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I. INTRODUCTION

Datacenters and shared clusters often colocate multiple ap-

plications or virtual machines per server to improve utilization.

However, colocated applications interfere in shared resources,

such as the last-level cache (LLC) and DRAM bandwidth,

leading to performance degradation [3, 4, 7, 8]. Prior work

has proposed two disjoint approaches to deal with the problem

of interference: resource partitioning within a node, and job

scheduling across nodes.

On the one hand, cache partitioning techniques divide cache

capacity among applications to maximize throughput [2, 11]

and fairness [6, 9], or to guarantee quality of service [7].

However, these techniques are limited to partitioning cache

capacity among a fixed set of colocated applications, and have

no influence over what applications get scheduled on each

node. This limits their efficacy when colocated applications

have competing resource requirements.

On the other hand, cluster managers and schedulers attempt

to improve performance by colocating applications that do

not interfere in shared resources. These schedulers use either

offline profiling [3, 8] to identify non-interfering applications,

or online monitoring [10, 16] to throttle or migrate offending

applications. While these schedulers can identify safe coloca-

tions and do improve utilization, they do not take advantage

of memory-system partitioning techniques. Therefore, they

must be conservative in colocating applications, since they

cannot control how applications share resources.

We show that cache partitioning and cluster scheduling

are complementary techniques, and performing them in a

coordinated manner significantly boosts performance. We

present Shepherd, a joint scheduler and resource partitioner

that seeks to maximize cluster-wide throughput. On each

machine, Shepherd uses detailed application profiling data

to partition the shared LLC and to estimate the impact of

DRAM bandwidth contention among colocated applications.

Across machines, Shepherd uses this information to colocate

applications with complementary resource requirements, im-

proving resource utilization and cluster throughput. As a result,

Shepherd improves cluster throughput over an unpartitioned

system by 38% on average.

II. SHEPHERD DESIGN

Shepherd seeks to maximize cluster-wide performance by

scheduling applications across cluster nodes in a partitioning-

aware fashion. In this work, we use throughput, specifically

weighted speedup, as the performance metric, although ad-

ditional metrics (e.g., fairness) can easily be incorporated.

Shepherd takes as inputs a set of applications and a set of

machines, and produces a schedule that maps each application

to a machine and partitions the LLC on each machine.

Profiling: Shepherd relies on detailed application profiling

data, gathered offline, that capture each application’s sensitivity

to cache capacity and memory bandwidth, as well as its

memory bandwidth demands. First, Shepherd profiles an

application’s performance, measured in instructions per cycle

(IPC), for several amounts of available cache capacity and

memory bandwidth. This produces an IPC surface over the

2D space of cache capacity and bandwidth. Second, Shepherd

profiles an application’s bandwidth curve, which captures its

bandwidth demands at various cache capacities.

Node performance optimization: Shepherd partitions the

cache among applications in an iterative fashion. Each iteration

first estimates the total bandwidth consumed by all applications,

then uses this bandwidth to project per-application IPC surfaces

into IPC curves that report performance as a function of

cache partition size. Shepherd then uses standard dynamic

programming to find the partition sizes that maximize weighted

speedup [9, 15]. Finally, Shepherd uses partition sizes and

per-application bandwidth curves to update the total bandwidth

estimate. The process is repeated until partition sizes converge.

Beyond finding high-performance configurations, this method

accurately estimates application performance for a given mix.

Cluster scheduling: Shepherd uses per-node performance

estimates to drive application placement, co-optimizing cache

partitioning and cluster scheduling. Finding the optimal

schedule is an NP-hard problem, so exact solutions are

impractical. Instead, Shepherd uses simulated annealing [1], a

well-known randomized search algorithm, to quickly converge

to a high-performance schedule. Starting from a random

schedule, Shepherd iteratively searches over the space of

possible schedules. At each iteration, a new schedule is

generated by randomly swapping two applications. Shepherd

estimates the weighted speedup for this new schedule, and

compares it against the previous speedup. If the new speedup

is higher, Shepherd “accepts” the new schedule and repeats

the process. If the new speedup is lower, however, the new

schedule may still be accepted with a probability p < 1.

By occasionally accepting a worse schedule, Shepherd’s

randomized search avoids getting stuck in local minima. The

probability p is lowered over time, and the algorithm eventually

converges to a high-performance schedule.

In our experiments, evaluating a swap takes a few 10s of

µs, so scheduling decisions for a few hundred applications

can be made in under a second.
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III. EVALUATION

Methodology: We evaluate Shepherd in simulation, using

zsim [13] to simulate each node. Each node has eight cores and

a three-level memory hierarchy, with parameters that closely

match a Broadwell Xeon D-1540 processor. Our simulated

system has a 12 MB, 32-way set-associative last-level cache,

and uses Vantage [12] to partition the LLC.

Workloads: We use 20 memory-intensive server, scientific,

and analytics workloads. Nine applications come from the

SPEC CPU2006 suite, and seven are graph-analytics applica-

tions from PBBS [14]. We select the benchmarks that have at

least 10 L2 misses per kiloinstruction (MPKI) and show at least

a 10% change in L3 MPKI across the range of cache partition

sizes. The remaining four, from the TailBench [5] suite, are

request-driven workloads typical in datacenter servers.

Schemes: We compare four different schemes:

• The baseline scheme does not use cache partitioning and

places applications randomly across nodes.

• Shepherd performs cache partitioning and partitioning-aware

placement using simulated annealing.

• PartOnly performs cache partitioning like Shepherd does,

but places applications randomly like the baseline.

• PlaceOnly does not perform cache partitioning, but does

partitioning-aware placement like Shepherd.

PartOnly and PlaceOnly are intermediate design points that

allow us to analyze where Shepherd’s benefits come from.

Fig. 1 shows the performance of different schemes on an 8-

node cluster. We evaluate eight mixes of 64 randomly-chosen

applications each, and report the weighted speedup over the

baseline for all the schemes we study. Each group of bars

reports results for a different mix; the rightmost bar shows

the weighted speedup across all eight mixes.
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Figure 1. Weighted speedup over the baseline for Shepherd, PartOnly, and
PlaceOnly, on eight random 64-app mixes. Each mix is scheduled on an
8-node cluster.

We observe that Shepherd improves performance consid-

erably, by 38% on average and by up to 49%. This happens

because Shepherd ensures that applications that derive the

highest benefit from the LLC do not compete with each other,

maximizing cache utility and cluster throughput.

PartOnly improves performance significantly, by 27% on

average and by up to 37%. But these gains are substantially

lower than Shepherd’s. This happens because PartOnly is

constrained by the set of applications colocated on a given

machine. Thus, while some mixes experience large gains,

others have modest improvements, as little as 11%. Beyond

outperforming PartOnly, Shepherd also yields less-variable

gains: the lowest speedup is 17%, and all other mixes

experience gains of at least 36%.

Finally, PlaceOnly has a negligible effect on performance:

all mixes are within 2% of the baseline, and the overall

improvement is less than 1%. This is not surprising: with

an unpartitioned cache, placement alone offers limited control

over LLC contention among applications, and although individ-

ual application performance varies with different placements,

the overall effect is a wash. This result shows that Shepherd’s

benefits are not simply the combination of two independent

effects (partitioning and placement). Instead, they come from

placement boosting the effectiveness of partitioning.
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