miss

31 MB LLC100% miss 32 MB LLC

0% miss

Cache size

M
is

s
ra

te

100%

32 MB

CLIFFS ARE A PROBLEM

Cliffs are wasteful

Cliffs cause annoying performance bugs

Cliffs complicate cache partitioning
 NP-hard problem

3

Cache size

M
is

s
ra

te

libquantum

PRIOR WORK: HIGH-PERFORMANCE
REPLACEMENT VS. CACHE PARTITIONING

Individual apps: High-performance replacement
 E.g., RRIP [ISCA’10]

Shared caches: Cache partitioning
 E.g., UCP [MICRO’06]

For shared caches, partitioning > replacement
 Both in performance & flexibility

Partitioning is hard to use with high-performance
replacement!

Can partitioning help individual apps?

4

LRU

DRRIP

Cache size

M
is

s
ra

te

libquantum
SRRIP

32 MB LLC

16 MB

libquantum #1

100% miss

16 MB

libquantum #2

100% miss

32 MB

libquantum #1

0% miss

IN THIS TALK WE WILL…
Give a simple technique to eliminate cliffs (Talus) Talus partitions within a single access stream

Prove it works under simple assumptions Agnostic to app or replacement policy

No cliffs Simpler cache partitioning

Talus combines the benefits of high-performance replacement
and partitioning

5

LRU
Talus

Cache size

M
is

s
ra

te

libquantum

ROAD MAP

Talus example

Theory

Implementation

Evaluation

6

TALUS USES MISS CURVES

Cliffs occur under a variety of access pattern and replacement policies

7

Cache size

M
is

s
ra

te
libquantum cactusADM

Cache size

M
is

s
ra

te

LRU
SRRIP

Talus works on miss curves only;
Talus is agnostic to app and replacement policy

TALUS EXAMPLE

8

TALUS EXAMPLE

9

TALUS EXAMPLE

10

TALUS EXAMPLE

11

(HYPOTHETICAL) BASELINE CACHE AT 2 MB

12

24

Accesses (APKI)

12

Misses (MPKI)

S
e
ts

Ways

(HYPOTHETICAL) BASELINE CACHE AT 2 MB

13

24

Accesses (APKI)

12

Misses (MPKI)

4/3 MB

2/3 MB
Th

ir
d

Tw
o
-t

hi
rd

s

(HYPOTHETICAL) BASELINE CACHE AT 5 MB

14

24

Accesses (APKI)

3

Misses (MPKI)

(HYPOTHETICAL) BASELINE CACHE AT 5 MB

15

24

Accesses (APKI)

3

Misses (MPKI)

5/3 MB

10/3 MB

TALUS AT 4 MB

16

5/3 MB

10/3 MB

2/3 MB

4/3 MB

10/3 MB

2/3 MB

Combine hypothetical baseline 2 MB & 5 MB

TALUS AT 4 MB

17

10/3 MB

2/3 MB

Spread accesses disproportionally across partitions to match baselines

24

Accesses (APKI)

6

Misses (MPKI)

???

EXAMPLE SUMMARY

Talus avoids cliffs by combining efficient cache sizes of baseline

Does not know or care about app or replacement details
 Just needs miss curve!

Nothing special about set partitioning; Talus works on other partitioning techniques

But how to choose partition configuration?

18

ROAD MAP

Talus example

Theory
 Proof sketch

 Talus vs prior policies

Implementation

Evaluation

19

GOAL: CONVEXITY AVOIDS CLIFFS

Convex miss curves do not have cliffs

20

Cache size

M
is

s
ra

te
libquantum cactusADM

Cache size

M
is

s
ra

te

LRU
Convex

SHADOW PARTITIONING

Talus divides the cache (of size �) into shadow partitions, invisible to software

21

:ߚ � − �1 lines

Total misses
Accesses

:ߙ �1 lines

Talus ensures convexity under simple assumptions

ASSUMPTIONS

Miss curves are stable (eg, across tens of milliseconds)

Cache size is the dominant factor in miss rate (ie, not associativity)

Pseudo-random sampling of an access stream yields a statistically self-similar stream

These assumptions are implicit in prior work (see paper)

22

SAMPLING SCALES THE MISS CURVE

23

24

APKI

12

MPKI

4/3 MB

2/3 MB

8 15/3 MB

8 4

SHADOW PARTITIONING INTERPOLATES MPKI OF
THE ORIGINAL MISS CURVE

24

TALUS GUARANTEES CONVEXITY

Just interpolate the convex
hull of the original miss
curve!

25

THERE’S MATH!
Miss curve scaling: �′ �′ = � � �′�
Shadow partitioned miss rate:�shadow � = � � �1� + 1 − � � �−�11−�
How to interpolate between ߙ and ߚ:� = ఉ−�ఉ−ఈ , �1 = ߙ�

26

ROAD MAP

Motivation

Talus example

Theory Proof sketch
 Talus vs prior policies

Implementation

Evaluation

27

PRIOR TECHNIQUE: BYPASSING

Bypassing is a common replacement technique to avoid thrashing
 E.g., BIP [ISCA’07] bypasses 31/32 accesses

We compute optimal bypassing rate from miss curve

Bypassing handles some kinds of cliffs, but not all

 Talus outperforms bypassing on some access patterns

28

BYPASSING PRODUCES COMPETING EFFECTS

29

BYPASSING PRODUCES COMPETING EFFECTS

30

 Bypassing reduces misses

for sampled accesses

BYPASSING PRODUCES COMPETING EFFECTS

31

 Bypassing reduces misses

for sampled accesses

 …But adds misses for
bypassed accesses

See paper for details!

TALUS VS BYPASSING

Talus reduces miss rate

Talus is convex
 I.e., avoids cliffs!

32

ROAD MAP

Talus example

Theory

Implementation

Evaluation

33

CONVENTIONAL PARTITIONED CACHE

34

SoftwareHardware
Miss curve

monitors

Partitioning

Algorithm

Partitioned Cache

Pa
rt

it
io

n

Eg, UCP [MICRO’06]

EFFICIENT TALUS IMPLEMENTATION

35

SoftwareHardware
Miss curve

monitors
Pre-

processing

Partitioning

Algorithm

Post-

processing

Partitioned Cache

Pa
rt

it
io

n

Talus additions

EFFICIENT TALUS IMPLEMENTATION

36

SoftwareHardware
Miss curve

monitors

Partitioning

Algorithm

Desired allocations

Convex hulls

Shadow partition sizes
& sampling rate

Miss curves

Partitioned Cache

Pa
rt

it
io

n

Pre-

processing

Post-

processing

EFFICIENT TALUS IMPLEMENTATION

37

SoftwareHardware
Miss curve

monitors

Partitioning

Algorithm

Desired allocations

Convex hulls

Shadow partition sizes
& sampling rate

Miss curves

Partitioned Cache

Pa
rt

it
io

n

ߙ

ߚ

Pre-

processing

Post-

processing

EFFICIENT TALUS IMPLEMENTATION

38

H3

hash

Limit

Reg

Address

Limit

Reg

…

ߙ
ߚߙ
ߚ

Partitioned Cache

0x074705

TALUS IMPOSES LOW OVERHEADS

Computing convex hulls is cheap: ܱ ܰ
Computing shadow partition sizes is cheap: ܱ 1

Talus reduces software overheads by making simple algorithms perform well

Shadow partitioning is cheap: similar monitors to prior work (see paper), 1 bit per tag, 8 bits
per partition, simple hash function

Talus improves cache performance and adds <1% state

39

S
o
ftw

a
re

H
a

rd
w

a
re

EVALUATION CLAIMS

We compare Talus to high-performance replacement policies and partitioning schemes

Talus is convex in practice

Single-program: Talus gets similar performance to prior replacement policies

Multi-program: Talus greatly simplifies cache partitioning and slightly outperforms prior,
complex partitioning algorithms

Talus combines the benefits of high-performance replacement and partitioning

40

METHODOLOGY

Evaluate 1- and 8-core system similar to Silvermont on zsim
 See paper for details

Individual SPEC CPU2006 benchmarks + random mixes

Talk only shows Talus on LRU with Vantage partitioning (Talus +V/LRU)

41

EVALUATION: SINGLE-THREADED

42

lbm

mcf

xalancbmk

perlbench

EVALUATION: SINGLE-THREADED

43

lbm

mcf

Talus is convex in practice!

xalancbmk

perlbench

EVALUATION: SINGLE-THREADED

44

lbm

mcf

PDP performs similarly but is
not always convex

xalancbmk

perlbench

EVALUATION: SINGLE-THREADED

45

lbm

mcf

RRIP policies avoid most
cliffs, but their performance
depends on access pattern

xalancbmk

perlbench

EVALUATION: SINGLE-THREADED

46

xalancbmk lbm

mcf

RRIP policies avoid most
cliffs, but their performance
depends on access pattern

perlbench

GMEAN IPC IMPROVEMENT VS LRU

47

1 MB 8 MB

Talus on LRU gets similar
speedups to prior policies.

MULTI-PROGRAMMED PERFORMANCE

48

MULTI-PROGRAMMED PERFORMANCE

49

Talus is convex naïve hill
climbing yields large
performance gains

MULTI-PROGRAMMED PERFORMANCE

50

Hill climbing alone does not
improve performance much

MULTI-PROGRAMMED PERFORMANCE

51

Lookahead is close to Talus,
but more expensive

MULTI-PROGRAMMED PERFORMANCE

52

Partitioning techniques
outperform high-performance
policies on shared caches

TALUS SIMPLIFIES PARTITIONING ALGORITHMS
AND REDUCES OVERHEADS

53

of cores

S
o
ft

w
a

re
 o

ve
rh

e
a

d Hill climbing

Lookahead

300X @ 256 cores
Efficient alternatives to

Lookahead add
significant complexity!

MULTI-PROGRAMMED FAIRNESS

54

Talus with fair (equal-sized) partitions
decreases execution time without

degrading fairness.

See paper for other apps & schemes!

8x xalancbmk

MORE CONTENT IN PAPER!

Detailed proofs

Prove optimal replacement is convex

Evaluation:
 Talus works on way partitioning

 Talus works with SRRIP

 More benchmarks

 Talus works with pre-fetching and multi-threading

55

THANK YOU!

• Talus avoids cliffs and ensures
convexity
• Proven under simple assumptions

• Verified by experiment

• Analysis of shadow partitioning
shows advantages vs bypassing

• Talus improves performance
and simplifies cache
partitioning

• Talus combines the benefits of
high-performance replacement
and partitioning

56

