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Abstract—Power and thermal limitations make it impossible to
run all cores on a multicore system at their maximum frequency.
Therefore, modern systems require careful power management.
These systems must manage complex tradeoffs between energy,
power, and frequency, choosing which cores to accelerate to
achieve good performance while maintaining energy efficiency
or operating under a power budget.

Navigating these tradeoffs is especially hard with multi-
threaded applications, where performance depends on the relative
progress of parallel worker threads between synchronization
points. Prior work on chip-level power management for multi-
threaded applications has largely relied on indirect heuristics
and metrics calculated from low-level performance counters to
estimate each thread’s progress. However, these indirect metrics
are often inaccurate. Instead, we propose to gather progress
information directly from software itself.

We present ThreadBeats, a simple application-level annotation
framework that directly and accurately conveys thread progress
information to hardware. We design DVFS controllers that
exploit ThreadBeats information for two purposes: (i) improving
performance by equalizing thread progress and (ii) minimizing
runtime under a power budget constraint. These controllers
reduce wait time at barriers by 77% on average and improve
energy-delay product under a power budget by 23% over prior
work.

I. INTRODUCTION

Over the last several years power consumption has become

a critical design constraint in nearly every type of computer

system, making it necessary to impose a cap on the maximum

power a processor can consume. Since the peak power of the

processor is considerably higher than the cap, some portion

of the processor must be turned off or throttled back to

stay under the cap [1] using mechanisms such as dynamic

voltage and frequency scaling (DVFS). Current trends indicate

that future multicore processors will have fine-grained per-

core DVFS [2]–[4]. The challenge then becomes dynamically

adjusting each core’s voltage and frequency to achieve the best

possible application performance without exceeding the power

limit.

Selecting the best DVFS settings is particularly challenging

for multi-threaded applications. An important class of multi-

threaded applications in the scientific, engineering, graphics,

and data mining domains is data-parallel apps where multiple

threads work together to complete tasks and meet up at

periodic synchronization points after each one [5], [6]. In

these apps, overall performance for a task is determined by the

last thread to complete its work and reach a synchronization

point. However, threads can have different computational loads

which result in imbalances in performance or energy effi-

ciency. Even when computational load is balanced, contention

for shared resources or non-uniform machine architectures can

create imbalance. To make matters worse, complex inter-thread

interactions mean that adjustments to one thread can impact

other threads. As a result, it is challenging to predict which

threads should get more resources.

Previous work in power control of multi-threaded applica-

tions has relied heavily on low-level metrics (e.g., instructions-

per-cycle, cache miss rate) and heuristics to guess which

threads should be sped up and which should be slowed down.

Early work simply tried to maximize the instantaneous total

number of instructions per second across all threads [7]. This

type of solution works well for throughput-oriented applica-

tions with highly-independent threads, but does nothing to ad-

dress imbalanced threads that synchronize periodically. Later

attempts [8] use metrics like criticality [9] (based on cache

misses) to guess which threads are lagging behind and should

be accelerated. However, as shown in Section II-B, criticality

is actually a poor estimate of relative thread progress.

A more reliable way to measure the individual progress

of different threads is to instrument them at the application

level [10]–[12]. The application knows how much useful work

a thread has actually completed and how much it has left to

do before the next synchronization point. Therefore, we pro-

pose a new thread progress metric that leverages application

information to help energy, power, and performance manage-

ment schemes better optimize the allocation of resources to

different threads. Our technique uses lightweight annotations

to gauge when each thread will complete the current task. This

information can then be used to adjust the relative frequencies

of the corresponding cores to complete the task as quickly as

possible with minimal wasted energy.

This paper makes the following key contributions:

• Shows how using application-level thread progress infor-

mation can be more accurate than indirect metrics such

as criticality.

• Demonstrates the use of application-level thread progress

information in runtime control algorithms for minimizing

wait time at barriers and optimizing performance under

a power cap.

• Demonstrates wait time reductions of 77.4% on average,

and energy-delay product improvements of 22.9% on

average under a power cap compared to prior work.
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Fig. 1. Wait time for a collection of benchmarks at a fixed-frequency. The
wait time makes up a significant portion of total runtime for many of the
applications.

II. MOTIVATION

Multithreaded applications have varied energy-performance

tradeoff spaces. These tradeoffs are especially complicated

because overall application performance depends on the rela-

tive progress individual threads make between synchronization

events (such as barriers). However, it’s very difficult for a low-

level power controller to determine which threads are behind

and which are ahead. Previous work has tried to infer thread

progress using low-level metrics like IPC (instructions-per-

cycle) or cache misses, but the resulting estimates frequently

do not correlate well with actual application-level progress.

A. Thread Imbalance in Multithreaded Apps

Uneven rates of thread progress result in periods of idle

waiting time for faster threads, which hit synchronization

points early, then wait for slower threads to catch up. Figure 1

shows the fraction of time threads spend waiting at barriers

in several benchmarks when all cores are clocked at the same

fixed frequency.

To make optimal performance or energy decisions, a man-

agement system must be able to anticipate the effects of

uneven thread wait time at synchronization points.

B. Indirect Thread “Criticality” Estimates

Previous work in power management has largely relied on

indirect metrics to infer thread “criticality” for use in tuning

application performance. An example criticality metric is the

one presented by Bhattacharjee and Martonosi [9] and used

in power controllers such as the work by Ma et al. [8], which

infers thread criticality from the weighted amounts of L1

and L2 cache misses incurred by a thread over the last time

interval:

critN = NumL1 Misses +

(

tL1L2 Miss · NumL1L2 Misses

tL1 Miss

)

(1)

In Equation 1, NumL1 Misses is the number of L1 cache

misses that hit in the L2 cache. NumL1L2 Misses is the number

of L1 cache misses that also miss in the L2 cache. The cache

miss penalties for the L1 cache and the L2 cache are tL1 Miss

and tL1L2 Miss.
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Fig. 2. Average rank that the criticality metric assigns to the truly most critical
thread. In this 64-core experiment, that rank should always be #63, but it is
instead misidentified as middling in criticality on average.

Indirect thread criticality metrics like this one are error-

prone and can provide poor information for estimating appli-

cation performance during runtime. This can have disastrous

consequences for power controllers making decisions based

on their feedback.

To demonstrate the potential inaccuracy of estimated criti-

cality, we ran simulations of several benchmarks on a 64-core

processor (using the methodology described in Section V),

and collected thread criticality information as well as the

actual thread progress using simple software-annotation. At

periodic intervals, we examined the rank (from #0 to #63)

that the criticality metric assigned to the true critical thread

(determined by the actual progress information). The true

critical thread should have been consistently ranked as most

critical (#63). However, Figure 2 shows that this was not the

case. On average, the criticality metric ranked the truly most

critical thread in the middle, similar to what we would get

from random guessing.

In a multithreaded application with synchronization points,

misidentifying the most critical thread can have negative

consequences for a controller seeking to manage application

performance, because the performance of the whole applica-

tion is dictated by the performance of the most critical thread.

III. THREADBEATS

The information needed to make good energy-performance

tradeoff decisions is available in the software, and we can pass

it directly to an energy management system with some simple

annotations.

A. Application-Level Thread Progress Information

We propose the use of an application annotation scheme

called ThreadBeats to provide application-level thread

progress information. Pseudocode 1 shows an example of

application instrumentation with ThreadBeats. In software,

it is easy to annotate explicit synchronization barriers that

bookend regions of substantial parallel work in multithreaded

applications. In Pseudocode 1 we denote the barriers with calls

to tb barrier. In this work, we refer to a region of annotated

parallel work between two annotated barriers as a “barrier-

interval.”
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Pseudocode 1 ThreadBeats application annotation example.

1 perThreadWork(arguments) {
2 tb_barrier() // Annotate barrier for controller

3 // Use arguments and thread index to determine

4 // total loop iterations to be performed (ntimes)

5 ntimes = f(arguments, thread_index)

6 tb_total(ntimes) // Pass ntimes variable to controller

7 for (i = 0; i < ntimes; i++) { // Work loop

8 some_work()

9 tb_threadbeat() // Emit ThreadBeat to controller

10 }

11 tb_barrier() // Annotate barrier for controller

12 }
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Fig. 3. Application runtime coverage of the ThreadBeats annotation. Time
spent within ThreadBeats-annotated code regions covers a majority of the
runtime for most of the applications.

Within a barrier-interval, we can annotate the bottom of

loops between barriers (tb threadbeat in Pseudocode 1)

to emit a ThreadBeat to keep track of the number of loop

iterations performed by a thread. For the best predictions

of thread progress, the average amount of work performed

per ThreadBeat should be nearly constant within a particular

barrier-interval within a particular thread. As this amount of

work becomes more variable, predictions of thread progress

degrade accordingly. It is also best to make predictions at a

rate slow enough to observe multiple elapsed ThreadBeats.

In the data-parallel applications addressed by this work, it

is possible to determine during runtime the total number of

loop iterations to expect between barriers, as a function of

the thread index and arguments passed to the thread. This

information can be used to track individual thread progress

during the runtime of an application. Note that work does not

need to be partitioned uniformly. The total number of iterations

(the variable ntimes, passed to tb total) can be different

for different threads and from one barrier-interval to the next.

This style of software annotation is similar to previous

work [10]–[12]. Instrumentation is a one-time effort. In this

work we chose to annotate the applications by hand for

simplicity and convenience, but instrumentation could be also

be done automatically by a compiler or profiling tool.

Annotation with ThreadBeats amounted to a ≤1% increase

in total instructions executed at runtime. The time spent within

regions of the code covered by ThreadBeats instrumentation

covered a majority of the total runtime of most of the appli-

cations, as shown in Figure 3.

B. Performance Prediction Using ThreadBeats

Once an application is instrumented with ThreadBeats, the

progress information can be used to make easy per-thread

predictions of completion time for each barrier-interval.

We conceptually divide the predicted time a thread will

spend until its completion of the barrier-interval into two

components: t′comp and t′mem. The time that a thread will spend

working on computation, t′comp, can be adjusted by changes

in frequency. The time that a thread will spend waiting for

memory accesses, t′mem, can not be changed because it depends

on the fixed frequency of memory. The full predicted per-

thread completion time of a barrier-interval, t′, is current

time, t, plus the sum of the computation and memory time

predictions:

t′ = t+ t′comp + t′mem (2)

To predict computation time t′comp (within a thread, within

a barrier-interval), the idea is that when we make a modeling

assumption that the amount of work between ThreadBeats is

nearly constant and the total amount of ThreadBeats remaining

is known, the amount of computation time remaining in the

barrier-interval for that thread can be linearly estimated from

the computation time spent so far and the ratio of ThreadBeats

remaining versus ThreadBeats seen so far. As mentioned in the

previous section, when the assumption about nearly constant

work between ThreadBeats is different from the behavior of

the application, the predictions made by this model degrade. To

incorporate frequency changes into this estimate, we assume

that the estimate of computation time remaining will be

linearly scaled by the ratio of the operating frequency used

so far to the new desired frequency.

At some point in the middle of a barrier-interval, for a

thread, the predicted t′comp is proportional to the computa-

tion time elapsed so far, adjusted by the ratio of remaining

ThreadBeat progress left, Num′

TB, to total ThreadBeats seen

so far, Num TB, and by the ratio of next proposed frequency,

f ′, and average frequency so far, f (Equation 3). tmem can be

determined from hardware performance counters.

t′comp = (t− tmem)

(

Num′

TB

Num TB

)(

f

f ′

)

(3)

To predict time spent waiting for memory during a barrier-

interval, t′mem, we use a simple model of memory behavior

where we assume that the amount of memory wait time

per ThreadBeat is constant. The total amount of memory

time can then be linearly estimated from the memory time

spent so far and the ratio of ThreadBeats remaining, Num′

TB,

versus ThreadBeats seen so far, Num TB. This model will also

degrade if the assumption about constant memory wait time

per ThreadBeat is not accurate.

The predicted t′mem for a thread is only proportional to the

memory time elapsed so far, adjusted by the ratio of remaining

ThreadBeat progress left (Equation 4). Again, it is independent

of frequency.

t′mem = tmem

(

Num′

TB

Num TB

)

(4)
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The maximum of the per-thread completion time predic-

tions, t′, at a given set of frequencies will belong to the most

critical thread, who will arrive at the end of the barrier-interval

last. Managing the relative predicted completion times of the

threads, especially the most critical thread, allows energy,

power, and performance control systems to make informed

tradeoffs and achieve efficient operation.

IV. THREADBEATS USE-CASE EXAMPLES

In this section, we describe TBSync and TBPower, two

example use-cases for employing ThreadBeats in the manage-

ment of energy, power, and performance.

A. Thread Synchronization Demonstration

Thread imbalance in multithreaded applications causes pe-

riods of wait time at the end of barrier-intervals, during which

one or more threads have completed their work and are waiting

for slower threads to finish (see Figure 1). We show how

ThreadBeats can be used to try to minimize the wait time

in barrier-intervals in a simple demonstration called TBSync.

The goal of TBSync is to have all tiles complete the barrier-

interval at as close to the same time as possible, reducing

or eliminating the wait time. At each invocation, TBSync

computes the predicted completion time of all tiles assuming

they will all be run at some fixed frequency for the rest of the

barrier-interval using the equations derived in Section III-B.

The minimum of these completion times (representing the

fastest-finishing, least-critical thread) becomes the completion

time target. TBSync computes and applies the frequencies

necessary for all tiles to match that target completion time.

In Equation 5, ffixed is some fixed frequency that the

least-critical thread is run at to establish a completion time

target. For each of N threads, a speedup ratio, kspeedup, n,

is calculated by dividing the completion time target by the

predicted completion time of thread n at that same fixed

frequency. The fixed frequency and the speedup ratios are used

to calculate f ′

n
, the frequency that each thread should run at

to try to match the completion time target.

f ′

n
= kspeedup, n · ffixed (5)

Experimental results using TBSync to try to eliminate

wait time compared to minimum fixed frequency runs of

applications are presented in Section VI-A.

B. Power Controller

For power control, the goal is to maximize performance

under a given power budget. To do this, the TBPower con-

troller tries to relatively speed up all threads to match the

completion time of the least-critical thread, while scaling all

thread frequencies together to stay under the power budget.

At each control interval, the controller first predicts the

completion time of the least-critical thread if it were run

at the minimum frequency. Then, it calculates the ratio of

relative frequency speedup needed for each thread to match

that completion time, as described in Section IV-A. Finally,

using those frequency speedup ratios and a simple model

TABLE I
CONFIGURATION OF THE SIMULATED SYSTEM

Parameter Settings

Cores 64, in-order

Max Frequency/Vdd 4GHz/1.57V

Min Frequency/Vdd 0.72GHz/0.8V

Technology/Temperature 32nm/340K

Private L1 I/D-Cache per Core 4-way, 16/32KB

Private L2 Cache per Core 8-way, 512KB

Memory Controllers 8, each 5GB/s

Memory Access Latency 60ns, plus queueing

of energy prediction, the controller solves for a “baseline”

frequency for the least-critical thread. The baseline frequency

is the highest frequency it can run the least-critical thread,

with all other threads run at the speedup ratios up from that

baseline frequency, while not violating the imposed power cap.

To make energy predictions, we use a simple model based

on recent energy expenditure. For each of N threads, a per-

thread estimated linear relationship between the frequency and

energy over the last control interval is found, represented by

the constant benergy, n. Equation 6 shows how this linear model

is then used to predict the energy of thread n for the next

interval given the new frequency setting f ′

n
.

E′

n
= benergy, n · f ′

n (6)

Combining the speedup ratios from Equation 5 and the

simple energy model from Equation 6 gives Equation 7, where

the total energy for all N threads is the linear combination of

thread frequencies represented as speedups over the baseline

frequency, fbaseline. The total energy is set to Ebudget to solve for

a baseline frequency that does not violate the power budget.

Ebudget =
∑

N

benergy, n · kspeedup, n · fbaseline (7)

The threads are then set to frequencies equal to their

speedup factors, kspeedup, n, multiplied by the baseline fre-

quency, fbaseline. Experimental results using TBPower are

presented in Section VI-B.

V. METHODOLOGY

In this section we describe the simulation setup, bench-

marks, and baselines for comparison used in the evaluation

of our ThreadBeats use-cases presented in Section VI.

A. Simulation Setup

We use the Graphite multicore simulator with integrated

power modeling from McPAT [13]. Simulation parameters are

summarized in Table I.

Graphite/McPAT’s default static power values were dispro-

portionately large in relation to the dynamic power values.

To address this, we re-scaled the static power component by

a constant factor (0.25) so that static power was ∼20% of

dynamic power at the maximum processor clock frequency

4



TABLE II
BENCHMARKS EVALUATED

Benchmark Suite Problem Size

Barnes SPLASH-2 64k particles

FFT SPLASH-2 4M points

FMM SPLASH-2 64k particles

LU-C SPLASH-2 2048x2048 matrix

LU-NC SPLASH-2 1280x1280 matrix

Water-Nsq SPLASH-2 1728 molecules

Blackscholes PARSEC 64k options

Canneal PARSEC 60k, 2k◦, 32 steps

Fluidanimate PARSEC 5 frames, 100k part.

Swaptions PARSEC 64 swap., 10k sim.

and ∼50% of dynamic power at the minimum frequency, a

range that is representative of real systems [14], [15].

Current processors have only a few DVFS points, but

technology is headed towards more fine-grained DVFS [2]–[4].

Some prior work in power control [8] has essentially created

intermediate operating points by interpolating (switching back

and forth) between adjacent operating points during a control

period. To permit the DVFS flexibility expected in future

processors, we model a large number (21) of voltage operating

levels and we allow the continuous selection of frequency.

The system automatically selects the best voltage for that

frequency.

We use a control period of 250µs (in keeping with prior

work [8]), which is long enough to amortize the cost of

DVFS transitions. Future technologies have been proposed that

minimize these costs by having gradual frequency transitions.

The ThreadBeats control algorithms presented in Section IV

can be implemented in software or a dedicated microcontroller.

The relative runtime overhead of performing the control algo-

rithms in software is an average of <2% compared to the total

runtime of the benchmark applications. This overhead and the

overheads of the baselines for comparison are not included

in the evaluation results because the focus of this work is

demonstrating the use of the ThreadBeats progress metric with

simple use-cases. We leave the design of sophisticated control

algorithms to future work.

B. Benchmarks

We use applications from the SPLASH-2 [5] and PAR-

SEC [6] benchmark suites. These applications were selected

from among the benchmarks supported by the Graphite sim-

ulator because they demonstrate the algorithmic paradigm

targeted by our approach—they are multithreaded applications

that contain parallel regions bookended by synchronization

points. Table II details benchmark information.

LU-NC and Canneal are predominantly memory-bound

applications (see Figure 4). They are difficult to manage using

DVFS since they are less sensitive to changes in the frequency

of computational elements, and they have very low power

dissipation on the simulated system configuration under test.
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Fig. 4. Relative amount of memory delay time compared to the total runtime
of applications. A dashed dividing line is drawn down the middle at 50%.
Applications whose proportion of delay time falls under the line can be said
to be compute-bound, while those above the line are memory-bound.

C. Baselines for Comparison

We compare our ThreadBeats use-case examples to several

baselines in the evaluation presented in Section VI.

Thread Synchronization Baselines. The baseline for the

thread synchronization demonstration is a fixed frequency run

of the applications at the minimum frequency setting.

Power Control Baselines. We compare against three power

control baselines. FreqPar is a power controller from prior

work that uses the thread criticality metric described in [9] to

assign frequencies to threads in a multithreaded application.

For details, we refer the reader to the FreqPar paper [8].

We should note that FreqPar is intended to manage multipro-

grammed workloads, so we only compare against a subset of

the FreqPar scheme, the power control loop that determines

an “aggregated frequency quota” and the algorithm wherein

the frequency quota is partitioned among cores in a single

application. The power control loop is a simple proportional

controller. The single application frequency partitioning is

done according to the relative proportions of thread criticality

over the last interval:

fN =
critN

∑

all tiles critk
(8)

The other two controllers are novel naı̈ve baselines.

SamePar is a naı̈ve version of FreqPar that retains the sim-

ple proportional power control loop, but always divides the

frequency quota equally among threads. SamePower is the

naı̈ve version of our power control algorithm, TBPower. Like

SamePar, it preserves the energy estimation and power control

of our power controller, but under those constraints it always

gives equal frequencies to all threads. These naı̈ve baselines

are intended to evaluate whether FreqPar and our power

controller can add value with their use of heuristics based

on either thread progress estimates or direct information—

criticality in FreqPar’s case, and ThreadBeats for our power

controller.

VI. EVALUATION

This section evaluates TBSync and TBPower against the

baselines described in Section V-C and previous work.
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Fig. 6. Time breakdown at the minimum fixed frequency compared to wait
time under TBSync management. The wait time data is the same as in
Figure 5. Time outside of control is constant. The goal of this demonstration
was to leave the busy time unchanged while decreasing the wait time. While
TBSync was successful at reducing wait time on all apps except LU-NC,
modeling error during runtime led to unintentional reductions in busy time as
well, particularly in Barnes, LU-NC, and Fluidanimate.

A. Thread Synchronization Experiments

The goal of thread synchronization is to reduce or eliminate

wait time at barriers. We therefore ran the benchmarks twice:

once with DVFS fixed at the minimum frequency and once

with TBSync enabled (see Section IV-A). Figure 5 shows the

results normalized to the runtime of the fixed frequency case.

Figure 6 gives a complete time breakdown for the minimum

frequency and TBSync experiments for all applications, di-

viding runtime into wait time, busy time, and any time spent

outside of control. Time spent outside of control is constant.

The goal of TBSync was to decrease the wait time while

leaving the busy time unchanged. While TBSync was suc-

cessful in reducing wait time for most of the applications,

modeling imperfections did cause it to unintentionally speed

up the busy time of some applications, most notably in

Barnes, LU-NC, and Fluidanimate (see Figure 6). As seen in

Figure 5, TBSync was able to reduce the amount of wait time

natively present in all applications at the fixed frequency by

an average of 77.4%. The only application in which the wait

time increased was LU-NC, where irregular thread activity

degraded the accuracy of the time prediction models and led

the controller to speed up some non-critical threads. These
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lowest amount of overshoot error, an improvement of 80% over FreqPar. In
real systems, a large amount of overshoot error exceeding a power budget can
lead to processor performance degradation or failure.

non-critical threads reached the barrier so prematurely that

they had to wait longer for their peers to catch up than in the

fixed frequency case. Thus, the wait time of the application

increased, even though the total runtime decreased.

B. Power Control Experiments

In this experiment, we compared TBPower to three other

controllers (described in Section V-C): a controller from pre-

vious work, FreqPar [8], and two novel baselines – SamePar (a

naı̈ve baseline for FreqPar), and SamePower (a naı̈ve baseline

for TBPower).

We ran all power controllers with a budget of 50% of

the peak processor power, determined by running the ap-

plications with all tiles at maximum frequency. The two

memory-bound benchmarks, LU-NC and Canneal, have very

low power consumption on the simulated system configuration

and never exceed this budget, even at maximum frequency.

Consequently, power control results are not presented for those

two benchmarks.

The average power in excess of the power budget, or

overshoot error, for the four power controllers under test

is presented in Figure 7. Results for the total energy-delay

product, runtime, and energy for the controllers are presented

in Figures 8, 9, and 10, normalized to SamePower’s values.

As seen in Figure 7, the TBPower controller gave 80% less

power error on average than FreqPar, and the lowest amount of

overshoot error on average overall. FreqPar’s high overshoot

error is problematic, since large overshoot violations can cause

a real processor to exceed its thermal operating limits or the

capacity of its power supply, leading to a failure of the system.

Figure 8 shows energy-delay product (EDP) results for

all controllers. EDP is an important metric in this scenario

because it gives a holistic view of the tradeoffs the controllers

make between power and performance. EDP de-emphasizes

performance gains that come at the expense of violating
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Fig. 8. Energy-delay product (EDP) under a power budget of 50% peak
power (smaller is better). EDP gives insight into the balance of power and
performance managed by the controllers, de-emphasizing performance gains
that come at the cost of violations of the power budget. TBPower control gave
an average EDP improvement of 3.6% over its baseline, SamePower, and an
average of 22.9% compared to FreqPar.
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Fig. 9. Runtime under a power budget of 50% peak power (smaller is better).
FreqPar achieved a lower runtime on some applications, but it came at the
cost of large violations of the power budget, invalidating those results. Even
so, TBPower control still gave an average runtime improvement of 8.2%
compared to FreqPar.
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Fig. 10. Energy under a power budget of 50% peak power (smaller is better).
TBPower control gave an average energy reduction of 15.8% over FreqPar.

the power budget, contrary to the intended purpose of these

controllers. The TBPower controller achieved an average of

22.9% EDP improvement compared to FreqPar, and it showed

an overall EDP improvement of 3.6% on average compared

to SamePower, the novel naı̈ve baseline controller.

Figures 9 and 10 show the individual components of runtime

and energy for all controllers that are represented in the EDP
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Fig. 11. Wait time under a power budget for TBPower and its baseline,
SamePower. For most applications, TBPower reduced wait time, exploiting
the power-performance tradeoff opportunity.

results in Figure 8. On applications where FreqPar achieved a

lower runtime (e.g., FMM), it did so by using a large amount of

energy and violating the power budget (Figure 7). This is poor

behavior from a power controller. Interestingly, SamePar, the

supposedly “naı̈ve” version of FreqPar, does much better. This

highlights the negative impact of using the inaccurate thread

criticality metric. For these applications, using the metric is

worse than doing nothing. However, TBPower does better by

using application-level information. Despite FreqPar’s misbe-

havior, TBPower still gave an average runtime improvement

of 8.2% over FreqPar. Because TBPower respected the power

budget while achieving good runtime, it managed an average

energy reduction of 15.8% compared to FreqPar and an

average energy improvement of 4.7% over SamePower.

For most applications, TBPower reduced wait time com-

pared to SamePower (see Figure 11), which gave it the

energy-runtime tradeoff flexibility to improve EDP. Only on

Blackscholes does SamePower get a slightly lower EDP than

TBPower, but the results are very close. As seen in Figure 11,

Blackscholes has almost no wait time opportunities to exploit

for an EDP improvement. The other applications had more

inherent wait time, so TBPower had the flexibility to achieve

an EDP improvement.

VII. RELATED WORK

Instruction Count Metrics. There have been a number of

techniques proposed for power management using various

instructions per cycle (IPC)-based metrics [7], [16]–[18].

However, these low-level performance counter metrics are ill-

suited to gauging the application-level progress of threads

in multithreaded programs that use synchronization and can

exhibit workload imbalance.

Criticality Metrics. Thread criticality metrics attempt to

estimate relative thread progress and identify critical threads.

In Section II-B we described a thread criticality metric based

on cache misses [9]. Various other criticality metrics calculated

from indirect progress information have been proposed by pre-

vious work. Thread Progress Equalization [19] is recent work

addressing thread imbalance that estimates thread progress

during an epoch from low-level measurements of cycles per

instruction weighted by expected total thread progress during

the epoch. However, it estimates the total thread progress by

7



profiling previous epochs, which means both a startup time

before progress can be estimated as well as susceptibility

to confusion from applications that exhibit different work-

load balances from one phase to the next– both issues are

neatly circumvented by using application-level information

like ThreadBeats. Criticality Stacks [20] calculates thread

criticality scores by weighing the amount of time a thread

is active while other threads are inactive. This approach is

generalized to react to multiple types of underlying causes

for thread asynchrony, but it is still an indirect heuristic

measurement of progress and it does not address imbalanced

workloads.

Application-level Information. Some previous work uses

metrics that are informed by application-level hints like the an-

notation of synchronization primitives, but which stop short of

providing complete thread progress information like Thread-

Beats. Thrifty Barrier [21] is an early work in synchroniza-

tion primitive annotation that relies on profiling past barrier

wait times to optimize future barrier wait times. Bottleneck

Identification and Scheduling [22] and Booster [23] both

seek to accelerate threads under high contention for software-

annotated synchronization bottlenecks using coarse-grained

thread acceleration techniques. Utility-Based Acceleration [24]

combines bottleneck acceleration with an instruction-count

based thread criticality metric. Meeting Points [10] is an early

work that uses application-level thread progress reporting an-

notation, but is only applicable to parallel loops with balanced

workloads. Dynamic Core Boosting [12] is a recent work

that uses application-level thread progress reporting annotation

that accommodates imbalanced workloads, like ThreadBeats.

However, the focus of that work is on accelerating cores in

asymmetric chip multiprocessors using coarse-grained boost-

ing techniques, whereas ThreadBeats is focused on tuning fine-

grained per-core DVFS in symmetric chip multiprocessors.

There has been a wealth of power control work that uses

Application Heartbeats [11] software instrumentation, but Ap-

plication Heartbeats is aimed at marking the progress rate of

an entire application, not the relative progress of its individual

threads.

VIII. CONCLUSION

This paper presents a simple application annotation tech-

nique, ThreadBeats, that provides direct information about

thread progress in multi-threaded applications. We presented

two use cases for ThreadBeats: TBSync, which seeks to

improve performance by reducing barrier wait time, and

TBPower, which seeks to minimize runtime under a power

cap. Evaluation results show that TBSync reduces barrier wait

times by 77.4% on average and TBPower improves energy-

delay product by 22.9% on average over prior work. These

results indicate that using an accurate thread progress metric is

crucial to improving system efficiency. The use of application-

level information, like ThreadBeats provides, will be essential

to navigating the increasingly complex power and performance

tradeoffs that future machines will exhibit.
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