
MAXIMIZING CACHE
PERFORMANCE UNDER

UNCERTAINTY

HPCA-23 in Austin TX, February 2017

Daniel Sanchez

MIT

Nathan Beckmann

CMU

The problem

• Caches are a critical for overall system performance
• DRAM access = ~1000x instruction time & energy

• Cache space is scarce

• With perfect information (ie, of future accesses), a simple metric is optimal
• Beladyǯs MIN: Evict candidate with largest time until next reference

• In practice, policies must cope with uncertainty, never knowing when candidates
will next be referenced

2

W(ATǯS T(E R)G(T
REPLACEMENT METRIC
UNDER UNCERTAINTY?

3

PRIOR WORK HAS TRIED
MANY APPROACHES

4

Practice

• Traditional: LRU, LFU, random

• Statistical cost functions [Takagi)CSǯ͘͜]

• Bypassing [Qureshi)SCAǯ͘͟]

• Likelihood of reuse [Khan M)CROǯ͙͘]

• Reuse interval prediction [Jaleel)SCAǯ͙͘]
[Wu M)CROǯ͙͙]

• Protect lines from eviction [Duong
M)CROǯ͙͚]

• Data mining [Jimenez M)CROǯ͙͛]

• Emulating M)N [Jain)SCAǯ͙͞]

Theory

• MIN—optimal! [Belady,)BMǯ͞͞][Mattson,
)BMǯ͘͟]
• But needs perfect future information

• LFU—Independent reference model [Aho,
J. ACMǯ͙͟]
• But assumes reference probabilities are static

• Modeling many other reference patterns
[Garettoǯ͙͞, Beckmann (PCAǯ͙͞, …]

Without a foundation in theory,
are any ǲdoing the right thingǳ?

Im
p

ra
ctica

l—
u

n
re

a
liza

b
le

a
ssu

m
p

tio
n

s

Don’t
address

optimality

GOAL: A PRACTICAL
REPLACEMENT METRIC
WITH FOUNDATION IN

THEORY

5

Fundamental challenges

• Goal: Maximize cache hit rate

• Constraint: Limited cache space

• Uncertainty:)n practice, donǯt know what is accessed when

6

Key quantities

• Age is how long since a line was referenced

• Divide cache space into lifetimes at hit/eviction boundaries

• Use probability to describe distribution of lifetime and hit age
• P[� = �]  probability a randomly chosen access lives a accesses in the cache

• P[� = �]  probability a randomly chosen access hits at age �
7

A B C B A C B C B D …

A A D

B B B B

C C C

Accesses:

3-line

LRU

cache:

1 2 3 4 1 2 3 4 5 1 2...

Ages
1 2 1 2 3 1 2 1 2 ͛…

1 2 3 1 2 1 2 3 ͜…

Hit at age 4

Lifetime of 4

Evicted at age 5

Lifetime of 5

Fundamental challenges

• Goal: Maximize cache hit rate

• Constraint: Limited cache space

8

P ��t = ෍�=1∞ P[� = �]
� = E � = ෍�=1∞ � × P[� = �]

Every hit occurs

at some age < ∞
Littleǯs Law

Observations:

Hits beneficial irrespective of age

Cost (in space) increases in proportion to age

Insights & Intuition

• Replacement metric must balance benefits and cost

9

hits cache space

Observations:

Hits beneficial irrespective of age

Cost (in space) increases in proportion to age

Conclusion:Replacement metr�c ∝ ��t probab�l�tyReplacement metr�c ∝ −e�pected l�fet�me

Simpler ideas donǯt work

• MIN evicts the candidate with largest time until next reference

• Common generalization  largest predicted time until next reference

10

Simpler ideas donǯt work

• MIN evicts the candidate with largest time until next reference

• Common generalization  largest predicted time until next reference

11

A

B

Reuse in 1 access

Reuse in 100 access

Reuse in 2 access
100%

Q: Would you rather have A or B?

We would rather have A, because

we can gamble that it will hit in 1

access and evict it otherwise

…But Aǯs expected time until next
reference is larger than Bǯs.

THE KEY IDEA:
REPLACEMENT BY
ECONOMIC VALUE

ADDED

13

Our metric: Economic value added (EVA)

• EVA reconciles hit probability and expected lifetime by measuring time in cache
as forgone hits

• Thought experiment: how long does a hit need to take before it isnǯt worth it?

• Answer: As long as it would take to net another hit from elsewhere.

• On average, each access yields hits = H୧୲ ୰a୲eCac୦e ୱ୧ze
• Time spent in the cache costs this many forgone hits

14

EVA = ࢙′ࢋ࢚�ࢊ�ࢊ��� ܌܍ܜ܋܍��܍ ܛܜܑܐ − ��t rateCac�e s�ze × ܛ′ࢋ࢚�ࢊ�ࢊ��� ܌܍ܜ܋܍��܍ ܍�ܑܜ

Our metric: Economic value added (EVA)

• EVA reconciles hit probability and expected lifetime by measuring time in cache
as forgone hits

• EVA measures how many hits a candidate nets vs. the average candidate

• EVA is essentially a cost-benefit analysis: is this candidate worth keeping around?

• Replacement policy evicts candidate with lowest EVA

15

EVA = ࢙′ࢋ࢚�ࢊ�ࢊ��� ܌܍ܜ܋܍��܍ ܛܜܑܐ − ��t rateCac�e s�ze × ܛ′ࢋ࢚�ࢊ�ࢊ��� ܌܍ܜ܋܍��܍ ܍�ܑܜ

Efficient

implementation!

Estimate EVA using informative features

• EVA uses conditional probability

• Condition upon informative features, e.g.,

• Recency: how long since this candidate was referenced? ȋcandidateǯs ageȌ

• Frequency: how often is this candidate referenced?

• Many other possibilities: requesting PC, thread id, …

16

This talk

The paper

Estimating EVA from recent accesses

• Compute EVA using conditional probability

• A candidate of age � by definition hasnǯt hit or evicted at ages ≤ �
• Can only hit at ages > � and lifetime must be > �
• ��t probab�l�ty = P ��t age �] = σ�=�∞ P �=�σ�=�∞ P �=�
• E�pected rema�n�ng l�fet�me = E � − � age �] = σ�=�∞ ሺ�−�ሻ P �=�σ�=�∞ P �=�

17

EVA by example

• Program scans alternating over two arrays: Ǯbig’ and Ǯsmall’

18

small big

Best policy:

Cache small array + as much of big array as fits

EVA by example

• Program scans alternating over two arrays: Ǯbig’ and Ǯsmall’

19

EVA policy on example (1/4)

20

At age zero, the

replacement policy has

learned nothing about

the candidate.

Therefore, its EVA is zero

– i.e., no difference from

the average candidate.

EVA policy on example (2/4)

21

Until size of small array,

EVA doesnǯt know which
array is being accessed.

But expected remaining

lifetime decreases 
EVA increases.

EVA evicts MRU here,

protecting candidates.

EVA policy on example (3/4)

22

)f candidate doesnǯt hit at
size of small array, it

must be an access to the

big array.

So expected remaining

lifetime is large, and

EVA is negative.

EVA prefers to evict

these candidates.

EVA policy on example (4/4)

23

Candidates that survive

further are guaranteed to

hit, but it takes a long

time.

As remaining lifetime

decreases, EVA increases

to maximum of ≈1 at
size of big array.

EVA policy summary

24

EVA implements the optimal

policy given uncertainty:

Cache small array + as much

of big array as fits

WHY IS EVA THE RIGHT
METRIC?

25

Markov decision processes

• Markov decision processes (MDPs) model decision-making under uncertainty

• MDP theory gives provably optimal decision-making metrics

• We can model cache replacement as an MDP

• EVA corresponds to a decomposition of the appropriate MDP policy

• (Paper gives high-level discussion & intuition; my PhD thesis gives details)
Happy to discuss in depth offline!

26

TRANSLATING THEORY
TO PRACTICE

27

Global timestamp

Simple hardware, smart software

28

Cache bank

Tag Data

Address… ȋ~͜͝bȌ

Timestamp (8b)

Ranking

A
g

e
s

1

2

…

4

6

OS runtime (or HW

microcontroller)

periodically computes

EVA and assigns ranks

Hit/eviction
event counters

Updating EVA ranks

• Assign ranks to order ሺ��݁, ?݀݁ݏ�݁ݎ ሻ by EVA

• Simple implementation in three passes over
ages + sorting:
1. Compute miss probabilities

2. Compute unclassified EVA

3. Add classification term

• Low complexity in software
• 123 lines of C++

• …or a (W controller ȋ͘.͘͝mm^͚ @ ͞͝nmȌ
29

Overheads

• Software updates
• 43Kcycles / 256K accesses

• Average 0.1% overhead

• Hardware structures
• 1% area overhead (mostly tags)

• 7mW with frequent accesses

Easy to reduce further with little performance loss.

30

EVALUATION

31

Methodology

• Simulation using zsim

• Workloads: SPECCPU2006 (multithreaded in paper)

• System: 4GHz OOO, 32KB L1s & 256KB L2

• Study replacement policy in L3 from 1MB  8MB
• EVA vs random, LRU, SHiP [Wu M)CROǯ͙͙], PDP [Duong M)CROǯ͙͚]

• Compare performance vs. total cache area
• Including replacement, ≈1% of total area

32

EVA performs consistently well

33SHiP performs poorly PDP performs poorly

See paper

for more

apps

EVA closes gap to optimal replacement

• ǲ(ow much worse is X than optimal?ǳ

• Averaged over SPECCPU2006

• EVA closes 57% random-MIN gap
• vs. 47% SHiP, 42% PDP

• EVA improves execution time by 8.5%
• vs 6.8% for SHiP, 4.5% for PDP

34

EVA makes good use of addǯl state

• Adding bits improves EVAǯs perf.
• Not true of SHiP, PDP, DRRIP

•  Even with larger tags, EVA saves
8% area vs SHiP

• Open question: how much space
should we spend on replacement?
• Traditionally: as little as possible

• But is this the best tradeoff?

35

EVA is easy to apply to new problems

Just change cost/benefit terms in EVA to adapt to…

• Objects of different size (eg, compressed caches)

• Different optimization metrics (eg, byte-hit-rate)

• QoS or application priorities

• …and so on

36

THANK YOU!

37

