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Abstract—Latency-critical applications, common in datacen-
ters, must achieve small and predictable tail (e.g., 95th or 99th

percentile) latencies. Their strict performance requirements limit
utilization and efficiency in current datacenters. These problems
have sparked research in hardware and software techniques that
target tail latency. However, research in this area is hampered by
the lack of a comprehensive suite of latency-critical benchmarks.

We present TailBench, a benchmark suite and evaluation
methodology that makes latency-critical workloads as easy to
run and characterize as conventional, throughput-oriented ones.
TailBench includes eight applications that span a wide range of
latency requirements and domains, and a harness that imple-
ments a robust and statistically sound load-testing methodology.
The modular design of the TailBench harness facilitates multiple
load-testing scenarios, ranging from multi-node configurations
that capture network overheads, to simplified single-node configu-
rations that allow measuring tail latency in simulation. Validation
results show that the simplified configurations are accurate for
most applications. This flexibility enables rapid prototyping of
hardware and software techniques for latency-critical workloads.

I. INTRODUCTION

Latency-critical applications are increasingly common in

datacenters. These applications form the fabric of interactive,

large-scale online services. Tail latency, not average latency, is

the key performance metric for these applications. For example,

web search leaf nodes must provide 99th percentile latencies

of a few milliseconds [17, 49]. The need for low tail latency

presents new challenges and opportunities for system designers,

as many hardware and software techniques in current systems

seek to improve long-term average performance, but do not

help or even hurt short-term worst-case latency [28, 32].

Unfortunately, the lack of a comprehensive suite of latency-

critical benchmarks makes studying this emerging class of

applications much harder than it should be. This difficulty

causes two crucial problems. First, it hampers research that

seeks to optimize systems for latency-critical applications.

Latency-critical applications have a wide variety of latency

requirements and microarchitectural characteristics. However,

most recent work in this area uses one or a few latency-

critical applications in their evaluations [25, 32, 33, 48], which

do not stress a wide range of behaviors. Some prior work

in this area even uses more readily-available sequential and

parallel batch workloads (e.g., from SPEC CPU2006 or PAR-

SEC [12]) and treats them as latency-critical applications [15,

57]. While this approach allows more diversity, it misses

fundamental characteristics of latency-critical workloads (e.g.,

their request-response nature). Second, most new ideas in

architecture and systems are evaluated with throughput-oriented

applications only, not latency-critical ones, which constitutes

a blind spot in the design of these techniques. For example,

many cache partitioning techniques use coarse-grain, periodic

reconfigurations to adapt to changing application behavior over

time [10, 42]. While this helps long-term throughput, it can

dramatically worsen tail latency [30]. Similarly, the profiling

phases employed by many cache partitioning schemes [15] also

hurt tail latency. Readily available latency-critical benchmarks

can help researchers design techniques that do not inadvertently

hurt tail latency, increasing their chances of adoption.

To tackle these problems, latency-critical workloads must

be as easy to run and characterize as conventional, throughput-

oriented ones. This is challenging for three reasons. First, since

tail latency represents the few slowest requests (e.g., the slowest

1% requests when measuring the 99th percentile latency), it

is much more sensitive to small perturbations and requires

a statistically robust methodology. Second, there are many

methodological pitfalls that can skew latency measurements. As

shown in recent work, even widely-used load testers suffer from

some of these pitfalls, which often cause orders-of-magnitude

measurement errors [44, 56]. Third, it is not enough for

these workloads to run on real systems—to truly complement

throughput-oriented benchmark suites, these workloads should

also be easy to run in microarchitectural simulators, even those

with limited system support.

We present TailBench, a new benchmark suite of latency-

critical applications that addresses these challenges. TailBench

includes a diverse set of latency-critical applications, as well

as a robust, validated experimental methodology that makes it

easy to run these benchmarks on real systems and in simulation.

Specifically, we make the following key contributions:

• We select eight representative latency-critical applications

with a diverse set of characteristics (Sec. III). TailBench

applications span a wide range of domains, including web

search, transactional databases, key-value stores, and real-

time text, speech, and image processing. These applications

cover a wide range of tail latencies (from microseconds

to seconds), allowing designers to evaluate the impact of

proposed techniques on tail latency at different timescales.

• We integrate all workloads under a common harness that im-

plements a robust, statistically sound methodology (Sec. IV).
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This methodology avoids the many pitfalls that afflict

conventional load testers [56]. Additionally, we find that

although network latency and kernel overheads are important

contributors to tail latency in some applications, in many

others tail latency is dominated by user-level application

work. We use this insight to design multiple configurations

of the TailBench harness that allow a range of load-testing

scenarios: from full-blown multi-node configurations, to a

simple single-node setup that can be easily simulated.

• We validate the TailBench methodology in both real systems

and simulation (Sec. VI). We show that the simplified harness

configurations faithfully measure tail latency for six of our

eight benchmarks with significantly reduced measurement

costs, and allow measuring tail latency directly in simulation.

• We illustrate TailBench’s benefits through a case study

(Sec. VII). We show that thread-level parallelism often accrues

suboptimal tail latency benefits. We use a microarchitectural

simulator to distinguish the effect of synchronization over-

heads from that of contention in the shared memory system.

II. BACKGROUND

A. Anatomy of Latency-Critical Applications

Large-scale, interactive online services (e.g., web search)

must mine through massive datasets to satisfy each request.

These datasets are spread across hundreds or thousands of

nodes, and are kept in DRAM or Flash to ensure fast response

times. These workloads are architected in a high-fanout, multi-

tiered configuration, with root nodes receiving user requests

and farming them out to leaf nodes for processing. Thousands

of leaf nodes may collaborate to serve each user request [9, 17,

32], and the latency perceived by the user is determined by the

few slowest nodes, since the root node must wait for results

from most or all leaf nodes to produce the final response. Thus,

to ensure acceptable end-to-end latencies, the tail latencies

(e.g., 95th or 99
th percentile latencies) of leaf nodes should

be small (e.g., a few milliseconds) and uniform across nodes.

The need for low, predictable tail latency limits the utilization

and efficiency of conventional datacenter servers. Servers

running latency-critical applications operate at low utilization

to guard against queuing delays, long requests, and other

sources of performance variability. Further, their spare capacity

cannot be used by batch applications, as uncontrolled sharing

of cores, caches, and power causes high and unpredictable

tail latency degradation [30, 33, 36]. As a result, datacenters

servers typically have utilizations of 5-30% [8, 9, 37]. This

poor utilization wastes billions of dollars in equipment and

terawatt-hours of energy annually [8].

Consequently, prior work has proposed a wide variety

of software and hardware techniques to improve utilization

and efficiency in systems running latency-critical applications

without degrading latency. These techniques include new

cluster managers that schedule and migrate applications across

systems to reduce interference [18, 32, 36, 54], fast dynamic

voltage-frequency scaling (DVFS) techniques to improve power

efficiency [25, 29, 32, 48], hardware and software schemes

to use low power idle states [37, 39, 53], and hardware

resource partitioning schemes that allow batch workloads to

run alongside latency-critical ones, improving utilization [29,

30, 33, 57].

However, the lack of a readily-available, comprehensive

benchmark suite continues to be a key stumbling block for

work in this area. Many of these studies use workloads internal

to datacenter operators like Google or Facebook [32, 33, 36,

38, 55, 56]. Academic studies use one or a few latency-

critical benchmarks [25, 48, 54], which limits the range of

behaviors and performance requirements across which their

proposed techniques can be evaluated. Some work uses more

readily-available sequential and parallel batch workloads (e.g.,

from SPEC CPU2006 or PARSEC) and treats them as latency-

critical applications [15, 57]. However, these applications differ

from latency-critical applications in important ways, e.g., in

their activity profile (continuous activity vs request-response

behavior characterized by short idle periods [30, 37]), as well

as in their microarchitectural characteristics [21].

B. TailBench vs. Existing Benchmark Suites

While some existing benchmark suites include latency-

critical applications, they form a small part of the suite, and

often focus on specific domains (e.g., real-time analytics [1]

or machine learning [23]). These benchmark suites suffer from

four problems: they include a small number of latency-critical

applications, have limited diversity, suffer from methodological

issues, and are hard to simulate. We now compare TailBench

with representative benchmark suites along these dimensions.

CloudSuite [21] is perhaps the closest to TailBench. Cloud-

Suite includes open-source counterparts to many common

datacenter applications. However, the main focus of CloudSuite

is on the microarchitectural characteristics of cloud applications

and their impact on throughput. CloudSuite includes only four

latency-critical applications out of a total of eight: solr (search),

memcached (data caching), cassandra (NoSQL database), and

elgg (web serving), and includes no applications from important

domains such as speech and image recognition. Further, these

applications cover a limited range of tail latencies, either

100s of milliseconds (solr) or a few milliseconds (memcached

and cassandra). By contrast, TailBench includes applications

from a broad set of domains that cover a wide range of tail

latencies, from tens of microseconds to seconds. Covering a

wide spectrum is important because different software and

hardware techniques impact tail latency at different timescales.

For example, DVFS techniques can react in microseconds,

deep sleep states have transition latencies of hundreds of

microseconds, and on-chip caches take tens of milliseconds to

warm up.

Additionally, CloudSuite workloads use load testers such

as YCSB [16] and Faban [3] that suffer from methodological

problems resulting in large errors in latency measurement.

These load testers model a closed-loop system, where a

few client threads issue requests and block waiting for re-

sponses [56]. However, latency-critical applications receive

requests from a large pool of users, and thus behave as

open-loop systems, where the application receives requests
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TABLE I
TAILBENCH APPLICATIONS.

xapian masstree moses sphinx img-dnn specjbb silo shore

Domain
Online
Search

Key-Value
Store

Real-Time
Translation

Speech
Recognition

Image
Recognition

Java
Middleware

OLTP
(in-memory)

OLTP
(disk/SSD)

Configuration

and Input Set

English
Wikipedia,

zipfian query
popularity

mycsb-a
(50%

GETs/PUTs),
1.1 GB table

opensubtitles.org
corpora,

phrase mode

CMU AN4
corpus

MNIST
corpus

Standard
TPC-C, 1
warehouse

TPC-C, 10
warehouses

Language C++ C++ C++ C++ C++ Java C++ C++

L1I MPKI 1.14 0.23 1.79 0.06 0.32 8.87 1.2 22.68

L1D MPKI 13.69 11.41 26.82 23.83 87.49 15.62 2.88 23.83

L2 MPKI 8.94 9.32 24.77 20.22 16.64 14.91 1.92 20.22

L3 MPKI 0.02 5.41 19.95 3.51 15.05 3.49 0.56 3.51

Branch MPKI 7.22 5.66 2.24 6.94 0.35 4.99 5.58 6.94

95th %ile 20% 2.67 ms 428 µs 3.06 ms 2.08 s 2.51 ms 293 µs 191 µs 1.99 ms

latency 50% 4.88 ms 688 µs 5.41 ms 2.78 s 3.94 ms 507 µs 374 µs 2.80 ms

at load 70% 9.48 ms 1.18 ms 11.42 ms 3.82 s 6.91 ms 739 µs 1.33 ms 4.20 ms

at a rate independent of its throughput. Prior work has

shown that inadvertently introducing closed loops, known

as the coordinated omission problem [44], can significantly

underestimate tail latency. Treadmill [56] identifies this and

several other issues with CloudSuite’s load testers, such as

client-side queuing and insufficient sampling. By contrast,

TailBench’s harness (Sec. IV) accounts for these factors to

produce robust, unbiased measurements.

Finally, CloudSuite applications use a multi-machine con-

figuration. While this setup mimics the architecture of scale-

out applications, it makes them hard to run in simulation for

long enough to accurately measure tail latency. By contrast,

TailBench’s harness includes different implementations: from

full-blown multi-node configurations, to a simple single-node

setup that can be easily simulated. This setup allows us to

identify the minimum level of simulation fidelity required to

faithfully measure tail latency for each application. We find

that, in many cases, a simple user-level simulator is sufficient

to study these workloads (Sec. VI).

BigDataBench [51] includes several big data applications as

well as representative datasets. Like CloudSuite, BigDataBench

focuses on microarchitectural characterization, and suffers from

the same limitations: only three of its nineteen benchmarks are

latency-critical, it lacks a rigorous methodology for measuring

latencies, and employs multi-node measurement setups.

Other recent benchmark suites target specific application

domains within datacenters. For example, DCBench [26] and

the AMPLab Big Data Benchmark [1] focus on data analytics

applications, while Sirius [24] targets applications for intelligent

personal assistants like Apple Siri. Besides being domain-

specific, these suites include applications with higher latencies

than the interactive services TailBench focuses on. Other

domain-specific suites include Tonic [23] for deep learning

and YCSB [16] for NoSQL databases.

III. TAILBENCH APPLICATIONS

We now briefly describe the applications included in

TailBench. Table I reports the input set, tail latency, and

microarchitectural characteristics of each application.

xapian [6] is an open-source search engine written in C++

and widely used both in popular websites (e.g., the Debian

wiki) and software frameworks (e.g., Catalyst). Online search

engines handle petabytes of index data, which is split into

shards spread across thousands of leaf nodes. The bulk of

the processing happens at the leaf nodes, with each node

independently searching its portion of the index. We configure

xapian to represent a leaf node. In our experiments, the search

index is built from a dump of the English version of Wikipedia

from July 2013. Query terms are chosen randomly, following

a Zipfian distribution, which has been shown to model online

search query distributions well [7, 20].

masstree [35] is a fast, scalable in-memory key-value store

written in C++. In-memory key-value stores serve as data

storage backends for a wide variety of services. Key-value

stores handle large amounts of data, which is split up into

memory-resident shards spread across hundreds of servers.

Each user request often involves many tens or hundreds of

requests to the key-value store; these applications therefore

have very short latency requirements, e.g., about 100µs [32,

35]. While there are many open-source key-value stores, we

chose masstree since it is highly optimized to make efficient

use of the memory hierarchy of modern multicores. We drive

masstree using a modified version of the Yahoo Cloud Serving

Benchmark [16] that has 50% get and 50% put queries.

moses [31] is a state-of-the-art statistical machine translation

(SMT) system written in C++. SMT systems underpin online

translation services such as Google Translate, and also form

an important component of speech-based interfaces such as

Apple Siri. We use the phrase-based decoder included in

moses; moses also supports tree-based decoding. We drive

moses using randomly-chosen dialogue snippets from the

opensubtitles.org English-Spanish corpus [45].

sphinx [50] is an accurate speech recognition system written in

C++. Speech recognition systems are an important component

of speech-based interfaces and applications such as Apple Siri,

Google Now, and IBM Speech to Text. Speech recognition is a

compute-intensive activity, involving probabilistically pruning a

large search tree. sphinx uses sophisticated acoustic, phonetic,
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Fig. 1. TailBench harness components and its three configurations. The traffic shaper controls the arrival rate of requests from the clients to the application,
while the statistics collector maintains request latency statistics. In the multi-node networked configuration, clients run on separate machines and communicate
with the application over the network using TCP/IP. In the single-node loopback configuration, clients run on the same machine as the application and
communicate using TCP/IP over the loopback interface. The single-node integrated configuration integrates the client and the application in a single process.

and language models to improve efficiency and accuracy. We

drive sphinx using randomly-chosen utterances from the CMU

AN4 alphanumeric database.

img-dnn [2] is a handwriting recognition application based on

OpenCV [14]. Handwriting recognition is an example of the

broader class of image recognition applications, widely used

today for optical character recognition, image-based search

(e.g., Google Goggles), automatic image tagging, and a variety

of other online applications. img-dnn uses a deep neural

network-based autoencoder coupled with softmax regression to

identify handwritten characters. We drive the application using

randomly-chosen samples from the MNIST database [19].

specjbb [5] is an industry-standard Java middleware bench-

mark. Java middleware is widely used in business services and

must often satisfy strict latency constraints. specjbb emulates

a 3-tier system, typical of many server-side Java applications.

The modeled system is a wholesale company that handles

different types of client requests (e.g., processing payments

and deliveries). We run specjbb using HotSpot v1.8.

silo [47] is a fast in-memory transactional database. silo

is designed to scale well on modern multicores, avoiding

centralized contention points and making efficient use of the

memory hierarchy. Databases like silo are widely used in

online transaction processing systems (OLTP). We drive silo

using TPC-C, an industry-standard OLTP benchmark [46].

shore [27] is a transactional database. Unlike silo, it is an

on-disk database, and differs significantly in how it stores and

accesses data. We drive shore using TPC-C. For the results

in this paper, database and logs are both stored in a solid state

drive to avoid having shore be bottlenecked on disk I/O.

Table I reports the measured tail latency for each application

at various loads, as well as the application’s microarchitectural

characteristics. All results reported in Table I were collected

using a multi-node configuration (our experimental methodol-

ogy is described in detail in Sec. VI-A). We perform a detailed

latency characterization of each application in Sec. V.

IV. TAILBENCH HARNESS

The TailBench harness controls the end-to-end execution of

each latency-critical application, and integrates the functionality

for input load generation and statistics collection. Fig. 1 shows

the three components of the TailBench harness: the traffic

shaper, which controls the timing characteristics of the request

stream; the request queue, which holds incoming requests and

measures service and queuing times; and the statistics collector,

which aggregates timing statistics. The TailBench harness

has a modular design that allows multiple implementations

to suit the needs of specific measurement scenarios. We

first discuss the multi-node networked configuration, which

faithfully captures all sources of latency, and then discuss

two simplified configurations, which reduce measurement

complexity without sacrificing accuracy for most applications.

A. Networked Configuration

The networked configuration (Fig. 1, lower left) employs one

or more client machines to drive the application. Each client

machine hosts an application-specific client module integrated

with the traffic shaper and statistics collector. The client module

continuously generates requests and hands them to the traffic

shaper, which simulates the desired load by inserting delays

between requests before sending them to the application over

the network. The traffic shaper uses an open-loop design, i.e., it

sends requests according to their desired timing characteristics

without waiting for responses to previous requests. Prior work

has shown that open-loop setups are representative of datacenter
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traffic patterns [56] and accurately capture the queuing delays

that form a significant portion of tail latency [29]. The harness

generates queries with exponentially-distributed interarrival

times with a configurable rate, which have been shown to

accurately model datacenter traffic [38].

The request queue is shared among application threads. The

request queue stores incoming requests, and measures queuing

time (time spent waiting in the queue) as well as service time

(execution time starting from when the request is handed to an

application thread) for each. Upon completion of the request,

this timing data is sent back over the network to the appropriate

statistics collector module.

B. Simplified Harness Configurations

The networked configuration captures all sources of latency,

including network link and switch delays as well as network

stack overheads. However, this setup is complex: one must

ensure that the networking infrastructure matches those found

in modern datacenters, both in hardware capabilities (e.g., high-

bandwidth, low-latency network interface cards and switches),

and in the interference patterns from other applications sharing

the network. In addition, networking hardware must be carefully

configured to achieve low latency. For example, prior work has

shown that interrupt-to-core mapping (via receive side scaling

or flow steering) and interrupt coalescing can have a significant

impact on request latency [11, 41]. Indeed, in setting up the

networked configuration for our experiments, we spent several

days tuning the networking setup (Sec. VI), which reduced

round-trip network latencies from 200 to 50µs.

Additionally, while network delays are an important consid-

eration in datacenters, operators often treat network latencies

separately from processing latencies by, for example, assigning

different time budgets to each [48, 52].

The loopback configuration (Fig. 1, lower right) focuses

purely on request processing in the application while ignoring

network delays. In this configuration, application and client

reside on the same machine and communicate over TCP/IP

using the loopback interface. This captures most of the

overheads introduced by the network stack.

While the loopback configuration is significantly easier to set

up than the multi-node configuration, it is still too complex for

some use cases. In particular, evaluating the impact of proposed

hardware changes on tail latency requires simulating enough

requests to meaningfully measure tail latency. The loopback

configuration would require simulating a multiprogrammed

configuration in a full-system simulator. Unfortunately, typical

simulation speeds for full-system simulators are only about

200 KIPS [13], which makes long simulations impractical.

To facilitate faster simulation, we implement the integrated

configuration (Fig. 1, upper right). The integrated configuration

combines client, harness, and application into a single process,

with modules communicating via shared memory. While this

approach ignores network stack overheads, we show that these

constitute a small fraction of total processing time for many

applications, and ignoring them does not significantly impact

observed latency characteristics (Sec. VI). Since the integrated

configuration employs userspace communication, it can be

simulated with faster user-level simulators [40, 43].

C. Statistics Collection and Latency Measurement

The TailBench harness collects detailed request-level latency

statistics that can be used to derive mean and percentile

latencies, as well as to construct full service and sojourn time

distributions. For short runs, the harness maintains latency mea-

surements for each individual request to maximize accuracy. For

longer runs, it uses high dynamic range (HDR) histograms [4] to

minimize space overheads while still maintaining high accuracy.

HDR histograms can capture statistics over a wide range

of values (e.g., latencies ranging from 1 µs to 1000 s) with

logarithmic space overheads while maintaining high precision

(e.g., recorded value within 1% of the actual). For instance, in

the above example, the HDR histogram only needs to maintain

100 buckets between any two subsequent powers of 10 (e.g.,

for latencies between 1 ms and 10 ms), allowing the entire

range to be covered with only 900 buckets.

We carefully design our methodology to avoid the pitfalls that

afflict prior testbeds [56]. Each measurement run is preceded by

a warmup period of sufficient length to ensure that we measure

steady-state execution only. In the networked and loopback

configurations, we ensure that there are sufficient clients so

that client-side queuing is not a concern.

Accurately measuring tail latency requires collecting a large

number of measurement samples. Since tail latency inherently

measures “outliers” (e.g., the slowest 5% requests when

measuring the 95th percentile latency), even small changes,

such as reordering of a few requests, can have a large impact on

the value measured. It is therefore necessary to collect enough

samples to ensure that the measurement run is representative.

However, individual runs, even if they are sufficiently long,

can yield wrong results due to performance hysteresis [56], i.e.,

systematic bias introduced due to factors like memory layout

that change from run to run. We counter this by performing

repeated runs, randomizing requests as well as interarrival

times in each run to ensure that we measure a representative

distribution across runs. The harness performs enough runs

to achieve 95% confidence intervals of at most 1% for each

latency metric reported.

V. APPLICATION CHARACTERIZATION

We now study the latency characteristics of each application,

including request service times and sojourn times. The service

time of a request measures the time the application takes to

process that request. The sojourn time, by contrast, is the end-to-

end request latency, from the time the request was issued to the

time a response is received. Sojourn time includes, in addition

to the service time, the time spent queued while the application

is busy servicing previous requests as well as network delays.

We also study how multithreading affects tail latency in these

applications. All measurements in this section were obtained

using the networked harness configuration (Sec. IV). We explain

our experimental methodology in detail in Sec. VI-A.
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Fig. 2. Cumulative distribution function (CDF) of service times for each application, with service times on the x-axis and cumulative probability on the y-axis.
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Fig. 3. Mean, 95th percentile, and 99th percentile latencies for each application across a range of request rates. All applications use a single worker thread.

Application service times: Fig. 2 shows the cumulative

distribution function (CDF) of request service times for

each TailBench application. Service times vary widely across

applications: while most specjbb and silo requests finish in

under 100µs, sphinx requests can take more than a second

each. Applications also vary widely in how tightly their request

service times are distributed. For some applications request

service times are distributed fairly evenly across a large range;

xapian requests, for example, take anywhere from 200µs to

2.7 ms. Other applications, such as specjbb and shore, have

most of their request times distributed in a fairly narrow range,

but have a “long tail” of requests that take much longer than

others. Finally, masstree and img-dnn have nearly constant

request service times.

Sojourn times vs. load: Fig. 3 shows the mean, 95th percentile,

and 99th percentile tail latencies for each application at various

request rates (queries per second, or QPS). In these experiments,

applications use a single worker thread. At very low request
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Fig. 4. 95th percentile latency for representative applications across a range
of request rates, as the number of worker threads increases from 1 to 4.

rates, the difference between mean and tail latencies depends

mostly on the distribution of request service times (Fig. 2). As

request rates increase, both mean and tail latencies increase,

since incoming requests are more likely to experience queuing

delay as they wait for previous requests to finish. However, tail

latencies increase much more rapidly than the mean. This rapid

increase often limits the utilization of servers running latency-

critical applications: since datacenter operators must account

for occasional load fluctuations, latency-critical applications

operate at request rates well below saturation. The gap between

tail and mean latencies is higher for applications with more

variable service times: not only do long requests contribute

to the tail themselves, they are more likely to cause other

requests to be queued up behind them. There is, however,

no general way to determine the exact relationship between

tail and mean latencies. Determining the impact of a design

decision on tail latency thus requires measuring tail latency

directly—throughput metrics (e.g., mean latency or instructions

per cycle) do not suffice.

Impact of multithreading: Fig. 4 shows how tail latency

changes with the number of worker threads for four represen-

tative applications. Each graph reports 95th percentile latency

(y-axis) as a function of request rate per thread (x-axis) and

the number of threads (different lines). As the number of

threads grows, the probability of a request finding all threads

busy decreases, reducing the contribution of queuing time to

tail latency. masstree and xapian behave as expected: with

more threads, their tail latencies grow more slowly with load,

while their per-thread saturation rates stay relatively constant.

However, silo and moses do not behave as expected. In silo,

adding threads causes each thread to saturate at a lower QPS;

TABLE II
CONFIGURATION OF THE EXPERIMENTAL SYSTEM.

Cores
8 Xeon E5-2670 cores (SandyBridge), 2.4 GHz
nominal frequency

L1 caches 32 KB, 8-way set-associative, split D/I

L2 caches 256 KB private per-core, 8-way set-associative

L3 cache 20 MB total, 20-way set-associative, DRRIP, inclusive

Memory 32 GB, DDR3 1333 MHz

OS Ubuntu 14.04, Linux kernel version 4.2.3

i.e., the overall application throughput at the saturation point

improves sublinearly. Finally, moses behaves like xapian and

masstree when the number of threads increases from one

to two, but increasing the thread count to four degrades the

saturation QPS for each thread to below the value for a single

thread. This degradation can be caused by synchronization

overheads among threads, or by contention among threads for

shared memory resources (e.g., cache and memory bandwidth).

In Sec. VII, we use microarchitectural simulation to separate

both effects for each application.

VI. VALIDATING SIMPLIFIED HARNESS CONFIGURATIONS

In this section, we compare the tail latency measured using

the three harness configurations discussed in Sec. IV, in order

to understand when it might be acceptable to use the simplified

configurations. We also compare the tail latency measurements

obtained on a real system with those obtained in simulation.

A. Experimental Methodology

Real system: All real-system measurements reported in this

paper were performed on an Intel Xeon E5-2670 processor

with 8 SandyBridge cores (Table II). We run applications

on dedicated servers to avoid interference from colocated

applications, and use real-time priority to prevent interfer-

ence from background daemons. We disable TurboBoost

and deep sleep states to avoid unpredictable performance

fluctuations [28], and fix CPU frequency at the nominal value

using the cpufreq userspace governor. When running in the

networked or loopback configuration, we run multiple client

processes to avoid client-side queuing [56]. The server and

client machines used in the networked configuration each

have an Intel I350 Gigabit Ethernet NIC and are connected

via a Dell PowerConnect J-EX4200-48T switch. Even with

this relatively simple setup, it required several days of tuning

before we settled on the configuration that worked best for our

applications. For all our measurements using the networked

harness configuration, we use RSS to map interrupts to cores

that are not running application threads, since we found that

interrupt processing can significantly hurt latency, especially

at high loads. We also disable interrupt coalescing, and use

the TCP NODELAY option to disable coalescing outbound

packets using Nagle’s algorithm. While these options improve

latency, they may hurt throughput for some applications. We

found this not to be the case for our applications.

Simulation: For simulation results, we use zsim [43], an

execution-driven x86-64 simulator based on Pin [34]. ZSim
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Fig. 5. 95th percentile tail latency for single-threaded instances of each application. Each figure compares tail latency over four setups: the real system under
the three harness configurations, and the simulated system under the integrated configuration. Differences in saturation QPS are shown between the integrated
and networked configurations (in green) for silo and specjbb, and between the integrated configuration and simulation (in red) for the other applications.
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Fig. 6. 95th percentile tail latency for single-threaded instances of shore
and img-dnn as a function of system load instead of QPS.

achieves simulation speeds of several MIPS per simulated core,

allowing us to perform the long simulations needed to measure

tail latency accurately. ZSim is also accurate, with IPC errors

of 2%-24% on SPEC CPU2006 benchmarks over a Nehalem

system (average error of 9.7%). The simulated system has

cores similar to our experimental system (Table II) and an

identical memory system. All our simulation results use the

integrated harness configuration (Sec. IV).

B. Single-Threaded Applications

Fig. 5 presents the 95th percentile latency observed using

the various harness configurations on a real system, as well as

the 95th percentile latency measured in simulation.

Harness configurations: Focusing first on the real-system

results, we note that the measured tail latency using the three

harness configurations is very similar for six of the eight

applications. This is not surprising: in our system, the Linux

networking stack introduces an overhead of about 25µs at each

end (application and client) for the networked configuration,

and about 20µs for the loopback configuration. This is a small

fraction of typical request service times for most applications,

even for applications like masstree and shore where the

typical request takes a few 100 µs.

Network stack overheads are more pronounced for specjbb

and silo, which have much shorter requests (95th percentile

service times of under 100µs). At low loads, this causes a small

difference in measured tail latency relative to the integrated con-

figuration. As load increases, however, the effect of the longer

service times for the networked and loopback configurations

becomes more pronounced as slower request processing leads

to higher queuing. Eventually, the two configurations saturate

before the integrated configuration does, with saturation request

rates being 23% lower than the integrated configuration for

specjbb, and 39% lower for silo. Thus, while the qualitative

behavior of the latency profile remains the same for the three

configurations, latency increases more rapidly with load for

the networked and loopback configurations.

Note that network latency depends heavily on the characteris-

tics of the networking hardware (NICs, switches, and topology)

and on network contention. While we find network delays to

not be significant for most of our benchmarks, they may be

significant in other network setups. Such cases would require

using the multi-node configuration or enhancing the simplified

configurations with a network simulator.

Simulation: Latency profiles in simulation are similar to the

real-system ones for all applications. However, since simulation

introduces some performance error, the measured tail latency

at each request rate is somewhat different from the real-system

measurements. This is as expected; since the simulated system
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Fig. 7. 95th percentile tail latency for multi-threaded instances of representative
applications, each with 4 threads. Each figure compares tail latency over four
setups: the real system under the three different harness configurations, and
the simulated system under the integrated configuration.

is faster than the real system for most of our applications, it

experiences less load at any given request rate, which in turn

results in lower queuing delays and thus lower tail latency.

Another way to see this is to note that for each application, the

request rates at which the real and simulated systems reach a

given tail latency level, as well as the request rates at which they

saturate, differ by a constant factor, which is the performance

error introduced by the simulator.

To illustrate this effect further, Fig. 6 shows the 95
th

percentile latency against system load for the two applications

with the largest simulation error, shore and img-dnn. We

see that the real-system and simulated latency profiles are

nearly identical for both applications. Since the simulated and

real systems have different performance, they reach a given

system load at slightly different request rates (Fig. 5), but their

behavior at each load level is very similar (Fig. 6). We observe

similar behavior for other applications, but omit those results

in the interest of space. We conclude that simulation can yield

accurate insights into an application’s tail latency behavior.

C. Multithreaded Applications

Fig. 7 presents the 95th percentile latency for four of our

applications in various configurations, where each application is

multithreaded (four worker threads). We see similar behavior as

in the single-threaded case: the three real-system configurations

are almost identical for applications with relatively long service

times (xapian, img-dnn, masstree), while the networked

and loopback configurations experience higher latencies for

applications with short requests (specjbb). As in the single-

threaded case, simulation results agree with real-system mea-
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Fig. 8. Normalized 95th percentile latency for moses and silo with 1 and
4 threads, using an M/G/n queuing model (dashed lines), and simulating an
idealized memory system (solid lines). Results reveal that moses’s suboptimal
scaling in Fig. 4 is due to memory system contention, while silo’s scaling
problems are due to synchronization overheads.

surements, with small deviations introduced by simulation error.

We observe similar behavior for the remaining applications,

but omit these results in the interest of space.

VII. CASE STUDY

One of the key benefits of TailBench is to make latency-

critical workloads as easy to simulate as conventional through-

put workloads. We demonstrate this benefit through a simple

case study, where we use simulation to find why moses and

silo scale poorly with thread count. Specifically, we will de-

termine the relative importance of two factors: synchronization

overheads and contention in shared memory resources.

To distinguish between these factors, we simulate each

application with an idealized memory system with zero-cycle

latency to DRAM and infinite DRAM bandwidth, eliminating

memory contention and the impact of increased shared cache

misses. Fig. 8 shows the 95th percentile latency for moses

and silo in this idealized memory system with one and four

threads, normalized to the 95th percentile latency at low load

with one thread. Fig. 8 also shows the predicted 95th percentile

latency using an M/G/n queuing model [22] (where n = number

of threads). The latencies predicted by the queuing model would

be realized if there were no overhead to adding threads (i.e.,

if service times stayed constant).

Comparing the simulation and M/G/n results reveals different

trends for moses and silo. Simulation and M/G/n results are

in agreement for moses, revealing that moses’s performance

degradation at four threads in the real system (Fig. 4) is largely

due to contention in the memory system, and could be alleviated

by adding memory resources (e.g., larger shared caches). By

contrast, the simulated idealized memory system does not

improve silo’s performance with four threads, suggesting that

synchronization overheads are the culprit.

VIII. CONCLUSIONS

We have presented TailBench, a benchmark suite and evalu-

ation methodology for latency-critical applications. TailBench

seeks to make latency-critical applications as easy to run and

characterize as throughput-oriented benchmarks. TailBench in-

cludes representative applications from a diverse set of domains
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that exhibit a wide range of tail-latency behaviors, and a harness

that implements a robust and statistically sound load testing

methodology and allows several measurement configurations.

Our validation results show that while a multi-node, networked

harness configuration offers maximum measurement fidelity,

a simplified single-node, integrated setup captures tail latency

accurately for most benchmarks. The integrated configuration

significantly reduces measurement costs, facilitating studying

tail latency in simulation. Finally, we have used simulation

to identify the causes of sublinear scaling for two of our

applications. TailBench is open-source and publicly available

at http://tailbench.csail.mit.edu.
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