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Abstract—Graph processing is increasingly bottlenecked by
main memory accesses. On-chip caches are of little help because
the irregular structure of graphs causes seemingly random mem-
ory references. However, most real-world graphs offer significant
potential locality—it is just hard to predict ahead of time. In
practice, graphs have well-connected regions where relatively
few vertices share edges with many common neighbors. If these
vertices were processed together, graph processing would enjoy
significant data reuse. Hence, a graph’s traversal schedule largely
determines its locality.

This paper explores online traversal scheduling strategies that
exploit the community structure of real-world graphs to im-
prove locality. Software graph processing frameworks use simple,
locality-oblivious scheduling because, on general-purpose cores,
the benefits of locality-aware scheduling are outweighed by its
overheads. Software frameworks rely on offline preprocessing to
improve locality. Unfortunately, preprocessing is so expensive that
its costs often negate any benefits from improved locality. Recent
graph processing accelerators have inherited this design. Our
insight is that this misses an opportunity: Hardware acceleration
allows for more sophisticated, online locality-aware scheduling
than can be realized in software, letting systems significantly
improve locality without any preprocessing.

To exploit this insight, we present bounded depth-first schedul-
ing (BDFS), a simple online locality-aware scheduling strategy.
BDFS restricts each core to explore one small, connected region
of the graph at a time, improving locality on graphs with
good community structure. We then present HATS, a hardware-
accelerated traversal scheduler that adds just 0.4% area and
0.2% power over general-purpose cores.

We evaluate BDFS and HATS on several algorithms using
large real-world graphs. On a simulated 16-core system, BDFS
reduces main memory accesses by up to 2.4× and by 30%
on average. However, BDFS is too expensive in software and
degrades performance by 21% on average. HATS eliminates
these overheads, allowing BDFS to improve performance by
83% on average (up to 3.1×) over a locality-oblivious software
implementation and by 31% on average (up to 2.1×) over
specialized prefetchers.

Index Terms—graph analytics, multicore, caches, locality,
scheduling, prefetching.

I. INTRODUCTION

Graph analytics is an increasingly important workload

domain. While graph algorithms are diverse, most have a

common characteristic: they are dominated by expensive

main memory accesses. Three factors conspire to make graph

algorithms memory-bound. First, these algorithms have low

compute-to-communication ratio, as they execute very few

instructions (usually few 10s) for each vertex or edge they

process. Second, they suffer from poor temporal locality, as

the irregular structure of graphs results in seemingly random

accesses that are hard to predict ahead of time. Third, they

suffer from poor spatial locality, as they perform many sparse

accesses to small (e.g., 4- or 8-byte) objects.

The conventional wisdom has been that graph algorithms

have essentially random accesses [26, 31]. This misconception

partially stems from limited evaluations that use synthetic,

randomly generated graphs. However, a more detailed analysis

reveals that many real-world graphs have abundant structure.

Specifically, they have strong community structure correspond-

ing to communities that exist in some meaningful sense in

the real world [29]. Many real-world graphs are also scale-

free, i.e., they have skewed degree distributions where a small

subset of vertices are much more popular, and hence accessed

more frequently, than others [6]. Graph algorithms thus offer

significant potential locality [7], though it is irregular and

difficult to predict.

This locality can be exploited by controlling the traversal

schedule, i.e., the order in which vertices and edges of

the graph are processed. Current software graph processing

frameworks cannot exploit this insight at runtime because

online traversal scheduling is simply too expensive. When only

a few instructions are executed per edge, even trivial traver-

sal scheduling adds prohibitive overheads. Instead, software

frameworks process vertices in the order they are laid out in

memory [48, 52], a strategy we call vertex-ordered scheduling.

Vertex-ordered scheduling is sensible on systems with general-

purpose cores, but it forgoes significant locality. To recover this

locality, current frameworks can use offline preprocessing that

changes the graph layout to improve the locality of subsequent

vertex-ordered traversals [22, 55, 59, 62, 64]. Unfortunately,

preprocessing is itself very expensive, and thus only makes

sense on graphs that change infrequently, ruling out many

important applications [33, 39].

The key idea of this paper is that hardware acceleration en-

ables more sophisticated, online traversal scheduling, allowing

systems to improve locality without expensive preprocessing.

We propose HATS, which introduces a simple, specialized

scheduling unit near each core that runs ahead and chooses

which edges to traverse. Prior graph accelerators for FPGAs [15,

42, 43] and ASICs [2, 22, 40, 44] include specialized scheduling

logic, but they all implement the simple, locality-oblivious

vertex-ordered scheduling. HATS is the first design that exploits

hardware acceleration to improve traversal scheduling itself.
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Fig. 1: BDFS reduces
memory accesses by 1.8×
for PageRank Delta on
uk-2002.
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Fig. 2: VO-HATS and BDFS-
HATS improve performance by
1.8× and 2.7× for PageRank Delta
on uk-2002.

Specifically, we propose bounded depth-first scheduling

(BDFS). In BDFS, each core explores the graph in a depth-

first fashion up to a given maximum depth. This restricts each

core to explore a small, well-connected region of the graph

at a time, improving temporal locality on graphs with good

community structure. Prior work [1, 13] has observed that DFS

is a good technique to exploit locality and has exploited it

in offline graph preprocessing [5, 59, 61]. BDFS is the first

to exploit DFS for online locality-aware scheduling. HATS

implements BDFS with simple hardware similar to previous

indirect prefetchers [58]. Unlike these prefetchers, which only

hide latency, BDFS changes the traversal to improve locality

and thus reduces both latency and bandwidth.

Fig. 1 illustrates the benefits of BDFS for the PageRank

Delta algorithm [35] on the uk-2002 web graph [16]. BDFS

reduces memory accesses by 1.8× over the vertex-ordered

schedule (VO). Prior prefetchers and graph accelerators do

not reduce memory accesses, since they use the same vertex-

ordered schedule as software frameworks.

Fig. 2 shows the execution time of PageRank Delta on

uk-2002. In software, BDFS does not improve performance

because its overheads outweigh its locality benefits. But

hardware acceleration reverses this situation. HATS improves

VO’s performance by 1.8× (VO-HATS) due to accurate

prefetching that hides memory latency. But prefetching saturates

memory bandwidth, so improving performance further requires

reducing memory accesses. BDFS achieves this and BDFS-

HATS outperforms VO-HATS by 1.5× and VO by 2.7×.

We have prototyped BDFS-HATS in RTL and evaluated

it using detailed microarchitectural simulation. We consider

two system configurations: one where HATS engines are

implemented in hardware and another where they use on-chip

reconfigurable logic (similar to the Xilinx Zynq SoC, but with

high-performance cores). BDFS-HATS is easy to implement

and requires just 0.14 mm2 and 72 mW at 65 nm (or 3.2 K

FPGA LUTs). This translates to 0.4% area and 0.2% power

overhead over a general-purpose core. We evaluate HATS on

five important graph algorithms, processing real-world graphs

whose working sets are much larger than the on-chip cache

capacity. On a 16-core system, BDFS-HATS reduces main

memory accesses by up to 2.4× and by 30% on average, and

improves performance by up to 3.1× and by 83% on average.

HATS thus gives a practical way to improve the locality of

graph processing.

II. BACKGROUND AND MOTIVATION

A. Current graph processing frameworks

Software graph processing frameworks [21, 41, 48, 52, 63]

provide a simple interface that lets application programmers

specify algorithm-specific logic to perform operations on

graph vertices and edges. The runtime is then responsible

for scheduling and performing these operations. The runtime

tracks which vertices are active in each iteration and performs

algorithm-specific operations on them until there are no more

active vertices or a termination condition (e.g., number of

iterations) is reached. We assume a Bulk Synchronous Parallel

(BSP) [54] model, where updates to algorithm-specific data

are made visible only at the end of each iteration.

Many graph algorithms are unordered and the runtime has

complete freedom on how to schedule the processing of active

edges in each iteration. Such scheduling does not affect the

correctness of the algorithm, but has a large impact on locality.

Before analyzing the locality tradeoffs of scheduling, we first

describe these frameworks in more detail.

Graph format: Most graph processing frameworks use the

compressed sparse row (CSR) format, or its variations, for

its simplicity and space efficiency [21, 41, 48, 52, 63]. As

Fig. 3 shows, CSR uses two arrays, offset and neighbor,

to store the graph structure. For each vertex id, the offset

array stores where its neighbors begin in the neighbor array.

Hence, each vertex v has edges to each neighbor[i] for i =
offset[v] → offset[v+ 1]. The neighbor array stores the

vertex id of each neighbor, so it has as many entries as edges in

the graph. For weighted graphs, the neighbor array also stores

the weight of each edge. Algorithm-specific data is stored in

a separate vertex data array. For example, in PageRank,

vertex data stores the score of each vertex.

Graph algorithms can perform pull- or push-based traversals.

In pull-based traversals, the CSR format encodes the incoming

edges of each vertex, as Fig. 3 shows, and each processed vertex

(the destination vertex) pulls updates from its in-neighbors

(sources). In push-based traversals, the CSR format encodes

the outgoing edges of each vertex, and each processed vertex

(source) pushes updates to its out-neighbors (destinations).
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Fig. 3: Compressed sparse row (CSR) format. The offset array
stores, for each vertex, the starting location of its neighbors’
vertex ids in the neighbor array. The vertex data array stores
algorithm-specific data.

Vertex-ordered scheduling: State-of-the-art graph processing

frameworks [41, 48, 52, 63] follow a vertex-ordered schedule

(VO), a simple technique that achieves spatial locality in

accesses to edges but suffers from poor temporal and spatial

locality on accesses to neighbor vertices.
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The vertex-ordered schedule simply processes the active

vertices in order of vertex id, and processes all the edges of

each vertex consecutively, as specified by the graph layout.

Processing an edge usually involves accessing the vertex -

data of both the current and neighbor vertices. Listing 1 shows

pseudocode for a single iteration of PageRank following the

vertex-ordered schedule. We show the pull version, where

destination vertices pull updates from their in-neighbors.

1 def PageRank(Graph G):
2 for dst in range(G.numVertices):
3 for src in G.neighbors(dst):
4 G.vertex_data[dst].newScore +=
5 G.vertex_data[src].oldScore /
6 G.vertex_data[src].degree

Listing 1: PageRank using the vertex-ordered schedule.

When the in-memory graph layout (i.e., offset and

neighbor arrays) does not correlate with the graph’s com-

munity structure, the vertex-ordered schedule suffers from poor

temporal locality. Consider the example graph shown in Fig. 4.
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Fig. 4: The vertex-ordered sched-
ule ignores graph structure and
alternates between the two com-
munities.

The graph has two well-

connected regions that are

weakly connected to each

other. To maximize temporal

locality, all the vertices and

edges in one region should

be processed before moving

to the next. But if the vertices

of the two regions are inter-

leaved in the graph layout as

in Fig. 4, the vertex-ordered

schedule alternates between

regions, yielding poor tempo-

ral locality.

Preprocessing improves locality but is expensive: Prior

work has proposed several graph preprocessing techniques

to improve locality [22, 43, 52, 55, 59, 61, 62, 64]. These

techniques change the order in which vertices are stored so

that closely connected communities are stored near each other

in memory. This improves the temporal and spatial locality of

the vertex-ordered schedule: it improves temporal locality by

placing a vertex’s neighbors close together, so accesses from

those neighbors to the vertex happen nearby in time; and it

improves spatial locality by placing related vertices in the same

cache line.

For example, for the graph in Fig. 4, preprocessing would

analyze the graph structure, identify the two regions and modify

the layout to place the vertices in the first region before those

in the second. When the vertex-ordered schedule is used with

the modified layout, it closely follows the community structure,

fully processing the first region before moving to the second.

Although preprocessing improves locality, it is very expen-

sive. Rewriting the graph requires several passes over the full

edge list. As a result, preprocessing often takes longer than the

graph algorithm itself, making it impractical for many important

use cases [33, 39]. Preprocessing costs can be amortized if the

same graph is reused many times, but in many applications the

graph changes over time or is produced by another algorithm,

and is used once or at most a few times [34].

Fig. 5 illustrates this for one iteration of the PageRank

algorithm on the uk-2002 graph [16]. We compare (1) The

vertex-ordered (VO) schedule (2) Slicing [22], a relatively

cheap preprocessing technique that ignores graph structure,

and (3) GOrder [55], an expensive preprocessing technique

that heavily exploits graph structure. Because GOrder takes

too long to simulate, we measure its preprocessing overhead

on an Intel Xeon E5-2658 v3 (Haswell) processor running at

2.2 GHz with a 30 MB LLC.
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Fig. 5: Memory accesses and execution time for one PageRank
iteration on uk-2002 with various preprocessing schemes.

Although both Slicing and GOrder reduce memory accesses

significantly and improve PageRank’s runtime over the vertex-

ordered schedule, they incur significant preprocessing time.

When including preprocessing time, these techniques are

beneficial only when the algorithm converges in more than 10

and 5440 iterations, respectively.

Several preprocessing techniques exploit the locality benefits

of depth-first search (DFS) and breadth-first search (BFS)

traversals [5, 14, 59, 61]. Children-DFS [5, 55] partitions

the graph by using a variant of DFS that seeks to group the

neighbors of each vertex. PathGraph [59] partitions the graph

by performing local breadth-first traversals while limiting the

partition sizes and relabels the vertices in each partition in DFS

order. FBSGraph [61] is a distributed framework that uses path-

centric partitioning and scheduling to improve convergence rate

of asynchronous graph algorithms. It leverages the necessary

graph partitioning pass and only improves temporal locality of

vertex data since it does not change the graph layout.

Unlike these techniques, BDFS improves temporal locality

without preprocessing. However, because BDFS does not

change the graph’s layout, it does not improve spatial locality.

Online heuristics to improve locality: Motivated by the high

costs of preprocessing, prior work has explored alternative,

cheaper runtime techniques to improve locality. Milk [26] and

Propagation Blocking [8] translate irregular indirect memory

references into batches of efficient sequential DRAM accesses.

These techniques are a spatial locality optimization, and only

benefit algorithms with small vertex objects. By contrast, BDFS

exploits the graph’s community structure to improve temporal

locality and benefits algorithms with large or small vertex

objects. While these techniques are effective with unstructured

(i.e., random) graphs, they forgo significant temporal locality

for graphs with good community structure.
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B. Prior hardware techniques to accelerate graph processing

Indirect prefetching: Conventional stream or strided prefetch-

ers do not capture the indirect memory access patterns of

graph algorithms. IMP [58] is a hardware prefetcher that

dynamically identifies and prefetches indirect memory access

patterns, without requiring any application-specific information.

Similarly, Ainsworth and Jones [3] propose a specialized

prefetcher that uses information about an application’s data

structures to prefetch indirect memory accesses.

These prefetchers all assume a vertex-ordered schedule and

improve performance by hiding memory access latency. They

easily saturate memory bandwidth and become bandwidth-

bound. By contrast, BDFS changes the traversal schedule to

reduce bandwidth demand, allowing it to outperform perfect

prefetching of a vertex-ordered schedule. HATS fetches graph

data ahead of the core, but this is more similar to how

graph accelerators non-speculatively fetch data than to indirect

prefetchers like IMP, which predict the access pattern outside

the core to issue speculative prefetches.

Graph accelerators: Recent work has proposed specialized

graph-processing accelerators for both FPGAs [15, 42, 43] and

ASICs [2, 22, 40, 44, 50, 60]. While these accelerators introduce

specialized scheduling logic, they implement the same vertex-

ordered schedule used by software algorithms and likewise rely

on expensive preprocessing to improve locality [22, 43, 50, 60].

The premise of our paper is that this misses an opportunity:

specialization enables online locality-aware schedules that

achieve most of the benefits of preprocessing without its

overheads.

Beyond scheduling, these accelerators use both compute and

memory system specialization to achieve large performance

and energy efficiency gains. Our paper complements this prior

work by using locality-aware scheduling to make better use

of limited on-chip cache capacity. Although we describe our

techniques in the context of a general-purpose system, we

expect it to be more beneficial on accelerators that are even

more bottlenecked on memory accesses.

Decoupled access-execute: HATS takes inspiration from

decoupled access-execute (DAE) architectures [49], where an

access core performs all memory operations and an execute

core performs all compute operations. Access and execute cores

communicate through queues, allowing the access core to run

ahead.

In some aspects, HATS is similar to an access core: it is

decoupled from the main core through a queue, and runs ahead

of it, exposing abundant memory-level parallelism. However,

HATS is specialized to graph traversals, making it much

cheaper and faster than a programmable access core. And

unlike DAE, the main core still performs memory accesses

instead of communicating them to HATS. This lets HATS

focus on handling the traversal of the graph. Also, unlike in

conventional DAE, communication between HATS and the

main core is one-sided, letting HATS run far ahead of the

core and avoiding the performance bottlenecks of DAE, where

two-way communication often caused loss of decoupling [53].

III. IMPROVING LOCALITY WITH BDFS

Our goal is to achieve most of the benefits of preprocessing

while avoiding its overheads. We improve temporal locality by

scheduling edges at runtime to match the graph’s community

structure, without modifying the graph layout. This section

describes our basic technique, BDFS, and the next describes

our hardware implementation of this technique, HATS.

BDFS traverses the graph by performing a series of bounded

depth-first searches, each of which visits a region of connected

vertices. Bounded depth-first search is used in several contexts,

such as iterative deepening [27] and search and optimization

techniques [9, 51]. Moreover, as described in Sec. II-A, several

preprocessing algorithms leverage DFS to improve locality [5,

59, 61]. However, to the best of our knowledge, we are the

first to use BDFS for online locality-aware scheduling of graph

traversals.

We first describe a sequential implementation of BDFS,

analyze its locality, and then discuss its parallel implementation.

A. BDFS algorithm

Listing 2 shows the pseudocode for PageRank using a

recursive implementation of BDFS. BDFS uses an active

bitvector to track the vertices that are not yet processed.

Listing 2 shows a version of PageRank where all the vertices

are active in each iteration [45], so the bitvector is initialized

to all ones.1 BDFS starts processing at the first vertex (id

0). Thereafter, it chooses the next vertex to process from the

neighbors of the current vertex, ignoring inactive vertices. This

exploration proceeds in a depth-first fashion, always staying

within maxDepth levels away from the root vertex. Once the

exploration from a root vertex is finished, BDFS scans the

active bitvector to find the next unvisited vertex. This repeats

until all vertices are visited.

1There are more efficient versions that do not process all vertices on each
iteration. We later evaluate PageRank Delta, which performs this optimization.

1 def PageRank(Graph G):
2 iterator = BDFS(G)
3 while iterator.hasNext():
4 (src, dst) = iterator.next()
5 G.vertex_data[dst].newScore +=
6 G.vertex_data[src].oldScore /
7 G.vertex_data[src].degree
8
9 def BDFS::next():

10 active = BitVector(G.numVertices)
11 active.setAll()
12 for root in range(G.numVertices):
13 if active[root]:
14 active[root] = False
15 BDFS::explore(root, 0)
16
17 def BDFS::explore(int dst, int curDepth):
18 for src in G.neighbors(dst):
19 yield (src, dst)
20 if curDepth < maxDepth:
21 if active[src]:
22 active[src] = False
23 BDFS::explore(src, curDepth+1)

Listing 2: PageRank implementation using BDFS. yield()
returns a value to the caller, but resumes at that point when
the callee is next invoked.
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Fig. 6: BDFS improves temporal
locality by processing neighbors
together and vertices within a
community close in time.

Fig. 6 shows the order in

which BDFS processes ver-

tices in the example graph

using maxDepth of 10. (This

is a pull-based traversal so

BDFS traverses incoming

edges, e.g., from vertex 0 to

4.) Unlike the vertex-ordered

schedule, BDFS tends to pro-

cess close-knit regions to-

gether. BDFS improves tem-

poral locality of accesses to

vertex data for two reasons. First, neighbors of a given

vertex are more likely to share neighbors, so processing them

together naturally exploits the community structure of real-

world graphs. Second, since processing an edge involves

accessing the vertex data of both the currently processed

vertex and its neighbor, processing one of the neighbor vertices

next results in at least one access to already cached data.

Scheduling overheads: The main scheduling structures in

BDFS are a LIFO stack and the active bitvector. BDFS

requires only a small stack, which causes near-zero main

memory accesses. Although the bitvector gets irregular accesses,

it is much smaller than vertex data. For example, in

PageRank the bitvector is 128× smaller than vertex data,

which stores 16 B per vertex.

The real overheads of BDFS are not extra memory ac-

cesses, but the scheduling logic in Listing 2 to find the

next vertex. Although BDFS has linear-time complexity

(O(#Edges+#Vertices)), since most graph algorithms execute

few instructions per edge, it is relatively expensive in software:

BDFS not only executes 2–3× more instructions than VO, but

these extra instructions have data-dependent branches that limit

instruction-level parallelism. These overheads outweigh the

locality improvements of BDFS, motivating HATS.

B. Analysis of access patterns

Fig. 7 compares the memory access patterns of the vertex-

ordered (VO) schedule (Listing 1) and BDFS (Listing 2). We

show accesses to the neighbor and vertex data arrays.

VO processes vertices and their edges sequentially, which

results in good spatial locality on the offset and neighbor
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Fig. 7: Memory access patterns with the vertex-ordered schedule
(top) and BDFS (bottom).

arrays, and in vertex data accesses for the currently pro-

cessed vertex. While the neighbor array is often the largest

data structure in the graph, each cache line has many elements

(typically 16), which amortizes their fetches well.
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Fig. 8: Breakdown of
memory accesses to dif-
ferent data structures for
PageRank on the uk-2002
graph.

However, VO suffers from poor

temporal and spatial locality on

vertex data accesses for neigh-

bor vertices. These accesses dom-

inate misses. Fig. 8 illustrates this

by showing the breakdown of main

memory accesses to different data

structures in PageRank: 86% of

main memory accesses are to neigh-

bor vertex data.

Fig. 7 shows that BDFS im-

proves temporal locality in neigh-

bor vertex data accesses by pro-

cessing communities together. How-

ever, it reduces spatial locality in

offset and neighbor array accesses. In BDFS, the first

access to a vertex’s slice of the neighbor array often misses.

Fortunately, accesses to the remaining neighbors enjoy the same

spatial locality as VO. Fig. 8 shows this is a good tradeoff:

neighbor vertex data misses are almost 5× lower, and while

offset and neighbor misses increase, BDFS reduces memory

accesses by 2.2×.

C. BDFS does not require tuning the maximum depth

Alternative search strategies: An alternative to BDFS is

bounded breadth-first scheduling (BBFS). BDFS outperforms

BBFS and is also cheaper to implement. DFS has better locality

than BFS [1, 5, 13], and DFS works well with a small stack

while BFS requires a large FIFO queue (up to the entire graph).

Fig. 9 illustrates this for PageRank. It shows the memory

accesses of BDFS and BBFS as the fringe (BDFS stack or

BBFS queue) grows. Memory accesses are normalized to the

vertex-ordered schedule. BDFS outperforms BBFS at all fringe

sizes and achieves near-peak performance with a 10-element

fringe, whereas BBFS needs about a 100-element fringe to be

effective. All the graphs we evaluate show similar trends.

BDFS is insensitive to stack depth: Fig. 9 shows that BDFS’s

performance is flat after a stack depth of 5–10. Smaller fringes

cause more misses because they traverse smaller communities
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Fig. 9: Memory accesses of PageRank on the uk-2002 graph with
BDFS and bounded BFS (BBFS) at different fringe sizes. BDFS
reduces memory accesses with much less storage than BBFS.
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that use only a fraction of the cache. For example, with an

average degree of 4 neighbors/vertex, a depth of 4 traverses

only about 44 = 256 vertices, whereas a depth of 10 traverses

about 410 = 1 M vertices.

However, the converse is not true: deeper stacks do not add

misses even if they result in huge traversals with many more

vertices than the cache can hold. This stems from DFS’s divide-

and-conquer nature [18]. Suppose that, for a given graph, a

stack of depth D yields the largest communities that fit on

cache. Suppose we instead use depth D+1. If the root node

has N neighbors, this is equivalent to performing N depth-D

traversals in sequence, each of which fits in cache. By induction,

BDFS does not overwhelm the cache with a deeper stack.

This observation yields two nice properties. First, BDFS

needs no tuning. Rather than analyzing the graph and figuring

out the right stack depth, we simply use a fixed depth in

hardware that is large enough to yield large traversals even

with small degrees. Second, BDFS should yield good locality

at different cache levels, regardless of their size.

D. Parallel BDFS

We parallelize BDFS by evenly dividing the active bitvec-

tor across threads. Each thread then begins independent BDFS

traversals through its chunk of the vertices, as in Listing 2.

The only change is that operations on the active bitvector are

done atomically (e.g., test-and-clear) to avoid repeating work.

Finally, we use work-stealing [11] to avoid load imbalance:

when a thread finishes its chunk it tries to steal half of another

thread’s remaining vertices.

We tried a number of more sophisticated parallelization

strategies that seek to keep all threads exploring within the

same community of the graph. We found that, on most graphs,

these added synchronization overheads without providing much

benefit over our simple work-stealing approach.

IV. HATS: HARDWARE-ACCELERATED

TRAVERSAL SCHEDULING

BDFS effectively reduces cache misses, but when imple-

mented in software, its overheads negate the benefits of its

higher locality. To address this problem, we present hardware-

accelerated traversal scheduling (HATS). HATS is a simple,

specialized engine that performs traversal scheduling. HATS

enables sophisticated scheduling strategies like BDFS.

System architecture: Fig. 10 shows the system architecture we

use in this paper. Each core is augmented with a HATS engine,

which it configures to perform the traversal (e.g., passing in the

addresses of CSR structures). Each HATS engine runs ahead

of its core and communicates edges to the core through a FIFO

buffer. Our design effectively offloads the traversal scheduling

portion of the graph algorithm to the HATS engines, and uses

cores exclusively for edge and vertex processing. For example,

in Listing 2, the core executes the per-edge operations inside

the PageRank() function, while the HATS engine executes

everything else.

We propose and evaluate HATS on general-purpose pro-

cessors, where HATS is implemented as either fixed-function

HATS

Config
FIFO

Buffer

L2

Core

L2

L1

Core

HATS…

Shared	L3

Main	Memory

Core

L1

L2

L1 HATS

Fig. 10: System architecture. Each core has a HATS engine that
traverses the graph and sends edges to process to the core.

hardware or using on-chip reconfigurable logic. We focus on

general-purpose processors for two reasons. First, traversal

scheduling is needed by all graph algorithms, so it is natural

to specialize this common part and leave algorithm-specific

edge and vertex processing to programmable cores. Second,

specialized traversal schedulers impose negligible system-wide

overheads, similar in cost to prior indirect prefetchers. And

unlike prefetchers, HATS reduces both memory latency and

bandwidth (Sec. II-B). HATS thus adds a small dose of

specialization to get a large performance boost for an important

application domain, without sacrificing the programmability

and low entry cost of general-purpose processors.

That said, HATS can be applied to other system architectures,

e.g., by replacing the general-purpose cores with an algorithm-

specific accelerator.

Generality: HATS supports both push- and pull-based traver-

sals, and all-active and non-all-active algorithms. This lets

HATS accelerate the vast majority of graph processing

algorithms—the full spectrum of what state-of-the-art frame-

works like Ligra support.

HATS assumes a CSR graph format, which is by far the most

commonly used one [21, 41, 48, 63]. With small additions,

HATS could support other CSR variants (e.g., DCSR [12]).

Moreover, the reconfigurable logic implementation of HATS

would allow supporting other graph formats with no overheads.

In the remainder of this section, we explain the HATS

interface and operation in detail, which is common to all

HATS variants. We then describe HATS implementations of

VO and BDFS traversals, and compare the area and power

overheads of the ASIC and FPGA implementations of HATS.

A. HATS interface and operation

HATS only accelerates traversal scheduling and leaves all

other responsibilities to cores, including initialization, edge

and vertex processing, and load balancing.

Operation: Regardless of the traversal scheduling strategy

implemented by HATS (VO or BDFS), each traversal (e.g.,

one iteration of PageRank) proceeds in the following steps:

1. Initialization: Software first initializes all the required data

structures, including all graph data and, if needed, the active

bitvector, which specifies the set of vertices to visit. The need

for this bitvector depends on the graph algorithm and traversal

schedule: VO-HATS (Sec. IV-B) uses an active bitvector only

for algorithms where not all vertices are active each iteration

(e.g., BFS), while BDFS-HATS (Sec. IV-C) always uses an

active bitvector to avoid processing vertices multiple times.
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2. HATS configuration: Each thread then configures its own

HATS unit by conveying the following information:

1) The base addresses and sizes of graph data struc-

tures: offset, neighbor, and vertex data arrays, and

active bitvector.

2) The type of traversal (push or pull).

3) The chunk of vertices that the HATS is responsible for

(start and end vertex ids).

This configuration data is written using memory-mapped

registers (e.g., like a DMA engine is configured). After the

core writes this configuration, HATS starts the traversal.

3. Processing: During traversals, HATS reads the offset and

neighbor arrays, as well as the active bitvector, if used. For

BDFS, HATS also performs updates to the active bitvector.

Finally, it prefetches vertex data.

As HATS finds unvisited active vertices, it fills its FIFO

buffer with edges (source and destination vertex ids) for the core

to process. The core uses a fetch edge instruction to fetch

edges from the buffer (this is the only new instruction).

fetch edge returns the source and destination ids in registers.

Software takes two extra instructions to translate these ids to

vertex data addresses. If HATS has finished traversing its

assigned chunk of vertices, fetch edge returns (−1,−1). If

the FIFO is empty, fetch edge stalls the core. If it fills up,

HATS’s traversal stalls.

HATS is transparent to applications: We expose the above

functionality to the software graph processing framework

through a simple low-level API consisting of two methods:

hats configure(...) performs the configuration step and

hats fetch edge() translates to a fetch edge instruc-

tion. Graph algorithms need not deal with this API: we code

all our algorithms to a highly optimized, Ligra-like graph

processing framework (Sec. V-A). Only the framework needs

to be modified to use HATS—application code is unchanged.

Parallelism and load-balancing: Parallel operation is similar

to the software BDFS implementation (Sec. III-D): vertices are

divided into as many chunks as threads, and each HATS engine

is responsible for scanning a separate chunk. We perform load-

balancing using work-stealing: if a HATS engine finishes its

chunk early, its thread interrupts a randomly chosen thread,

which donates half of the remaining chunk in its HATS engine.

We use the same termination algorithm as Cilk [19].

Handling preemption: Because HATS does work on behalf of

the thread, some of its state is architecturally visible and must

be considered on preemption events. If the OS deschedules a

thread, it quiesces the HATS engine and saves this architectural

state (which includes the remainder of the chunk and base

addresses of all data structures). When the thread is rescheduled,

its core’s HATS is configured using this state. Note that this is

needed only when the thread is descheduled, not when taking

exceptions or system calls (similar to how FPU state is not

saved when entering into the kernel). It is thus a rare event.

Virtual memory: Finally, HATS operates on virtual addresses.

Like prior indirect prefetchers, HATS leverages the core’s ad-

dress-translation machinery [3, 58]. Unlike indirect prefetchers,

HATS does not monitor the core’s cache accesses. Since we

place HATS at the core’s L2, we use the L2 TLB.

HATS may cause a page fault, which is handled as in prior

indirect prefetchers: the core is interrupted and the OS page

fault handler invoked. The HATS engine stalls until the page

fault handler completes. Once the page fault handler finishes,

core and HATS engine resume normal execution.

B. VO-HATS implementation

We now describe the design of the HATS engine when using

the vertex-ordered schedule. We describe its operation assuming

a push-based traversal. Sec. IV-D discusses the changes needed

for pull-based traversals.

VertexID

Scan

FIFO	Buffer

Fetch	

Offsets

StartOffset,

EndOffset Fetch	

Neighbors
Prefetch

VertexID,

NeighborID
Current	

Vertex	ID

Last	

Vertex	ID
VertexID,

NeighborID

To	L2

To	Core

Fig. 11: Microarchitecture of VO-HATS.

Our VO-HATS design uses a simple pipelined implementa-

tion, illustrated in Fig. 11. Each pipeline stage corresponds to

a particular step in the fetching of graph data:

1) Scan holds the current and last vertex ids of the HATS

chunk. For an all-active algorithm, Scan simply outputs

the current vertex id each cycle, and increments it. If the

algorithm is not all-active, Scan loads the active bitvector

line by line and outputs the ids of active vertices.

2) Fetch offsets takes a vertex id as input and outputs its start

and end offsets, which it loads from the offsets array.

3) Fetch neighbors takes the start and end offsets of a single

vertex as input and outputs its neighbor ids, which it loads

from the neighbors array. The vertex and its neighbor ids

are then queued in the FIFO buffer.

4) Prefetch issues prefetches for the vertex and its neighbors’

vertex data.

To allow enough memory-level parallelism, these stages are

decoupled using small FIFOs. In practice, we find that allowing

the Scan and Fetch neighbors stages to each request up to two

cache lines in parallel suffices to keep the FIFO full.

C. BDFS-HATS implementation

Our implementation of BDFS-HATS shares many common

elements with VO-HATS, but has additional logic to perform

data-dependent traversals. Fig. 12 shows its design. We first

explain its basic operation, and then the optimizations required

to achieve good performance.

Basic operation: The main component of the BDFS scheduler

is a fixed-depth stack. Each stack level stores the following

information about a single vertex: its vertex id, current and

end offsets, and a cache line worth of neighbor ids. These
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Fig. 12: Microarchitecture of BDFS-HATS.

fields are populated as the vertex is processed. The stack is

provisioned for the maximum depth of BDFS exploration (10

levels in our implementation). As discussed in Sec. III-C, it

is not necessary to tune BDFS’s depth—we always use the

maximum depth.

Unlike VO, BDFS always uses an active bitvector, even

for all-active algorithms. HATS reads this bitvector to restrict

its exploration to active vertices, and updates it as it traverses

the graph, clearing the vertices it decides to explore.

The traversal begins with an empty stack. As in VO, the Scan

stage traverses the active bitvector and produces the next

active vertex id. This vertex is immediately marked as inactive.

Then the vertex serves as the root of a bounded-depth first

exploration: the vertex id is stored in the first level of the stack.

Its offsets are fetched, and, once known, they are used to fetch

the first cache line of neighbor vertex ids. These neighbors are

checked in the active bitvector, and those that are active are

marked inactive and stored, along with the vertex’s offsets, in

its stack entry.

The traversal continues in a depth-first fashion: the first

neighbor of the topmost element is used to populate the next

level of the stack as above, and so on until the stack is filled.

As the depth-first traversal proceeds, newly fetched neighbor

ids are used to produce edges, which are queued to the FIFO

buffer. Once the stack fills up, the neighbor ids of the last level

are fetched and used to produce edges, but are not traversed.

When all the neighbors at a given level have been traversed,

the level is cleared and the exploration continues at the next

neighbor of the previous level. When all of the root’s neighbors

have been explored, the current region has been fully explored,

and the Scan stage provides the next root vertex.

BDFS-HATS uses a finite state machine (FSM) to implement

this procedure, shown in Fig. 12. On each cycle, the FSM

decides on the next piece of data to fetch based on the current

state of the stack.

Exploiting intra-traversal parallelism: Unlike VO, BDFS

traversals experience more data dependences and thus more

serialization. Additional optimizations are needed to exploit the

parallelism within a single BDFS traversal in order to obtain

enough memory-level parallelism and saturate each core.

First, we move the active bitvector check-and-clear opera-

tions off the critical path and perform them in parallel. These

checks constitute a substantial fraction of the work in BDFS.

TABLE I: Area and power of VO-HATS and BDFS-HATS
implementations: ASIC (65nm) and FPGA (Zynq-7045).

HATS ASIC Area ASIC Power FPGA Area

Design (mm2) %core (mW ) %TDP (LUT s) %FPGA

VO 0.07 0.19% 37 0.11% 1725 0.79%
BDFS 0.14 0.38% 72 0.22% 3203 1.47%

Instead of checking whether a vertex should be visited eagerly,

we add all vertices to the neighbor list, issue pending bitvector

checks if there is nothing else to do, and mark them as active

or inactive as the responses arrive.

Second, all levels in the stack expand the first two active

neighbors in parallel, instead of only expanding the first one.

Each stack level has an additional entry, and when the topmost

element is populated, its first and second active neighbors are

used to populate the next level. This way, when the level’s

current vertex is completely explored, the data for the next

vertex is already available (and as soon as we switch to it, the

data for the following vertex starts being fetched). This greatly

reduces the critical path at the cost of some additional storage.

With these optimizations, we find that BDFS-HATS achieves

enough throughput to avoid stalling the core.

D. Extending HATS for pull-based traversals

We have so far described push-based traversal variants of

HATS. The above designs can be easily extended to perform

pull-based traversals. The key difference is when the active

bitvector checks happen. In a push-based traversal, the active

bitvector is checked to filter vertices before exploring their

neighbors. For example, VO-HATS does this in the Scan stage.

By contrast, a pull-based traversal fetches the neighbors of all

the vertices in the graph, then uses the bitvector to filter inactive

neighbors. Thus, adapting our VO-HATS design simply requires

performing the bitvector checks after the Fetch neighbors stage

instead of in the Scan stage. The BDFS design requires similar

changes. Our HATS prototypes support both push- and pull-

based traversals.

E. Hardware costs

ASIC implementation: We have written Verilog RTL for

both VO-HATS and BDFS-HATS engines and synthesized

them using a commercial 65 nm process. Both designs meet a

1.1 GHz target frequency. Table I shows their area and power

consumption under typical operating conditions. Area and

power are negligible when compared to those of a core in

the Intel Core 2 E6750, also manufactured in 65 nm [17].

Table I shows that BDFS-HATS takes about 0.4% of core area

and 0.2% of core TDP. VO-HATS is even cheaper.

Prior indirect prefetchers do not allow for a direct area

and power comparison, but we can use their internal storage

requirements as a proxy. VO-HATS requires 2.5 Kbits of storage

for its internal FIFO buffers and BDFS-HATS requires 6.4 Kbits

for 10 stack levels. In addition, both designs use a 1 Kbit output

FIFO buffer. In comparison, IMP [58] requires 5.5 Kbits of

storage, so our HATS designs have about the same cost.

FPGA implementation: We also synthesized the HATS

designs on an FPGA platform. VO-HATS and BDFS-HATS
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TABLE II: Configuration of the simulated system.

Cores 16 cores, x86-64 ISA, 2.2 GHz, Haswell-like OOO [47]

L1 caches
32 KB, per-core, 8-way set-associative, split D/I,
3-cycle latency

L2 cache
128 KB, private per-core, 8-way set-associative, 6-cycle
latency

L3 cache
32 MB, shared, 16-way hashed set-associative, inclusive,
24-cycle bank latency, LRU replacement

Global
NoC

4×4 mesh, 128-bit flits and links, X-Y routing, 1-cycle
pipelined routers, 1-cycle links

Coherence MESI, 64 B lines, in-cache directory, no silent drops

Memory
4 controllers, FR-FCFS, DDR4 1600 (12.8 GB/s per
controller)

require 1725 and 3203 LUTs respectively, as shown in Table I.

This is less than 2% of the total LUT count on a modest Xilinx

Zynq-7045 SoC [56] (state-of-the-art FPGAs have 10× more

LUTs [57]). Both designs meet a 220MHz target frequency,

5× slower than the ASIC implementation.

To ensure that the HATS engine can match the core’s

throughput at this frequency, we need more parallelism within

the engine. However, we do not need to replicate the entire

HATS pipeline to achieve this. We find that active bitvector

checks in the Filter neighbors stage become the bottleneck

when operating at a lower frequency. Thus, we only replicate the

bitvector check logic and perform multiple bitvector operations

in parallel (4 in our case). Sec. V-C shows that with this support,

even a 220MHz design can keep the core busy.

V. EVALUATION

A. Methodology

We now present our evaluation methodology, including the

simulated system, graph algorithms, and datasets we use.

Simulation infrastructure: We perform microarchitectural,

execution-driven simulation using zsim [47]. We have imple-

mented detailed cycle-driven models of our proposed VO and

BDFS HATS designs.

We simulate a 16-core system with parameters given in

Table II. The system uses out-of-order cores modeled after and

validated against Intel Haswell cores. Each core has private L1

and L2 caches, and all cores share a banked 32 MB last-level

cache. The system has four memory controllers, like Haswell-

EP systems [23]. We use McPAT [30] to derive the energy

numbers of chip components at 22 nm, and Micron DDR3L

datasheets [37] to compute main memory energy.

Algorithms: We use five graph algorithms from the widely

used Ligra [48] framework, as shown in Table III. These include

both all-active and non-all-active algorithms. All algorithms

use objects that are much smaller than a cache line (64 B).

PageRank computes the relative importance of vertices in a

graph, and was originally used to rank webpages [45]. PageR-

ank Delta is a variant of PageRank in which vertices are active

in an iteration only if they have accumulated enough change in

their PageRank score [35]. Connected Components divides a

graph’s vertices into disjoint subsets (or components) such that

there is no path between vertices belonging to different sub-

sets [13]. Radii Estimation estimates the radius of each vertex

TABLE III: Graph algorithms.

Vertex All-

Algorithm Size Active?

PageRank (PR) 16 B Yes

PageRank Delta (PRD) 16 B No

Conn. Components (CC) 8 B No

Radii Estimation (RE) 24 B No

Max. Indep. Set (MIS) 8 B No

by performing multiple

parallel BFS’s from a

small sample of ver-

tices [32]. Maximal In-

dependent Set finds a

maximal subset of ver-

tices such that no ver-

tices in the subset are

neighbors [10].

We obtain the source code for these algorithms from

Ligra [48]. We adapt the scheduling code to use the HATS

programming model, without modifying the per-algorithm code.

We also incorporate several optimizations in the scheduling

code like careful loop unrolling that yield significant speedups:

our implementations outperform Ligra by up to 2.5×.

Our approach lets us start with an optimized software base-

line, which is important since it affects the qualitative tradeoffs.

In particular, we find that well-optimized implementations are

more memory-bound and saturate bandwidth more effectively.

TABLE IV: Graph datasets.

Graph Vertices Edges Description

(M) (M)

uk 19 298 uk-2002 [16]

arb 22 640 arabic-2005 [16]

twi 41 1468 Twitter followers [28]

sk 51 1949 sk-2005 [16]

web 118 1020 webbase-2001 [16]

Datasets: We use sev-

eral large real-world

web and social graphs

detailed in Table IV.

These graphs are di-

verse (harmonic diam-

eter: 5–38; average de-

gree: 9–38; clustering

coefficient: 0.06–0.55).

With the objects sizes listed in Table III, the vertex data

footprint is much larger than the last-level cache. We represent

graphs in memory in compressed sparse row (CSR) format.

Graph algorithms are generally executed for several iterations

until a convergence condition is reached. To avoid long

simulation times, we use iteration sampling: we perform

detailed simulation only for every 4th iteration and fast-forward

through the other iterations (after skipping initialization). This

yields accurate results since the execution characteristics of

all algorithms change slowly over consecutive iterations. Even

with iteration sampling, we perform detailed simulation for

over 100 billion instructions for the largest graph.

B. ASIC HATS Evaluation

Main memory accesses: Fig. 13 shows the main memory

accesses of VO and BDFS for single-threaded PageRank. Each

bar shows the breakdown of accesses to different data structures

as in Fig. 6. This includes misses due to demand accesses

and prefetches. BDFS’s benefits stem from reducing neighbor

vertex data misses, as explained in Sec. III-B. Fig. 13 shows

that these benefits hold across most graphs: BDFS reduces

main memory accesses significantly, by up to 2.6× and by

60% on average. Other indicates accesses to BDFS’s data

structures, mainly the active bitvector. These are negligible

except when the bitvector does not fit in cache (for web).

BDFS reduces misses on all graphs except twi, due to twi’s

weak community structure. On twi, BDFS does not improve

temporal locality of vertex data accesses, and adds offset
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Fig. 16: Speedup over software VO at 16 threads. VO-HATS and BDFS-HATS significantly improve performance over software VO
and hardware prefetchers (IMP).

and neighbor misses. Preprocessing techniques [4] also show

lower benefits for twi. Excluding twi, BDFS reduces memory

accesses by 2× on average for PageRank.

twi’s weak community structure is an outlier. For example,

twi has a clustering coefficient of 0.06, whereas most real-

world graphs are above 0.2 [29]. Therefore, we expect BDFS

to be beneficial in the common case. In Sec. V-D we present

Adaptive-HATS, which can detect when graphs have weak

community structure and switch to a VO schedule.

Fig. 14 shows the main memory accesses of BDFS at 16

threads for all five algorithms. BDFS reduces memory accesses

significantly for all algorithms: by 44%, 29%, 18%, 19%, and

46% on average for PR, PRD, CC, RE, and MIS respectively. Some

non-all-active algorithms like PRD, CC, and RE get slightly lower

reductions. In these algorithms, only a subset of vertices are

active in some iterations and as a result the active vertex -

data is much more likely to fit in cache.

There is a slight increase in BDFS’s memory accesses from 1

to 16 threads (compare Fig. 13 and PageRank in Fig. 14). In the

single-thread experiments the whole 32 MB LLC is available

to a single traversal, whereas in the 16-thread experiments

the LLC is shared among 16 concurrent traversals, causing

interference. The increase is small except for the sk graph,

which is quite sensitive to per-thread cache capacity.

Performance: Fig. 15 shows the average slowdown of software

BDFS over VO. In software, BDFS is slower than VO for all

algorithms. This happens because, despite its large reductions

in memory accesses, BDFS adds bookkeeping overheads when

implemented in software. Since graph algorithms execute only

a few instructions per edge, these overheads are relatively large.

Fig. 16 shows the speedup of three schemes over software

VO: the IMP indirect memory prefetcher [58], and hardware-

accelerated VO (VO-HATS) and BDFS (BDFS-HATS). To

ensure IMP issues accurate prefetches, we configure it with

explicit information about the graph structures as in [3].

IMP improves performance for the four non-all-active algo-

rithms that are memory-latency bound (PRD, CC, RE, and MIS).

When IMP does not saturate bandwidth (PRD, CC, and RE), VO-

HATS achieves further gains by offloading traversal scheduling

work to HATS. When IMP already saturates bandwidth (PR,

MIS), VO-HATS does not improve performance further. Overall,

VO-HATS improves performance over VO by up to 2.3× and

by 85%, 58%, 61%, and 41% on average for PRD, CC, RE, and

MIS respectively.

However, neither IMP nor VO-HATS reduce memory traffic,

so their performance gains are limited by memory bandwidth.

This is most noticeable for PR (Fig. 16a): software VO already

saturates memory bandwidth, so VO-HATS and IMP barely

improve performance. By contrast, BDFS’s reduced memory

accesses translate to improved performance for BDFS-HATS

on PR, with up to 2.2× speedup over VO on the arb graph.

On average, BDFS-HATS improves the performance of PR by

46% over VO and by 43% over VO-HATS.

BDFS-HATS achieves similar but slightly lower gains over

VO-HATS for the non-all-active algorithms. BDFS-HATS

improves average performance over VO-HATS by 20%, 13%,

17%, and 35% for PRD, CC, RE, and MIS respectively and over

VO by 2.2×, 78%, 88%, and 91%.

Energy: Fig. 17 shows the energy breakdown for various

schemes. For software-only VO, most of the energy comes

from core and main memory, and the fraction of energy

from cores depends on how compute-bound the algorithm

is. For highly memory-bound applications like PageRank, main

memory contributes 46% of total energy.
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Fig. 17: Energy breakdown normalized to VO. (V = VO, I = IMP,
VH = VO-HATS, BH = BDFS-HATS.)

HATS reduces core energy because it offloads the traversal

scheduling to specialized hardware, reducing instruction counts

on general-purpose cores. In particular, non-all-active algo-

rithms spend a significant fraction of instructions in activeness

checking even with simple VO. HATS completely eliminates

these instructions and, on average, reduces core energy by 35%,

36%, 25%, and 28% for PRD, CC, RE, and MIS respectively.

BDFS’s reduction in main memory accesses causes propor-

tional reductions in main memory energy. Overall, BDFS-HATS

reduces energy by 19%, 33%, 28%, 22%, and 30% on average

over VO for the five algorithms. The overall energy reductions

would be higher on graph processing accelerators, which reduce

core energy by over 10× [22, 44], making memory energy the

main bottleneck. IMP barely reduces energy since it neither

reduces instruction count nor memory accesses.

C. HATS on an on-chip reconfigurable fabric

Results so far assume an ASIC implementation of HATS.

Fig. 18 shows results for our VO-HATS and BDFS-HATS

reconfigurable logic implementations. We model an on-chip

FPGA fabric that can issue accesses to the L2 cache, similar

to the Xilinx Zynq SoC [56] but using high-performance cores.

Unlike Zynq, where the FPGA fabric is shared by all cores,

we assume a per-core FPGA fabric near the private L2s. We

later explore the effect of placing HATS at different points

in the memory hierarchy, which accounts for less-integrated

FPGA fabrics like HARP [24, 46].

The key difference with the ASIC implementation is the

slower clock frequency, 220 MHz. Fig. 18 shows that when

HATS has enough parallelism through replication of some parts

of the pipeline, as explained in Sec. IV-E, even this slow clock

is sufficient to keep the core busy. There is only a small drop

in performance (1%) for both HATS versions. Without these

changes (i.e., using the ASIC design on the FPGA), VO-HATS

and BDFS-HATS are 15% and 34% slower on average.
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Fig. 18: HATS performance on
an FPGA fabric.
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We also modeled a variant where HATS and the core

communicate through a FIFO buffer in shared memory. This

avoids the need for a dedicated FIFO channel between the

HATS engine and the core, which some reconfigurable fabrics

may not offer. It also avoids changing the ISA (no fetch edge

instruction). Although buffer management operations increase

core instructions by up to 10% (on PR), since the workloads

are memory-bandwidth bound, there is negligible impact on

performance, as Fig. 19 shows: VO-HATS is insensitive and

BDFS-HATS shows at most 5% performance loss (on MIS).

D. Adaptive-HATS

We now explore an adaptive version of HATS that switches

between VO and BDFS dynamically. Adaptive-HATS is ben-

eficial for two reasons. First, when the graph does not have

good community structure, BDFS increases memory accesses

over VO and lowers performance. This can be observed for

the twi graph across all algorithms in Fig. 16. Second, even

for graphs with good community structure, the later phases of

BDFS exploration usually process low-locality work. Using

the simpler VO schedule in such phases improves performance

due to lower scheduling overheads.
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Fig. 20: Adaptive-HATS outperforms BDFS-HATS by avoiding
BDFS-HATS’s performance pathologies.

Adaptive-HATS requires small extensions to BDFS-HATS:

switching between VO and BDFS only requires changing

the maximum depth of exploration (1 for VO and 10 for

BDFS). Every 50 M cycles, all HATS units switch to the

alternative mode of exploration for 5 M cycles, and use the best-

performing mode for the next 45 M cycles. Fig. 20a compares

the performance of VO-HATS, BDFS-HATS and Adaptive-

HATS on PRD for each graph. web and twi benefit the most

from Adaptive-HATS on PRD; we observe similar benefits for

other algorithms. Fig. 20b shows gmean performance across

graphs. Adaptive-HATS outperforms BDFS-HATS by 4%, 6%,

10%, 7%, and 4% for PR, PRD, CC, RE, and MIS.

E. BDFS-HATS versus other locality optimizations

We now compare BDFS-HATS with online and offline

techniques to improve locality.

Propagation Blocking [8] (PB) is an online heuristic to

improve the spatial locality of all-active algorithms like

PageRank. PB first accesses the graph sequentially to gather the

updates to neighbors. It partitions these updates into bins, with

each bin holding updates for a cache-fitting slice of vertices.
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Fig. 21: Propagation Blocking reduces memory traffic signifi-
cantly but shows limited performance gains.

Updates are stored in main memory. PB then reads the updates

from memory bin by bin, and finally applies them. Both phases

generate sequential accesses to main memory.

We used all optimizations from the original implementation,

which we obtained from PB’s authors [8]. We modified our

simulator to model non-temporal stores, which are crucial

to reduce PB’s memory traffic. Moreover, we compare to

Deterministic PB, which generates the per-update neighbor

vertex ids only once and reuses them across iterations. We

found that a bin size of 1 MB works best for our system.

Fig. 21a compares the memory accesses of BDFS-HATS

and PB, normalized to VO. On average, PB achieves slightly

lower memory accesses than BDFS-HATS, and works well

even for unstructured graphs like twi. However, PB is a

software technique that adds non-trivial compute to achieve

these memory access reductions. Hence, as shown in Fig. 21b,

the performance gains of PB are limited: while PB achieves

up to 43% speedup for sk, it hurts performance for twi. On

average, PB is 17% faster then VO, whereas BDFS-HATS is

46% faster. Moreover, PB has several limitations. PB can be

extended for non-all-active algorithms [26], but the per-update

neighbor vertex ids cannot be reused across iterations. And PB

works only on algorithms where updates are commutative.

Fig. 22a compares the memory accesses of BDFS-HATS

with GOrder [55] preprocessing, a very expensive heuristic (see

Fig. 5b) that heavily exploits graph structure. GOrder achieves

much lower memory accesses than BDFS-HATS and these

memory traffic reductions translate to improved performance

as shown in Fig. 22b. GOrder-HATS, which combines GOrder

with VO-HATS, further improves performance significantly for

non-all-active algorithms (PRD, CC, RE, MIS).
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Fig. 22: BDFS-HATS versus GOrder preprocessing.

F. Sensitivity studies

Impact of prefetching: HATS engines accurately prefetch

vertex data into the L2 to accelerate edge processing by

the cores. Fig. 23 shows that this prefetching is effective by

comparing VO and BDFS HATS variants with and without

vertex data prefetching. Prefetching accounts for about a

third of the speedup achieved by BDFS-HATS over VO. (Note

that these prefetches are irregular, so a conventional prefetcher

would not be able to perform them.)
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Fig. 23: Impact of prefetching on performance.

We find that HATS prefetches are timely. First, the limited

size of the HATS buffer (64 entries) constrains how far ahead

the HATS runs. Thus, prefetched data takes a small fraction

of the L2 (up to 4 KB), avoiding too-early prefetches. Second,

the HATS buffer is large enough to avoid late prefetches. We

observe that a small fraction (5-10%) of prefetches are late

(i.e., partially overlapped with the demand access). Even then,

these late prefetches cover 90% of access latency on average.
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Fig. 24: Sensitivity of BDFS-
HATS to on-chip location.

HATS location: Fig. 24

shows how the location of

HATS changes the benefits

of BDFS-HATS over VO.

Performance changes only

slightly when moving HATS

from the L2 to the L1. How-

ever, placing HATS near the

LLC (e.g., on a shared FPGA

fabric) causes a noticeable

drop in performance for non-

all-active algorithms. With this configuration, HATS can only

prefetch vertex data into the LLC. Thus, cores experience

few tens of cycles of latency when accessing vertex data.

Memory bandwidth: Fig. 25 shows the speedup of VO-HATS

and BDFS-HATS over VO as the number of memory controllers

grows from two to six (i.e., as peak main memory bandwidth
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(shaded) and BDFS-HATS over
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grows from about 26 to 77 GB/s). While both VO-HATS

and BDFS-HATS are more beneficial when the system has

higher bandwidth, the improvement of BDFS-HATS over VO-

HATS increases when the system has lower bandwidth. At two

memory controllers, BDFS-HATS outperforms VO-HATS by

43%, 25%, 18%, 22%, and 43%. At six memory controllers,

the speedups reduce to 37%, 10%, 3%, 8%, and 20%.

General-purpose core type: Fig. 26 shows the speedup of

BDFS-HATS different core types. All speedups are normalized

to VO with Haswell-like cores. While compute-bound non-

all-active algorithms (PRD, CC, RE) are more sensitive, BDFS-

HATS retains a large fraction of its benefits with lean OOO

(Silvermont-like) cores since the system is memory bandwidth-

bound. Moreover, HATS with energy-efficient in-order cores

is faster than software VO with power-hungry OOO cores.

Cache size: Fig. 27 shows the performance of VO-HATS and

BDFS-HATS at various cache sizes. All speedups are relative to

software VO at a fixed cache size of 32 MB, making speedups

across cache sizes comparable. For PR and MIS, BDFS-HATS

with just a 16 MB cache outperforms both VO-HATS and VO

with a 32 MB cache. For PRD and RE, BDFS-HATS at 16 MB

outperforms VO with a 32 MB cache. It closely matches VO-

HATS with a 32 MB cache.

VH BH

PR

VH BH

PRD

VH BH

CC

VH BH

RE

VH BH

MIS

0

50

100

150

S
p
e
e
d
u
p
 o

v
e
r 

V
O

 (
%

)

16MB 32MB (Default) 64MB

Fig. 27: Sensitivity to LLC size. All
speedups are relative to software
VO at 32 MB.
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Fig. 28: BDFS-HATS
with different LLC
replacement policies.

LLC replacement policy: Finally, Fig. 28 shows how the

LLC replacement policy affects the benefits of BDFS. We

evaluate BDFS-HATS with LRU and DRRIP [25], a high-

performance replacement policy. BDFS-HATS achieves slightly

higher gains when using DRRIP. This happens because DRRIP

is scan- and thrash-resistant, so it reduces the cache pollution

caused by access patterns with no temporal locality. This leaves

more cache capacity for data with temporal locality, which

BDFS exploits. These results show that BDFS-HATS and high-

performance replacement policies are complementary. BDFS-

HATS would also benefit from specializing the replacement

policy for different graph data structures [38].

VI. ADDITIONAL RELATED WORK

A. Memory system specialization for graph processing

Recent graph processing accelerators have proposed various

ways to tune the memory hierarchy to the needs of graph

algorithms, e.g., by using separate scratchpads to hold vertex

and edge data and matching their word sizes to object sizes [44],

or by adding a large on-chip eDRAM scratchpad that can hold

larger graphs than is possible with SRAM [22].

Prior work has also proposed near-data processing (NDP)

designs [2, 20, 40, 50, 60] that execute most graph-processing

operations in logic close to main memory, reducing the cost

of memory accesses. NDP’s high memory bandwidth makes it

attractive for processing large unstructured graphs without any

locality, but as we have seen, graphs often have community

structure and can use caches effectively. Moreover, NDP

systems are still under development, so it is important to

optimize systems that use conventional off-chip main memory.

HATS complements this prior work by using locality-aware

scheduling to make better use of limited on-chip storage.

B. Preprocessing and locality optimizations

As discussed in Sec. II, preprocessing algorithms such as

RCM [14], GOrder [55], and Rabbit Order [4] improve the

locality of VO, but they are very expensive. These techniques

reorder graph vertices to assign close-by ids to related vertices.

They turn the graph’s adjacency matrix into a narrow band

matrix, with most nonzeros clustered around its diagonal.

However, this reordering is orders of magnitude more expensive

than the runtime of a single traversal [33, 39]. Similarly, edge-

centric scheduling with Hilbert Order [36] outperforms VO by

balancing the locality of source and destination vertices but

requires an expensive sort of all edges.

VII. CONCLUSION

Graph processing algorithms are increasingly bottlenecked by

main memory accesses. We have shown how runtime schedul-

ing strategies that exploit the community structure of real-world

graphs can significantly improve locality. We propose bounded

depth-first scheduling (BDFS), a simple yet highly effective

scheduling technique to improve locality for graphs with

good community structure, and HATS, a hardware-accelerated

traversal scheduler. BDFS-HATS requires inexpensive hardware

and reduces memory accesses significantly. On a simulated

16-core system, BDFS reduces main memory accesses by up to

2.4× and BDFS-HATS improves performance by up to 3.1×

over a locality-oblivious software implementation and by up

to 2.1× over specialized prefetchers.
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