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The locality problem of graph processing

o lrregular structure of graphs causes seemingly random memory references

1 On-chip caches are too small to fit most real-world graphs

1 Software frameworks improve locality through offline preprocessing

o Preprocessing is expensive and often impractical
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Improving locality in an online fashion

o1 Traversal schedule decides order in which graph edges
are processed

1 Many real-world graphs have strong community structure

0 Traversals that follow community structure have good
locality

11 Performing this in software without preprocessing is not
practical due to scheduling overheads




Contributions

PageRank Delta on
-1 BDFS: Bounded Depth-First Scheduling UK web graph

Performs a series of bounded depth-first explorations
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1 HATS: Hardware Accelerated Traversal Scheduling
A simple unit specialized for traversal scheduling

Cheap and implementable in reconfigurable logic




Agenda

-1 Background

0 BDFS

0 HATS

0 Evaluation



Graph data structures

Compressed Sparse Row (CSR) Format

Neighbor
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Graph Offset
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Vertex
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Vertex-ordered (VO) schedule follows layout order

0 Simplifies scheduling and parallelism

0 Poor locality for vertex data accesses
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BDFS: Bounded Depth-First Scheduling

Vertex data accesses have high potential temporal locality
Following community structure helps harness this locality

BDFS performs a series of bounded depth-first explorations

Traversal starts at vertex with id O

Processes all edges of first community
before moving to second

Divide-and-conquer nature of BDFS
Small depth bounds capture most locality

Good locality at all cache levels



BDFS reduces total main memory accesses o
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BDFS in software does not improve performance

1 Scheduling overheads negate the
benefits of better locality

-1 Higher instruction count

1 Limited ILP and MLP

Interleaved execution of traversal
scheduling and edge processing

Unpredictable data-dependent branches
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HATS: Hardware Accelerated Traversal Scheduling

Main Memory
Shared L3

L2 L2

-1 Decouples traversal scheduling from edge processing logic

7 Small hardware unit near each core to perform traversal scheduling
1 General-purpose core runs algorithm-specific edge processing logic

1 HATS is decoupled from the core and runs ahead of it



HATS operation and design
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HATS costs

-1 Adds only one new instruction

Fetches edge from FIFO buffer to core registers

1 Very cheap and energy-efficient over a general-purpose core

RTL synthesis with a 65nm process and 1GHz target frequency

Area TDP Area
0.4% of core 0.2% of core 3200 LUTs
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HATS benefits

Reduces work for general-purpose core for VO
Enables sophisticated scheduling like BDFS

Performs accurate indirect prefetching of vertex data
Accelerates a wide range of algorithms

Requires changes to graph framework only, not algorithm code
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Evaluation methodology

18
Event-driven simulation using zsim 5 applications from Ligra framework
1 6-core processor PageRank (PR)
Haswell-like OOO cores PageRank Delta (PRD)
32 MB L3 cache Connected Components (CC)
4 memory controllers Radii Estimation (RE)

Maximal Independent Set (MIS)
IMP [Yu, MICRO’15]

Indirect Memory Prefetcher S large real-world graph inputs

Configured with graph data Millions of vertices

structure information for accurate Billions of edges
prefetching



HATS improves performance significantly 0

o1 IMP improves performance by
VO-HATS  mmm BDFS-HATS hiding latency

--------------------------------------- 7 VO-HATS outperforms IMP by

--------------------------------- offloading traversal scheduling
------------------------------ from general-purpose core
I I 1 BDFS-HATS gives further gains

by reducing memory accesses

Speedup over VO (%)




HATS reduces both on-chip and off-chip energy
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See paper for more results

HATS on an on-chip reconfigurable fabric

Parallelism enhancements to maintain throughput at slower clock cycle

Sensitivity to on-chip location of HATS (L1, L2, LLC)

Adaptive-HATS

Avoids performance loss for graphs with no community structure

HATS versus other locality optimizations
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Conclusion

Graph processing is bottlenecked by main memory accesses
BDFS exploits community structure to improve cache locality
HATS accelerates traversal scheduling to make BDFS practical

Thanks For Your Attention!
Questions Are Welcome!
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