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WHIRLPOOL! 
  

IMPROVING DYNAMIC CACHE MANAGEMENT 

WITH STATIC DATA CLASSIFICATION 



Processors are limited by data movement 

 Data movement often consumes >50% of time & energy 

 E.g., FP multiply-add: 20 pJ  DRAM access: 20,000 pJ 

 To scale performance, must keep data near where its used 

 But how do programs use memory? 

Cache banks 

Good: nearby cache banks 

Bad: faraway cache banks 

Terrible: DRAM access 



Static policies have limitations 
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Program Code 

Fixed policy 

Exploits program semantics 

Binary 

E.g., scratchpads, bypass hints 

Can’t adapt to application 
phases, input-dependent 

behavior, or shared systems 

Static analysis  
or profiling 



Dynamic policies have limitations, too 
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Binary 

Dynamic policy 

Responsive to actual 
application behavior 

E.g., data migration & replication 
Difficult to recover program 
semantics from loads/stores 

 Expensive mechanisms 
(eg, extra data movement & 

directories) 

Observe 
loads/stores 



Combining static and dynamic is best 
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Program Code 

Binary 

Static analysis  
or profiling 

Observe 
loads/stores 

Pool 
A 

Pool 
B 

Pool 
C 

Pool 
D 

Policy 
A 

Policy 
B 

Policy 
C 

Policy 
D 

Exploits program 
semantics at low overhead 

Responsive to actual 
application behavior 



Agenda 
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 Case study 

 Manual classification 

 Parallel applications 

 WhirlTool 



System configuration 
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Core 

L1i L1d 

Private L2 

Non-uniform cache access (NUCA): 
Cache banks have different access latencies 



 We apply Whirlpool to Jigsaw [Beckmann PACT’13], 
a state-of-the-art NUCA cache 

 Allocates virtual caches, collections of parts of cache banks 

 Significantly outperforms prior D-NUCA schemes 

Baseline dynamic NUCA scheme  
8 

Reduce cache misses 

Reduce on-chip 
network traversals 

Simple mechanisms 



Dynamic policies can reduce data movement 
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Jigsaw 
[Beckmann, PACT’13] 

Dynamic policy performs somewhat better:  

Static NUCA 

4% better performance 
12% lower energy 

App: Delaunay 
triangulation 



 

 

 

Static analysis can help! 
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Jigsaw with Static Classification 
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Jigsaw 
[Beckmann, PACT’13] 

Whirlpool! 

Vs Jigsaw: 
19% better performance 

42% lower energy 

Few data structures accessed 
more frequently than others 
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Whirlpool – Manual classification 

 Organize application data into memory pools 

int poolPoints = pool_create(); 

Point* points = pool_malloc(sizeof(Point)*n, poolPoints); 

 

int poolTris = pool_create(); 

Tri* smallTris = pool_malloc(sizeof(Tri)*m, poolTris); 

 

Tri* largeTris = pool_malloc(sizeof(Tri)*M, poolTris); 

Insight: Group semantically similar data into a pool 

Points, Triangles 

13 



Minor changes to programs 
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Application Pools LOC  

Delaunay triangulation 3 11 

Maximal matching 3 13 

Delaunay refinement 3 8 

Maximal independent set 3 13 

Minimal spanning forest 3 11 

401.bzip2 4 43 

470.lbm 2 21 

429.mcf 2 14 

436.cactusADM 2 53 

SPECCPU
2006 

PBBS 



Whirlpool on NUCA placement 
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 Use pools to improve Jigsaw’s decisions 
 Each pool is allocated to a virtual cache 

 Jigsaw transparently places pools in NUCA banks 

 

 Whirlpool requires no changes to core Jigsaw 

 Increase size of structures (few KBs) 

 Minor improvements, e.g. bypassing (see paper) 

 

 Pools useful elsewhere, eg to dynamic prefetching 

 



Significant improvements on some apps 
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38

Up to 38% better performance Up to 53% lower energy 

Performance Energy 
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Conventional runtimes can harm locality 
18 

Optimize load 

balance, not locality 



Whirlpool co-locates tasks and data 
19 

 Break input into pools 

 

 

 

 

 Application indicates task affinity 

 Schedule + steal tasks from nearby their data 

 Dynamically adapt data placement 

 

 Requires minimal changes to task-parallel runtimes 

Input 



Whirlpool improves locality 
20 



Whirlpool adapts schedule dynamically 
21 

 Data placement implicitly schedules tasks 



Significant improvements at 16 cores 
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Up to 67% better performance Up to 2.6x lower energy 

Applications 
Divide and conquer algorithms: Mergesort, FFT 
Graph analytics: PageRank, Triangle Counting, Connected Components 
Graphics: Delaunay Triangulation 

Caveat: Splitting data into 
pools can be expensive! 
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WhirlTool – Automated classification 
24 

 Modifying program code is not always practical 

 A profile-guided tool can automatically classify data into 
pools 

WhirlTool 
Profiler 

WhirlTool 
Analyzer 

Per-callpoint 
miss curves 

Callpoint-to- 
pool map 

Application 

WhirlTool 
runtime 

Whirlpool 
Allocator 

malloc() 

pool_malloc() 



WhirlTool profiles miss curves 
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Periodically records  
per-callpoint  
miss curves 

Application 

A B C …. 

A
llo

c 
A

cc
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Groups allocations 
by callpoint 

Profiles accesses 
to each pool 

T
i
m
e 

Misses 

Cache size 



WhirlTool analyzes curves to find pools 
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 Hardware can only support a limited number of pools 

 Jigsaw uses 3 virtual caches / thread 
 0.6% area overhead over LLC 

 Whirlpool adds 4 pools (each mapped to a virtual cache) 
 1.2% total area overhead over LLC 

 

 Must cluster callpoints into semantically similar groups 

Per-callpoint 
miss curves 

Agglomerative 
clustering 

Callpoint-to-pool 
mapping 



Example of agglomerative clustering 
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WhirlTool’s distance metric 
28 

Cache Size 
M

is
se

s 

Small distance 

Cache Size 

M
is
se

s 
Large distance 

Pool 1 

Pool 2 

Separated 

Combined 

Pool 3  

How many misses are saved by separating pools? 



WhirlTool matches manual hints 
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WhirlTool
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WhirlTool

Manual



Multiprogram mixes 
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 4-core system with random SPECCPU2006 apps 

 Including those that do not benefit 

 

 Whirlpool improves performance by (gmean over 20 mixes) 

 35% over S-NUCA 

 30% over idealized shared-private D-NUCA [Hererro, ISCA’10] 

 26% over R-NUCA         [Hardavellas, ISCA’09] 

 18% over page placement by Awasthi et al. [Awasthi HPCA’09] 

   5% over Jigsaw           [Beckmann, PACT’13] 

 



Conclusion 
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 Semantic information from applications improves 
performance of dynamic policies 

 

 Coordinated data and task placement gives large 
improvements in parallel applications 

 

 Automated classification reduces programmer burden 

 

 



THANKS FOR YOUR ATTENTION! 

 

QUESTIONS ARE WELCOME! 
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WhirlTool code available at http://bit.ly/WhirlTool  


