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The problem

• Caches are a critical for overall system performance
• DRAM access = ~1000x instruction time & energy

• Cache space is scarce

• With perfect information (ie, of future accesses), a simple metric is optimal
• Belady s MIN: Evict candidate with largest time until next reference

• In practice, policies must cope with uncertainty, never knowing when candidates 
will next be referenced
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W(AT S T(E R)G(T 
REPLACEMENT METRIC 
UNDER UNCERTAINTY?
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PRIOR WORK HAS TRIED 
MANY APPROACHES
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Practice

• Traditional: LRU, LFU, random

• Statistical cost functions [Takagi )CS ]

• Bypassing [Qureshi )SCA ]

• Likelihood of reuse [Khan M)CRO ]

• Reuse interval prediction [Jaleel )SCA ] 
[Wu M)CRO ]

• Protect lines from eviction [Duong 
M)CRO ]

• Data mining [Jimenez M)CRO ]

• Emulating M)N [Jain )SCA ]

Theory

• MIN—optimal! [Belady, )BM ][Mattson, 
)BM ]
• But needs perfect future information

• LFU—Independent reference model [Aho, 
J. ACM ]
• But assumes reference probabilities are static

• Modeling many other reference patterns 
[Garetto , Beckmann (PCA , …]

Without a foundation in theory,
are any doing the right thing ?
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GOAL: A PRACTICAL
REPLACEMENT METRIC 
WITH FOUNDATION IN  

THEORY
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Fundamental challenges

• Goal: Maximize cache hit rate

• Constraint: Limited cache space

• Uncertainty: )n practice, don t know what is accessed when
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Key quantities

• Age is how long since a line was referenced

• Divide cache space into lifetimes at hit/eviction boundaries

• Use probability to describe distribution of lifetime and hit age
• P[� = �]  probability a randomly chosen access lives a accesses in the cache

• P[� = �]  probability a randomly chosen access hits at age �
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Accesses:

3-line

LRU

cache:

1 2 3 4 1 2 3 4 5 1 2...

Ages
1 2 1 2 3 1 2 1 2 …

1 2 3 1 2 1 2 3 …

Hit at age 4

Lifetime of 4

Evicted at age 5

Lifetime of 5



Fundamental challenges

• Goal: Maximize cache hit rate

• Constraint: Limited cache space
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P ��t = �=1∞ P[� = �]
� = E � = �=1∞ � × P[� = �]

Every hit occurs 

at some age < ∞
Little s Law

Observations:

Hits beneficial irrespective of age

Cost (in space) increases in proportion to age



Insights & Intuition

• Replacement metric must balance benefits and cost
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hits cache space

Observations:

Hits beneficial irrespective of age

Cost (in space) increases in proportion to age

Conclusion:Replacement metr�c ∝ ��t probab�l�tyReplacement metr�c ∝ −e�pected l�fet�me



Simpler ideas don t work

• MIN evicts the candidate with largest time until next reference

• Common generalization  largest predicted time until next reference
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Simpler ideas don t work

• MIN evicts the candidate with largest time until next reference

• Common generalization  largest predicted time until next reference
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A

B

Reuse in 1 access

Reuse in 100 access

Reuse in 2 access
100%

Q: Would you rather have A or B?

We would rather have A, because 

we can gamble that it will hit in 1 

access and evict it otherwise

…But A s expected time until next 
reference is larger than B s.



THE KEY IDEA: 
REPLACEMENT BY 
ECONOMIC VALUE 

ADDED
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Our metric: Economic value added (EVA)

• EVA reconciles hit probability and expected lifetime by measuring time in cache 
as forgone hits

• Thought experiment: how long does a hit need to take before it isn t worth it?

• Answer: As long as it would take to net another hit from elsewhere.

• On average, each access yields hits = H a eCac e ze
• Time spent in the cache costs this many forgone hits

14

EVA = ��� � � ′ �� − ��t rateCac�e s�ze × ��� � � ′ �� �



Our metric: Economic value added (EVA)

• EVA reconciles hit probability and expected lifetime by measuring time in cache 
as forgone hits

• EVA measures how many hits a candidate nets vs. the average candidate

• EVA is essentially a cost-benefit analysis: is this candidate worth keeping around?

• Replacement policy evicts candidate with lowest EVA
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EVA = ��� � � ′ �� − ��t rateCac�e s�ze × ��� � � ′ �� �

Efficient 

implementation!



Estimate EVA using informative features

• EVA uses conditional probability

• Condition upon informative features, e.g.,

• Recency: how long since this candidate was referenced? candidate s age

• Frequency: how often is this candidate referenced?

• Many other possibilities: requesting PC, thread id, …
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This talk

The paper



Estimating EVA from recent accesses

• Compute EVA using conditional probability

• A candidate of age � by definition hasn t hit or evicted at ages ≤ �
• Can only hit at ages > � and lifetime must be > �
• ��t probab�l�ty = P ��t age �] = σ�=�∞ P �=�σ�=�∞ P �=�
• E�pected rema�n�ng l�fet�me = E � − � age �] = σ�=�∞ �−� P �=�σ�=�∞ P �=�
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EVA by example

• Program scans alternating over two arrays: big’ and small’
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small big

Best policy:

Cache small array + as much of big array as fits



EVA by example

• Program scans alternating over two arrays: big’ and small’

19



EVA policy on example (1/4)
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At age zero, the 

replacement policy has 

learned nothing about 

the candidate.

Therefore, its EVA is zero

– i.e., no difference from 

the average candidate.



EVA policy on example (2/4)
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Until size of small array, 

EVA doesn t know which 
array is being accessed.

But expected remaining 

lifetime decreases 
EVA increases.

EVA evicts MRU here, 

protecting candidates.



EVA policy on example (3/4)
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)f candidate doesn t hit at 
size of small array, it 

must be an access to the 

big array.

So expected remaining 

lifetime is large, and 

EVA is negative.

EVA prefers to evict 

these candidates.



EVA policy on example (4/4)
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Candidates that survive 

further are guaranteed to 

hit, but it takes a long 

time.

As remaining lifetime 

decreases, EVA increases 

to maximum of ≈1 at 
size of big array.



EVA policy summary
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EVA implements the optimal 

policy given uncertainty:

Cache small array + as much 

of big array as fits



WHY IS EVA THE RIGHT 
METRIC?
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Markov decision processes

• Markov decision processes (MDPs) model decision-making under uncertainty

• MDP theory gives provably optimal decision-making metrics

• We can model cache replacement as an MDP

• EVA corresponds to a decomposition of the appropriate MDP policy

• (Paper gives high-level discussion & intuition; my PhD thesis gives details)
Happy to discuss in depth offline!
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TRANSLATING THEORY 
TO PRACTICE
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Global timestamp 

Simple hardware, smart software
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Cache bank

Tag Data

Address… ~ b

Timestamp (8b)

Ranking
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OS runtime (or HW 

microcontroller) 

periodically computes 

EVA and assigns ranks

Hit/eviction 
event counters



Updating EVA ranks

• Assign ranks to order �� , � ? by EVA

• Simple implementation in three passes over 
ages + sorting:
1. Compute miss probabilities

2. Compute unclassified EVA

3. Add classification term

• Low complexity in software
• 123 lines of C++

• …or a (W controller . mm^  @ nm
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Overheads

• Software updates
• 43Kcycles / 256K accesses

• Average 0.1% overhead

• Hardware structures
• 1% area overhead (mostly tags)

• 7mW with frequent accesses

Easy to reduce further with little performance loss.
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EVALUATION
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Methodology

• Simulation using zsim

• Workloads: SPECCPU2006 (multithreaded in paper)

• System: 4GHz OOO, 32KB L1s & 256KB L2

• Study replacement policy in L3 from 1MB  8MB
• EVA vs random, LRU, SHiP [Wu M)CRO ], PDP [Duong M)CRO ]

• Compare performance vs. total cache area
• Including replacement, ≈1% of total area
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EVA performs consistently well

33SHiP performs poorly PDP performs poorly

See paper 

for more 

apps



EVA closes gap to optimal replacement

• (ow much worse is X than optimal?

• Averaged over SPECCPU2006

• EVA closes 57% random-MIN gap
• vs. 47% SHiP, 42% PDP

• EVA improves execution time by 8.5%
• vs 6.8% for SHiP, 4.5% for PDP
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EVA makes good use of add l state

• Adding bits improves EVA s perf.
• Not true of SHiP, PDP, DRRIP

•  Even with larger tags, EVA saves 
8% area vs SHiP

• Open question: how much space 
should we spend on replacement?
• Traditionally: as little as possible

• But is this the best tradeoff?
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EVA is easy to apply to new problems

Just change cost/benefit terms in EVA to adapt to…

• Objects of different size (eg, compressed caches)

• Different optimization metrics (eg, byte-hit-rate)

• QoS or application priorities

• …and so on
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THANK YOU!
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