EXPLOITING LOCALITY IN GRAPH ANALYTICS THROUGH
HARDWARE ACCELERATED TRAVERSAL SCHEDULING

Anurag Mukkara, Nathan Beckmann,

Maleen Abeydeeraq, Xiaosong Ma, Daniel Sanchez

MICRO 2018

I H Carnegie
1 e, QCRI
I I University

The locality problem of graph processing

o lrregular structure of graphs causes seemingly random memory references

1 On-chip caches are too small to fit most real-world graphs

1 Software frameworks improve locality through offline preprocessing

o Preprocessing is expensive and often impractical

1.2 1.2

1.0

—
o

o
0
o
©

Preproc.
overhead

1 PageRank iteration
on UK web graph

o
o))

Execution time

o
~
o
~

Main Memory Accesses
o o
N (0))

Improving locality in an online fashion

o1 Traversal schedule decides order in which graph edges
are processed

1 Many real-world graphs have strong community structure

0 Traversals that follow community structure have good
locality

11 Performing this in software without preprocessing is not
practical due to scheduling overheads

Contributions

PageRank Delta on
-1 BDFS: Bounded Depth-First Scheduling UK web graph

Performs a series of bounded depth-first explorations

o
o

Improves locality for graphs with good community structure

o
o))

045 .

Main Memory Accesses
o
o

1 HATS: Hardware Accelerated Traversal Scheduling
A simple unit specialized for traversal scheduling

Cheap and implementable in reconfigurable logic

Agenda

-1 Background

0 BDFS

0 HATS

0 Evaluation

Graph data structures

Compressed Sparse Row (CSR) Format

Neighbor
array
Graph Offset
representation array
Vertex

Algorithm-specific

data

Vertex-ordered (VO) schedule follows layout order

0 Simplifies scheduling and parallelism

0 Poor locality for vertex data accesses

PageRank on
% Load/Store Storage UK web graph

>
Neighbor array Vertex data 1.0 g -]

I Neighbors

Offsets

%8 2 % 0.8 | Vertex Data
) 8 % % 8 8 % i 06—
£ 8 o 8 o :
- 8 8 o 0.4 sl ...
v S 02 .
Full Spatial Locality Low Spatial Locality 0.0 bl |

No Temporal Locality = Low Temporal Locality

Agenda

0 Background
1 BDFS

0 HATS

0 Evaluation

BDFS: Bounded Depth-First Scheduling

Vertex data accesses have high potential temporal locality
Following community structure helps harness this locality

BDFS performs a series of bounded depth-first explorations

Traversal starts at vertex with id O

Processes all edges of first community
before moving to second

Divide-and-conquer nature of BDFS
Small depth bounds capture most locality

Good locality at all cache levels

BDFS reduces total main memory accesses o

Storage

Vertex data

Neighbor array

VO ® % %® ¥
= % % % w
® % ®
Y High Spatial Locality Low Spatial Locality
No Temporal Locality Low Temporal Locality
8 o . §
: ® g) &
BDFS £
: % » 5

Lower Spatial Locality Low Spatial Locality

No Temporal Locality High Temporal Locality

Main Memory Accesses

PageRank on
UK web graph

1.0 -]

I Neighbors
\ Offsets
[Vertex Data

o
o

o
o))

©
~

o
N

BDFS in software does not improve performance

1 Scheduling overheads negate the
benefits of better locality

-1 Higher instruction count

1 Limited ILP and MLP

Interleaved execution of traversal
scheduling and edge processing

Unpredictable data-dependent branches

Memory , Execution
Instructions .
Accesses Time
L[- 35 e - 12 -
O B0 |
% 0.8 ' o O
8 @ 257 Eos
0.6 S 20} -
€ 04 £ 1.5 - - 3
é’ c §I<J 0.4
L
.% 0.2 0.2
=

Agenda

0 Background

0 BDFS

T HATS

0 Evaluation

12

HATS: Hardware Accelerated Traversal Scheduling

Main Memory
Shared L3

L2 L2

-1 Decouples traversal scheduling from edge processing logic

7 Small hardware unit near each core to perform traversal scheduling
1 General-purpose core runs algorithm-specific edge processing logic

1 HATS is decoupled from the core and runs ahead of it

HATS operation and design

14

VO-HATS

L2

IPrefetche§//
BDFS-HATS

Buffer) Stack t
I Exploration FSM
= | |

Core
accs.

HATS costs

-1 Adds only one new instruction

Fetches edge from FIFO buffer to core registers

1 Very cheap and energy-efficient over a general-purpose core

RTL synthesis with a 65nm process and 1GHz target frequency

Area TDP Area
0.4% of core 0.2% of core 3200 LUTs

15

HATS benefits

Reduces work for general-purpose core for VO
Enables sophisticated scheduling like BDFS

Performs accurate indirect prefetching of vertex data
Accelerates a wide range of algorithms

Requires changes to graph framework only, not algorithm code

16

Agenda

0 Background

0 BDFS

0 HATS

1 Evaluation

17

Evaluation methodology

18
Event-driven simulation using zsim 5 applications from Ligra framework
1 6-core processor PageRank (PR)
Haswell-like OOO cores PageRank Delta (PRD)
32 MB L3 cache Connected Components (CC)
4 memory controllers Radii Estimation (RE)

Maximal Independent Set (MIS)
IMP [Yu, MICRO’15]

Indirect Memory Prefetcher S large real-world graph inputs

Configured with graph data Millions of vertices

structure information for accurate Billions of edges
prefetching

HATS improves performance significantly 0

o1 IMP improves performance by
VO-HATS mmm BDFS-HATS hiding latency

--------------------------------------- 7 VO-HATS outperforms IMP by

--------------------------------- offloading traversal scheduling
------------------------------ from general-purpose core
I I 1 BDFS-HATS gives further gains

by reducing memory accesses

Speedup over VO (%)

HATS reduces both on-chip and off-chip energy

20
VO VO-HATS — mms BDFS-HATS 1 [MP reduces static energy due
1.0 to faster execution time
=08
2
5 06 7 VO-HATS reduces core energy
'c—:u 04 due to lower instruction count
o
< 0.2
0.0 -1 BDFS-HATS reduces memory
energy due to better locality
On-chip Off-chip

(Core + Cache) (Memory)

See paper for more results

HATS on an on-chip reconfigurable fabric

Parallelism enhancements to maintain throughput at slower clock cycle

Sensitivity to on-chip location of HATS (L1, L2, LLC)

Adaptive-HATS

Avoids performance loss for graphs with no community structure

HATS versus other locality optimizations

21

Conclusion

Graph processing is bottlenecked by main memory accesses
BDFS exploits community structure to improve cache locality
HATS accelerates traversal scheduling to make BDFS practical

Thanks For Your Attention!
Questions Are Welcome!

22

