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Leveraging Hardware Caches
for Memoization

Guowei Zhang Daniel Sanchez

Abstract—Memoization improves performance and saves energy by

caching and reusing the outputs of repetitive computations. Prior work

has proposed software and hardware memoization techniques, but both

have significant drawbacks. Software memoization suffers from high

runtime overheads, and is thus limited to long computations. Conven-

tional hardware memoization techniques achieve low overheads and

can memoize short functions, but they rely on large, special-purpose

memoization caches that waste significant area and energy.

We propose MCACHE, a hardware technique that leverages data

caches for memoization. MCACHE stores memoization tables in memory,

and allows them to share cache capacity with normal program data.

MCACHE introduces ISA and pipeline extensions to accelerate memo-

ization operations, bridging the gap between software and conventional

hardware techniques. Simulation results show that MCACHE improves

performance by up to 21×, outperforms software memoization by up to

2.2×, and achieves similar or superior performance over conventional

hardware techniques without any dedicated storage.

✦

1 INTRODUCTION

The impending end of Moore’s Law is making transistors
a scarce resource. Therefore, it is crucial to investigate new
abstractions and architectural mechanisms that make better use
of existing hardware. The memory system is ripe for this type of
optimization: current memory hierarchies employ sophisticated
hardware caches, but are hampered by a narrow load/store
interface that limits their utility.

In this work we focus on memoization, a natural technique
to support in the memory system. Memoization caches the
results of repetitive computations, allowing the program to
skip them. Memoized computations must be pure and depend
on few, repetitive inputs. Prior work has proposed software
and hardware implementations of memoization, but both have
significant drawbacks.

Software memoization is hampered by high runtime over-
heads [3, 14]. The software caches used to implement mem-
oization take tens to hundreds of instructions per lookup.
This limits software memoization to long computations, e.g.,
with thousands of cycles or longer. But as we later show,
many memoizable functions are merely 20 to 150 instructions
long. Software techniques not only cannot exploit these short
functions, they must perform a careful cost-benefit analysis
to avoid memoizing them [6, 7], which would carry heavy
penalties.

Prior work has proposed hardware support to accelerate
memoization [3, 14, 16]. Accelerating table lookups unlocks the
benefit of memoizing short code regions. However, prior tech-
niques incur large hardware overheads because they introduce
special-purpose memoization caches. These structures are large,
rivaling or exceeding the area of the L1 cache. For example, Da
Costa et al.’s proposal [5] consumes 98 KB. While memoization is
very effective for applications with repetitive computations, not
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all applications can benefit from it. In these cases, this dedicated
storage not only wastes area that could otherwise be devoted to
caches, but also hurts energy consumption [2].

To address the drawbacks of software and conventional
hardware memoization, we propose MCACHE, a hardware
technique that leverages data caches to accelerate memoization
with minimal overheads. Unlike prior hardware techniques,
MCACHE stores memoization tables in memory, allowing them
to share cache capacity with conventional data. MCACHE then
introduces new instructions to perform memoization lookups
and updates. These instructions are designed to leverage exist-
ing core structures and prediction mechanisms. For example,
memoization lookups have branch semantics and thus leverage
the core’s branch predictors to avoid control-flow stalls.

As a result, MCACHE achieves the low overheads of prior
hardware techniques at a fraction of their cost. Simulations
show that MCACHE improves performance by up to 21×,
outperforms software memoization by up to 2.2×, and achieves
comparable performance to conventional hardware techniques
without requiring any dedicated storage.

2 BACKGROUND

Memoization was first introduced by Michie in 1968 [10]. Since
then, it has been implemented using software and hardware.

Software memoization is the cornerstone of many important
algorithms, such as dynamic programming, and is widely used
in many languages, especially functional ones. Software typically
implements per-function software caches, e.g., using hash tables
that store function arguments as keys and results as values.
Citron et al. [3], among others, show that software memo-
ization incurs significant overheads on short functions: when
memoizing mathematical functions indiscriminately, software
memoization incurs a 7% performance loss, while a hardware
approach yields 10% improvement. To avoid performance loss,
software-based schemes apply memoization selectively, relying
on careful cost-benefit analysis of memoizable regions, done by
either compilers [7, 14], profiling tools [6], or programmers [15].

Hardware memoization techniques reduce these overheads
and thus can unlock more memoization potential. Much prior
work on hardware memoization focuses on automating the
detection of memoizable regions at various granularities [5, 8,
13, 16], while others rely on ISA and program changes to select
memoizable regions [3, 4, 14]. However, all prior hardware
techniques require dedicated storage for memoization tables.
Such tables require similar or even larger sizes than L1 caches.
Therefore, they incur significant area and energy overheads [2],
especially for programs that cannot exploit memoization.

Other prior work has proposed architectural [17] or run-
time [11] support to track implicit inputs/outputs of memoized
functions, enabling memoization of some impure functions. This
support is orthogonal to the implementation of the memoization
mechanisms, which is the focus of our work. MCACHE could be
easily combined with these mechanisms.

3 MCACHE DESIGN

MCACHE leverages two key features to bridge the gap between
software and conventional hardware memoization.

First, MCACHE stores the memoization tables in cacheable
memory. This avoids the large costs of specialized memoization
caches used by conventional hardware techniques, and allows
the capacity in the cache hierarchy to be shared between
memoization data and normal program data. MCACHE adopts
a format for memoization tables that exploits the characteristics
of caches to make lookups fast.
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Second, MCACHE introduces two memoization instructions
that are amenable to a fast and simple implementation. MCACHE

achieves much faster table lookups than software techniques,
where a memoization lookup is implemented as a sequence of
instructions that include one or more memory accesses to fetch
keys and values, comparisons, and hard-to-predict branches.
Though these operations are not complex, they cause frequent
stalls that hurt performance. Instead, MCACHE memoization
lookups are done through a single instruction with branch
semantics. The outcome of a memoization lookup (hit or
miss) can be predicted accurately by the core’s existing branch
predictors, avoiding control-flow stalls.

3.1 Memoization table format

MCACHE uses per-function memoization tables, allowing each
table to have a homogeneous entry format. Each memoization
table is stored in a contiguous, fixed-size region of physical
memory, as shown in Fig. 1.

Physical memory 

Reg0 Reg1 

128 

H 
M 

Key 

2M cache lines 

Key 0 Value 0 Key 1 Value 1 Unused 

128b 64b 128b 64b 128b 

Fig. 1: MCACHE memoization table format.

MCACHE uses a storage format designed to leverage the
characteristics of caches. Each cache line stores a fixed number
of key-value (i.e., input-output) pairs. For example, Fig. 1 shows
the format of a 64-byte cache line for a function with 128-bit keys
(i.e., arguments) and 64-bit values. A given entry can map to a
single cache line, but can be stored in any position within the
line. A lookup thus requires hashing the input data to produce
a cache line index, fetching the line at that index (as shown in
Fig. 1), and comparing all keys in the line. This design requires
accessing a single cache line, but retains associativity within a
line to reduce conflict misses. Unlike hash tables, memoization
tables do not grow to accommodate extra items. Insertions
simply replace one of the line’s entries, selected at random.

MCACHE uses physical memory for each memoization table,
so lookups and insertions, which happen through special in-
structions, do not check the TLB. The OS reserves and initializes
this physical memory, which is not mapped to the program’s
address space. To avoid the need for valid bits, the OS initializes
each line’s entries with keys that map to a different line.

3.2 MCACHE ISA extensions

MCACHE provides support for a small number of memoization
tables. Cores store the starting address and size of each table
in architectural registers. Our implementation supports four
table ids, which suffice to have per-function memoization tables
on all applications we study. Larger applications could select
which functions to memoize or share each table among multiple
functions (by including the function pointer as one of the
arguments).

MCACHE adds two instructions, memo_lookup and memo_-

update. Fig. 2 shows these instructions in action when they are
used to memoize the exp function.

memo_lookup has branch semantics. It performs a lookup in
the memoization table specified by table id. If the lookup is a
memoization hit, memo_lookup acts as a taken branch, setting
the PC to the target encoded in the instruction (in PC-relative

	memo_lookup		0,		1,		0,		3,	next	

	call	exp	

	memo_update		0,		1,		0,		3	

next:	 	…	

# of fp inputs table_id 

# of int inputs is_int_output target 

Fig. 2: Example showing MCACHE instructions used to memoize exp.

format) and updating the result register with the memoized
value. On a memoization miss, memo_lookup acts as a non-taken
branch. For example, in Fig. 2, a memoization hit jumps to next,
skipping the call to exp.

memo_lookup supports functions with up to four integer
or floating-point arguments and a single integer or floating-
point result, all stored in registers. We leverage the ISA’s calling
convention to compactly encode the input registers used. As
shown in Fig. 2, memo_lookup stores only the number of integer
and floating-point input registers, and the core decodes them to
register numbers. For instance, in x86-64, num int inputs = 2
means that rdi and rsi are used as inputs.

memo_update is used to update the memoization table upon
a memoization miss. Like memo_lookup, memo_update encodes
the input and output registers, and the table id. For example, in
Fig. 2, memo_update stores the result of the exp function in the
memoization table.

3.3 MCACHE microarchitecture

MCACHE requires simple changes to cores. We implement
MCACHE using a non-pipelined functional unit that executes
lookup and insertion instructions. This unit is fed the values
of input registers, possibly over multiple cycles, as well as the
table id. For a memo_lookup instruction, the unit first hashes the
input values and table size to find the line index. We restrict
the system to use power-of-2 sizes for each memoization table
and use XOR-folding to compute the hash value. This is simple
and produces good distributions in practice. Then, the MCACHE

functional unit loads the appropriate cache line, compares all
the keys, and outputs whether there’s a match, as well as the
memoized result if so. memo_update is similar, but the functional
unit also takes the result to memoize, and stores the key-value
pair in the appropriate cache line.

MCACHE leverages existing core mechanisms to improve
performance. We integrate these instructions into an x86-64 core
similar to Intel’s Nehalem (see Sec. 4.1). The frontend treats
memo_lookup as a branch, using the branch target buffer and
branch predictor to predict whether the lookup will result in a
memoization hit. This way, the core overlaps the execution of
the lookup with either the execution of the memoized function
(if a memoization miss is predicted) or its continuation (if a
memoization hit is predicted). We find that this effectively hides
the latency of memoization lookups.

In our implementation, the backend executes memo_lookup

using multiple RISC micro-ops (μops): the decoder produces one
or more μops that feed input registers to the MCACHE functional
unit, a branch-resolution μop, and, if the lookup is predicted
to hit, a μop to move the memoized result into its destination
register. memo_update uses a similar implementation.

4 EVALUATION

4.1 Methodology

Modeled system: We perform microarchitectural, execution-
driven simulation using zsim [12]. We evaluate a single-core
OOO processor with parameters shown in Table 2. MCACHE
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TABLE 1
Benchmark characteristics.

Language Benchmark suite Input set Memoizable functions Memoization table size per func

410.bwaves Fortran SPEC CPU 2006 ref slowpow, pow, halfulp, exp1 256 KB
bscholes C++ PARSEC native CDNF, exp, logf 64 KB

equake C SPEC OMP 2001 ref phi0, phi1, phi2 2 KB
water C SPLASH2 1061208 exp 16 KB

103.semphy C++ BioParallel 220 suffStatGlobalHomPos::get 4 KB
352.nab C SPEC OMP 2012 ref exp, slowexp avx 4 KB

TABLE 2
Configuration of the simulated system.

Core

x86-64 ISA, 2.0 GHz, Nehalem-like OOO: 16B-wide
ifetch, 2-level bpred with 2 K×18-bit BHSRs +
4 K×2-bit PHT, 4+1+1+1 decoders, 6 execution ports,
4-wide commit

L1 cache 64 KB, 4-way set-associative, 3-cycle latency, split D/I
L2 cache 2 MB, 16-way set-associative, 15-cycle latency, inclusive

Main memory 1 controller, 120-cycle latency

supports four table ids, and lookups incur the cost of a cache-line
load, plus two cycles to perform key comparisons.
Exploiting memoizable regions: We developed a pintool [9] to
identify memoizable (i.e., pure) functions. Then, we manually
added memo_lookup and memo_update instructions to these
functions’ callsites. We encode these instructions using x86-
64 no-ops that are never emitted by the compiler. Due to its
low overheads, MCACHE does not need to perform selective
memoization based on cost-benefit analysis as in software
techniques. Therefore, we memoize every function that our
tool identifies as memoizable. We memoize both user-defined
and standard-library functions.
Workloads: We analyze programs from six benchmark suites
and choose one application with high memoization potential
from each suite. Table 1 details these applications and their
memoization characteristics. For each application, we use the
same memoization table size for all memoized functions. We
report the table size that yields the best performance. Sec. 4.3
provides more insight on the effect of table size.

We fast-forward each application for 50 B instructions. We
instrument each program with heartbeats that report application-
level progress (e.g., when each timestep or transaction finishes),
and run the application for as many heartbeats as the baseline
system (without memoization) completes in 5 B instructions.
This lets us compare the same amount of work across schemes,
since memoization changes the instructions executed.

4.2 MCACHE vs baseline

Fig. 3 compares the performance of MCACHE over the baseline,
which does not perform memoization. MCACHE improves
performance substantially, by 21× on bwaves, 8.2× on bscholes,
72% on equake, 27% on water, 22% on semphy, and 4% on nab.

Table 3 gives more details into these results by reporting
per-function statistics. For example, in bwaves, memoizing the
pow function provides most of the benefits. pow takes thousands
of instructions to calculate x

y if x is close to 1 and y is around
0.75, which is common in bwaves. Memoizing pow contributes
to 99.9% of the instruction reduction in bwaves.

Beyond reducing execution time, MCACHE reduces the
number of L1 cache accesses significantly, as shown in Fig. 4: L1
access reductions range from 9% on nab to 97% on bwaves. This
happens because the L1 accesses saved through memoization
hits exceed the additional L1 accesses incurred by memoization
operations. Moreover, MCACHE does not incur much extra
capacity contention in L1 caches. Fig. 5 shows that MCACHE

increases L1 data cache misses by less than 3% overall. One
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Fig. 3: Per-application speedups on MCACHE. Higher is better.

TABLE 3
Per-function breakdown of memo_lookups.

Function Instrs/call # memo_lookups Hit rate

410.bwaves

slowpow 485160 311 4.5%
pow 12947 370245 97.7%

halfulp 77 297 0.0%
exp1 28 8866 5.6%

bscholes
CDNF 193 15547102 99.9%

exp 115 7789732 100.0%
logf 56 7773551 100.0%

equake
phi0 119 7953687 100.0%
phi1 123 7953687 100.0%
phi2 118 7953687 100.0%

water exp 116 7806240 100.0%

103.semphy
suffStatGlobal-

19 67123200 94.6%
HomPos::get

352.nab
exp 81 29150493 49.8%

slowexp avx 14756 0 N/A

exception is bscholes, which incurs 36% more L1 misses on
MCACHE. However, this is not significant, because the baseline’s
L1 miss rate is only 0.2%. In fact, such misses bring in valuable
memoization data that in the end improve performance by 8.2×.
On equake, MCACHE even reduces L1 data misses by 3%.

4.3 MCACHE vs conventional hardware memoization

We implement a conventional hardware memoization technique
that leverages MCACHE’s ISA and pipeline changes, but uses a
dedicated storage buffer like prior work [1, 16] instead of using
the memory system to store memoization tables. Beyond its
large hardware cost, the key problem of conventional hardware
memoization is its lack of flexibility: a too-large memoization
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tive to baseline. Lower is better.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 L

1
 M

is
s
e
s

bwaves

bscholes
equake

water

semphy
nab

Fig. 5: L1 data cache misses on
baseline and MCACHE, relative
to baseline. Lower is better.



4

MCache Dedicated Hardware BufferMCache Dedicated Hardware Buffer

0

5

10

15

20

25

S
p
e
e
d
u
p

1 4 1664

(a) bwaves

0

1

2

3

4

5

6

7

8

9

1 4 1664

(b) bscholes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 4 1664

(c) equake

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 4 1664

(d) water

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 4 1664

(e) semphy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 4 1664

(f) nab

Fig. 6: Per-application speedups of MCACHE and conventional hardware
memoization with different dedicated buffer sizes (in KB). Higher is better.

buffer wastes area and energy, while a too-small memoization
buffer sacrifices memoization potential.

Fig. 6 quantifies this problem by showing the performance
of hardware memoization across a range of memoization buffer
sizes: 1, 4, 16, and 64 KB. The buffer is associative, and entries
are dynamically shared among all memoized functions. We
optimistically model a 1-cycle buffer access latency.

Fig. 6 shows that applications are quite sensitive to mem-
oization buffer size: 1 KB is sufficient for equake and nab,
while water and semphy prefer at least 4 KB, and bwaves and
bscholes prefer at least 64 KB. Smaller buffers than needed
by the application result in increased memoization misses and
sacrifice much of the speedup of memoization.

Finally, Fig. 6 shows that MCACHE matches the performance
of hardware memoization with a dedicated storage size of 64 KB
on all applications. This is achieved even though MCACHE

does not require any dedicated storage, saving significant area
and energy. The tradeoff is that storing memoization tables in
memory causes longer lookup latencies than using a dedicated
buffer. However, these lookup latencies are small, as they mostly
hit on the L1 or L2, and branch prediction effectively hides this
latency most of the time.

4.4 MCACHE vs software memoization

We implement software memoization using function wrappers
similar to Suresh et al. [15]. Per-function memoization tables are
implemented as fixed-size, direct-mapped hash tables, accessed
before calling the memoizable function and updated after a
memoization miss.

Fig. 7 shows the performance of MCACHE and software
memoization. MCACHE outperforms software memoization by
1.3% on bwaves, 2.1× on bscholes, 17% on equake, 7% on water,
2.2× on semphy, and 32% on nab.

MCACHE outperforms software memoization due to its
low overheads. For example, semphy’s memoizable function
runs for 19 instructions on average, too short for software
memoization. As a result, software memoization is 86% slower
than the baseline. This explains why software memoization
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Fig. 7: Per-application speedups of MCACHE and software memoization
with per-function direct-mapped hash tables. Higher is better.

needs careful cost-benefit analysis to avoid performance degra-
dation. By contrast, MCACHE improves performance by 22% on
semphy, outperforming software memoization by 2.2×. Similarly,
software memoization makes nab 27% slower, while MCACHE

improves performance by 4%.

5 CONCLUSION

We have presented MCACHE, a technique that leverages data
caches for memoization. Unlike prior hardware memoization
techniques, MCACHE requires no dedicated buffers. Instead,
MCACHE stores memoization tables in memory, leveraging the
cache hierarchy to achieve low lookup latency and the core’s
branch prediction machinery to take this latency off the critical
path. MCACHE introduces ISA extensions and pipeline changes
to achieve fast lookups and updates to memoization tables.

We have shown that MCACHE solves the dichotomy of
hardware vs software memoization: MCACHE matches the
performance of conventional hardware techniques, but avoids
the overheads of large dedicated buffers and supports arbitrar-
ily-sized memoization tables, just like software memoization.
As a result, MCACHE improves performance by up to 21×,
outperforming software techniques significantly and saving
substantial area and energy compared to conventional hardware
techniques. By making memoization practical for short code
regions, MCACHE opens interesting avenues for future work,
which could explore compiler techniques to memoize at sub-
function granularity. Future work could also explore auto-tuning
techniques to dynamically adjust memoization table sizes to
maximize performance.
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