MAXIMIZING CACHE
PERFORMANCE UNDER

UNCERTAINTY

Nathan Beckmann Daniel Sanchez
CMU MIT ‘_I‘]

HPCA-23 in Austin TX, February 2017

The problem

« Caches are a critical for overall system performance
« DRAM access = ~1000x instruction time & energy

 Cache space is scarce

« With perfect information (ie, of future accesses), a simple metric is optimal
» Belady’s MIN: Evict candidate with largest time until next reference

« In practice, policies must cope with uncertainty, never knowing when candidates
will next be referenced

WHAT'S THE RIGHT
REPLACEMENT METRIC

UNDER UNCERTAINTY?

PRIORWORK HAS TRIED
MANY APPROACHES

Practice Theorx

Traditional: LRU, LFU, random « MIN—optimal! [Belady, IBM'66][Mattson,

e . . , IBM’70
Statistical cost functions [Takagi ICS'04] . BUZ n]eeds serfect future information

d|qezijeasun—jedndeidw

SLIO!].(]LUHSSE

Bypassing [Qureshi ISCA'07] « LFU—Independent reference model [Aho,
Likelihood of reuse [Khan MICRO'10] J.ACM'71] . |
« But assumes reference probabilities are static
Reuse interval prediction [Jaleel ISCA'10] —
[Wu MICRO’115J

Protect lines from eviction [Duong » Modeling many other reference patterns Don’t
MICRO'12] [Garetto™16, Beckmann HPCA16, ...] address

- .) optimalit
Data mining [Jimenez MICRO13] Without a foundation in theory, g

Emulating MIN [Jain ISCA'16] " are any “doing the right thing"”?

4

GOAL: APRACTICAL
REPLACEMENT METRIC

WITH FOUNDATION IN
THEORY

Fundamental challenges

e Goal: Maximize cache hit rate

 Constraint: Limited cache space

e Uncertainty: In practice, don’t know what is accessed when

Key quantltles Evicted at age 5

Hit at age 4 Lifetime of 5
Lifetime of 4

Accesses:

3-line
LRU

cache: Adges

« Age is how long since a line was referenced

« Divide cache space into lifetimes at hit/eviction boundaries

« Use probability to describe distribution of lifetime and hit age
« P[L=a] < probability arandomly chosen access lives a accesses in the cache

« P[H =a] < probability arandomly chosen access hits at age a

Fundamental challenges

e Goal: Maximize cache hit rate oo |
P[hit] = z P[H = a] Every hit occurs
= at some age < o

e Constraint: Limited cache space [S =E[L] = Z@< P[L = a] } Little's Law

a=1

Observations:
Hits beneficial irrespective of age
Cost (in space) increases in proportion to age

Insights & Intuition

« Replacement metric must balance benefits and cost

f \

hits cache space

Observations:
Hits beneficial irrespective of age
Cost (in space) increases in proportion to age

Conclusion:
Replacement metric « hit probability
Replacement metric x —expected lifetime

Simpler ideas don’t work

« MIN evicts the candidate with largest time until next reference

« Common generalization = largest predicted time until next reference

Simpler ideas don’t work

« MIN evicts the candidate with largest time until next reference

« Common generalization = largest predicted time until next reference

0[0

o®_~ Reuse in 1 access Q: Would you rather have A or B?
°< We would rather have A, because
Yoo we can gamble that it will hitin 1

(2 Reuse Iin 100 access
access and evict it otherwise

100%R _ ...But A's expected time until next
cUse I 2 access reference is larger than B's.

THE KEY IDEA:
REPLACEMENT BY

ECONOMICVALUE
ADDED

Our metric: Economic value added (EVA)

« EVA reconciles and expected lifetime by measuring time in cache
as forgone hits

« Thought experiment: how long does a hit need to take before it isn‘t worth it?

» Answer: As long as it would take to net-arrother hit from elsewhere.
: : Hit rate
« On average, each access yields hits ‘

Cache size
« =» Time spent in the cache costs this

it rate) , _
EVA = » Candidate’'s expected time
ache size

Our metric: Economic value added (EVA)

« EVA reconciles and expected lifetime by measuring time in cache
as forgone hits

Hit rate
Cache size

X Candidate's expected time

« EVA measures how many hits a candidate nets vs. the average candidate
« EVA is essentially a cost-benefit analysis: is this candidate worth keeping around?
« Replacement policy evicts candidate with lowest EVA Efficient

implementation!

A

Estimate EVA using informative features

« EVA uses conditional probability

This talk

 Condition upon informative features, e.g.,

« Recency: how long since this candidate was referenced? (candidate’s age)
 Frequency: how often is this candidate referenced?

« Many other possibilities: requesting PC, thread id, ...

Estimating EVA from recent accesses

« Compute EVA using conditional probability

« A candidate of age a by definition hasn't hit or evicted at ages < a

« =» Canonly hit at ages > a and lifetime must be > a

o Hit probability = P[hit | age a] = Zf:a 1133[[21::;]]

« Expected remaining lifetime = E[L — a| age a] = Zx}“oﬁx_ﬁ[)i[i]: “

EVA by example

« Program scans alternating over two arrays: ‘big’ and ‘small’

small

Best policy:
Cache small array + as much of big array as fits

> >
> >
d >
> >
<>
<>
>
<>
>
<>
<>
>
<>
>
>
<>

EVA by example

« Program scans alternating over two arrays: ‘big’ and ‘small’

1 1 1
e e R R R e R e R R e R R R R Rl e R R R e e R R R R R R R R R R e R el

£
g
2
@
:

EVA policy on example (1/4)

atl

|
100

|
150
Age

|
200

|
200

=
in

=
=,

Access Probability
s = £

150 200 250
Age

At age zero, the
replacement policy has
learned nothing about
the candidate.

Therefore, its EVA is zero
—i.e., no difference from
the average candidate.

EVA policy on example (2/4)

Access Probability

100 150 200 250

| ’ ’ ’ ’ ’ Until size of small array,
EVA doesn’t know which

array is being accessed.

But expected remaining
lifetime decreases =
EVA Increases.

EVA evicts MRU here,

- | i i i
100 100 (0 200 - :
o0 20 protecting candidates.

Age

21

EVA policy on example (3/4)

Access Probability

100 150 200 250
Age

If candidate doesn't hit at
size of small array, it
must be an access to the
big array.

So expected remaining
lifetime is large, and
EVA is negative.
| | | | |
100 150 :
o 20 200 EVA prefers to evict
Age :
these candidates.

22

EVA policy on example (4/4)

atl

|
100

|
150
Age

|
200

|
200

=
in

=
=,

Access Probability
s = £

150 200 250
Age

Candidates that survive
further are guaranteed to
hit, but it takes a long
time.

As remaining lifetime
decreases, EVA increases
to maximum of =1 at
size of big array.

=
in

=
=,

EVA policy summary

Access Probability
s = 2

EVA implements the optimal
policy given uncertainty:
Cache small array + as much
“Cache blg array eventually of big array as fits
Ewct after. small ar[ay...j e
| I |
100 150 200 250

Age

WHY IS EVATHE RIGHT

METRIC?

Markov decision processes

« Markov decision processes (MDPs) model decision-making under uncertainty

« MDP theory gives provably optimal decision-making metrics

« We can model cache replacement as an MDP

« EVA corresponds to a decomposition of the appropriate MDP policy

« (Paper gives high-level discussion & intuition; my PhD thesis gives details)
Happy to discuss in depth offline!

TRANSLATING THEORY

TO PRACTICE

Simple hardware, smart software

Address... (~45b)

| Cache bank

I
Y)

Timestamp (8b)

Hit/eviction
event counters

Global timestamp

~70S runtime (or HW

microcontroller)
periodically computes
EVA and assigns ranks

<—Ranking

Updating EVA ranks

e Assign ranks to order (age, reused?) by EVA

Algorithm 1. Algorithm to compute EVA and update ranks.

Inputs: hitCtrs, evictionCtrs — event counters, A — age granularity
Returns: rank — eviction priorities for all ages and classes
1. function UPDATE

P Slmple Implementatlon In three passes over — 2 fora — 2" to 1: & Miss rates from summing over counters.

] for ce {noanmsed ,reused}:
ages + sorting: - ? SR SRS

1 i : mpg[a] «— missesg/(hitsp + misses
1. Compute miss probabilities . e e
m «— (hitsg + hitsyg)/(missesg + missesyg)

2. Compute UﬂClaSSIfled EVA perAccessCost — (1 —m) xA/S

for ¢ € {nonReused, reused} : > Compute EVA backwards over ages.

3. Add classification term = el Woglewenis

fora«—2to1:
expectedLifetime += events
evalc,a] — (hits— perAccessCost x expectedLifetime) /events
hits += hitCtrs[c,a]
events += hitCtrs[c,a] + evictionCtrs[c,a]
: evaReused «— eva[reused, 1]/mg[0] > Differentiate classes.
. H : for ¢ € {nonReused,reused} :
« Low complexity in software = gk
evalc,a] += (m —m¢[a]) x evaReused

e] 23 | N e S Of C ++ : order +— ARGSORT(eva) ©> Finally, rank ages by EVA.

for i — 1to 25!

rank[order[i]] — 25! —

e ...ora HW controller (0.o5mm”2 @ 65nm) - retum ran

Overheads

» Software updates
« 43Kcycles [256K accesses

 Average 0.1% overhead

o Hardware structures
« 1% area overhead (mostly tags)

« 7mW with frequent accesses

Easy to reduce further with little performance loss.

EVALUATION

Methodology

« Simulation using zsim
« Workloads: SPECCPU2006 (multithreaded in paper)
e System: 4GHz OO0, 32KB L1s & 256KB L2

o Study replacement policy in L3 from 21MB - 8MB
« EVA vsrandom, LRU, SHiP [Wu MICRQO11], PDP [Duong MICRO'12]

« Compare performance vs. total cache area
* Including replacement, ~1% of total area

EVA performs consistently well

o = MIN Random = LRU +—¢ SHiP *—+ PDP o EVA

32 - 9
; 'T 'I ¥ | 1 |
30 470.lom.

28 -

6.cactusADM 4
See paper
for more

26 = <

apps
o |\ PP

22~

20 -

18 - .

16 - N

@.I ! | | | I | _ @ | | ! | | I
N PR PSS A N PR PSS A

Area (mm? @ 65nm) Area (mm? @ 65nm)

SHIP performs poorly PDP performs poorly

EVA closes gap to optimal replacement

« <« MIN + ~ Random = LRU +—+ SHIP *—+ PDP o EVA
« "How much worse is X than optimal?” 3.5

« Averaged over SPECCPU2006 0T -
25-

2.0 -
NS,
1.0 -
0.5 -

« EVA improves execution time by 8.5% 0.0 —or o —e— 0 — —0—| o —o]
e vs 6.8% for SHIP, 4.5% for PDP 10 20 30 40 50 60 70

Area (mm? @ 65nm)

34

« EVA closes 57% random-MIN gap
e vs. 47% SHIP, 42% PDP

<
=
®
>
)
X
al
=

EVA makes good use of add’| state

o = MIN ~ ~+ Random = LRU +—+ SHIP *—+ PDP o EVA

 Adding bits improves EVA'’s perf. 1.0 o0 e o e
« Not true of SHIP, PDP,

« =» Even with larger tags, EVA saves
8% area vs SHIP

« Open question: how much space
should we spend on replacement?
« Traditionally: as little as possible L]
» Butis this the best tradeoff? 2 3 4 5 6 7 8 910
Replacement Tag Bits

EVA is easy to apply to new problems

Just change cost/ terms in EVA to adapt to...

 Objects of different size (eg, compressed caches)

« Different optimization metrics (eg, byte-hit-rate)

« QoS or application priorities

e ...and so on

THANKYOU!

