
Appears in the Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018

Rethinking the Memory Hierarchy for Modern Languages

Po-An Tsai, Yee Ling Gan, Daniel Sanchez
Massachusetts Institute of Technology

{poantsai, elainegn, sanchez}@csail.mit.edu

Abstract—We present Hotpads, a new memory hierarchy de-
signed from the ground up for modern, memory-safe languages
like Java, Go, and Rust. Memory-safe languages hide the memory
layout from the programmer. This prevents memory corruption
bugs and enables automatic memory management.

Hotpads extends the same insight to the memory hierarchy: it
hides the memory layout from software and takes control over it,
dispensing with the conventional flat address space abstraction.
This avoids the need for associative caches. Instead, Hotpads
moves objects across a hierarchy of directly addressed memories.
It rewrites pointers to avoid most associative lookups, provides
hardware support for memory allocation, and unifies hierarchical
garbage collection and data placement. As a result, Hotpads
improves memory performance and efficiency substantially, and
unlocks many new optimizations.

Index Terms—Memory hierarchy, cache, scratchpad, memory-
safe languages, managed languages, garbage collection.

I. INTRODUCTION

Computer systems still cater to early programming languages

like C and Fortran. These languages expose a flat memory

address space to the programmer and allow memory-unsafe

operations, such as performing arbitrary pointer arithmetic and

accessing arbitrary memory locations. A flat address space was

a natural interface for the memories of the earliest computers,

but it is a poor interface for modern memory systems, which are

organized as deep hierarchies. To preserve the illusion of a flat

address space, these hierarchies rely on expensive translation

mechanisms, including associative caches and virtual memory.

Fortunately, languages have changed. All modern languages,

like Java and Go, are memory-safe: they do not expose raw

pointers or allow accessing arbitrary memory locations. Mem-

ory safety greatly improves programmability: it avoids memory

corruption and simplifies memory management. Memory safety

adds overheads in current systems, but these costs largely stem

from mismatched memory system and language semantics.

Prior work has sought to bridge the semantic gap between

memory-safe languages and architectures by accelerating

common operations, such as type checks or object-based

addressing [20, 96] and protection [32, 102] (Sec. II). But they

do so within a conventional memory hierarchy. By contrast,

in this work we redesign the memory hierarchy to cater to

memory-safe languages. This avoids many of the overheads of

conventional hierarchies and unlocks new optimizations.

The key insight we exploit is that memory-safe languages

hide the memory layout from the programmer. Programmers

never deal with raw memory addresses, but see pointers as

abstract data types (ADTs [54]) that may only be dereferenced

or compared. In software, hiding the memory layout enables

automatic memory management, i.e., garbage collection (GC).

We present Hotpads, a novel memory hierarchy that extends

this insight to hardware (Sec. III). Hotpads hides the memory

layout and takes control over it, dispensing with the flat

address space abstraction. The Hotpads ISA (Sec. IV) prevents

programs from reading or manipulating raw pointers, enabling

Hotpads hardware to rewrite them under the covers. This avoids

the need for associative caches.

Instead, Hotpads is a hardware-managed hierarchy of directly

addressed memories similar to scratchpads, which we call pads.

Each pad has two contiguous regions of allocated objects and

free space, and is managed using techniques similar to GC

(Sec. V). Specifically, Hotpads relies on four key features:

• Implicit, object-based data movement. All data movement

happens implicitly, in response to memory accesses. If the

core initiates an access to an object not currently in the L1 pad

(analogous to the L1 cache), the object is copied to the L1

pad, using some of its free space, and the access is performed.

• Pointer rewriting to avoid associative lookups. Objects

copied into the L1 pad have pointers to objects beyond

the L1 pad. When the program dereferences each of these

pointers, hardware automatically rewrites the pointer with

the object’s L1 location. This way, subsequent dereferences of

the same pointer do not incur an associative lookup. Pads still

require some associative lookups, e.g., for non-L1 pointers.

But whereas caches perform an associative lookup on every

access, pointer rewriting makes associative lookups rare.

• In-hierarchy object allocation. New objects are allocated

in the L1 pad’s free space (or, if they are large, in a higher-

level pad). New objects require no backing storage in main

memory so they can be accessed cheaply, without misses.

• Unified hierarchical garbage collection and evictions.

When a pad fills up, it triggers a process similar to GC

to free space. This process both detects dead objects and

reclaims their space, and evicts live (i.e., referenced) but non-

recently accessed objects to the next-level pad. This process,

which we call collection-eviction (CE), leverages both the

locality principle that underpins caches, and the generational

hypothesis (most objects die young) that underpins gener-

ational GCs [95]. CEs happen concurrently with program

execution and are hierarchical. While small pads incur more

frequent CEs, their small size makes each CE very cheap.

Hotpads manages pads entirely in hardware, but leaves man-

agement and garbage collection of main memory to software.

Hotpads supports arbitrarily large objects, which may not fit

in pads, by caching them in small chunks called subobjects.

Hotpads maintains coherence at object granularity using stan-

dard protocols. Finally, Hotpads includes a compatibility mode

to support memory-unsafe programs with minor slowdowns.

1

We evaluate Hotpads using detailed simulation and a heavily

modified research Java Virtual Machine (JVM) running Java

benchmarks (Sec. VI). Hotpads substantially outperforms cache

hierarchies for three key reasons (Sec. VII). First, operating in

variable-size objects instead of fixed-size cache lines uses on-

chip capacity more efficiently. Second, pointer rewriting avoids

most associative lookups, making L1 pads 2.3× more efficient

than L1 caches. Third, CEs dramatically reduce GC overheads,

by 8× on average. Overall, Hotpads improves performance by

34% and reduces memory hierarchy energy by 2.6×. Finally,

Hotpads slows down memory-unsafe programs by only 4%.

Beyond these gains, Hotpads opens up new and exciting

avenues to improve the memory hierarchy, including improved

security by avoiding cache side-channels, and new isolation,

resource management, and concurrency techniques (Sec. IX).

We leave these and other techniques to future work.

II. BACKGROUND ON MEMORY-SAFE LANGUAGES

It is the right time to redesign memory systems for memory-

safe (a.k.a. managed) languages. These languages rely on a

combination of type systems, static analysis, and runtime checks

to prevent programs from manipulating memory directly. They

prevent large classes of bugs, such as buffer overflows, and

enable garbage collection. Nearly all languages introduced

in the last 30 years are memory-safe, such as Java, Go, and

Rust. Although many applications and most operating systems

are still written in C/C++, several projects like the Singularity

OS [34] Verve [104], and Redox [75] feature an entire software

stack written in memory-safe languages. Therefore, Hotpads

targets memory-safe languages first, and includes a slower

compatibility mode for legacy applications (Sec. V-I).

Much prior work has focused on bridging the semantic

gap between memory-safe languages and architectures. Object-

oriented systems [19, 20, 62, 68, 96] reduce virtual call

overheads and accelerate object references. Capability-based

systems [21, 32, 48, 102] provide object-based memory

protection and isolation. Typed architectures [2, 16, 43, 44,

88] accelerate dynamic type checks. Whereas this prior work

focuses on core design and uses a standard cache hierarchy,

we focus on redesigning the memory hierarchy.

Garbage collection (GC), also known as automatic mem-

ory management, frees programmers from manually freeing

memory. Instead, the system automatically reclaims memory

occupied by dead (i.e., unreferenced) objects. There are two

main types of GC: tracing [57] and reference counting [18].

Though both styles have pros and cons [7, 56], tracing GC is

more general (e.g., it supports cyclic references among objects)

and it is more widely used. Hotpads leverages the principles

behind tracing GC to manage the memory hierarchy.

Tracing GC algorithms periodically scan the heap to make

space available. They start with a set of root pointers that are

outside of the managed heap (e.g., static, stack, or register

variables). Starting from the roots, tracing GC traverses heap

objects to find all live (i.e., reachable) ones. It then reclaims

the space taken by dead (i.e., unreachable) objects.

Tracing algorithms can be moving or non-moving [100].

Moving GCs move all live objects on each collection to leave

Roots

A
B

Young Heap Old Heap

Objects

Free space

Objects

Free space

C (dead)

(a) Before young heap GC.

Roots Young Heap Old Heap

Free space Objects

Free space

A
B

(b) After young heap GC.
Fig. 1: Generational GC example.

a contiguous free space region and avoid fragmentation. By

contrast, non-moving GCs leave live objects in-place and use

freelists or other data structures to track free space. Moving

GC is more common because it simplifies memory allocation.

Hotpads performs a process similar to moving GC to achieve

a compact layout with variable-sized objects.

Prior work has proposed many techniques to reduce GC

overheads [4, 6, 9, 12, 71]. We focus on two dimensions:

generational and concurrent GC.

Generational GC algorithms exploit the generational hypothe-

sis, the empirical observation that most objects die young [95].

They use separate heaps for objects of different ages. Fig. 1

shows an example with two heaps, young and old. New objects

are allocated in the small young heap. When the young heap

fills up, it is GC’d and its live objects are moved to the old

heap. When the old heap fills up, both heaps are GC’d.

Generational GCs improve performance because each GC

of the small young heap is cheap, and filtering objects that

die young greatly reduces the frequency of expensive full GCs.

Generational GCs also improve cache locality [7]. For these

reasons, most runtimes use generational GC [33, 60, 72, 90].

Generational GCs and cache hierarchies share many sim-

ilarities: both build on analogous empirical observations

(generational hypothesis vs. locality principle), adopt a multi-

level structure, and seek to make the common case fast. Hotpads

unifies generational GC and hierarchical data placement.

Concurrent GC algorithms reduce the long pauses that arise

in conventional or stop-the-world GC, where the program is

stopped while GC takes place. Long pauses have traditionally

hindered the adoption of tracing GC in environments where

real-time or low-latency operation is important. Concurrent GCs

reduce pauses by running most GC phases concurrently with the

program [3, 22, 51, 92]. However, they have higher overheads

to handle races between program and GC threads, and still

incur some pauses (e.g., to interrupt threads and produce their

root sets). For example, ZGC [51] reduces throughput by 15%

and requires pauses of a few milliseconds. Thus, concurrent

GC is used selectively, when long pauses are detrimental.

The collection-eviction process of Hotpads, which encom-

passes GC, is concurrent. It incurs minimal overheads and

requires negligible pause times (tens of cycles, Sec. VI-A).

Hardware techniques to accelerate GC date back to Lisp

machines [61]. Recent work includes HAMM [38], which

accelerates reference counting to reduce young heap GC

overheads. Cooperative cache scrubbing [82] extends the ISA

with scrubbing instructions to recycle dead space in caches

without incurring memory traffic. Finally, several concurrent

GC implementations exploit hardware transactional memory

to reduce overheads [3, 58, 76, 92].

2

This prior work reduces GC overheads in conventional cache

hierarchies. By contrast, Hotpads is a new memory hierarchy

that exploits the key principle behind memory-safe languages,

hiding the memory layout, to improve efficiency further.

III. HOTPADS OVERVIEW

Fig. 2 shows the general structure of Hotpads. Hotpads is a

hardware-managed hierarchy of directly addressed memories

similar to scratchpads, which we call pads. Unlike in software-

managed scratchpad hierarchies with explicit data movement,

in Hotpads all data movement happens implicitly, in response

to memory accesses. Fig. 2 shows a hierarchy with three levels

of pads, but Hotpads supports an arbitrary number of levels.

L1

Pad
Core

L2

Pad

L3

Pad

Main

Memory

Fig. 2: Hotpads is a hierarchical memory
system with multiple levels of pads.

Canonical
Tags

Data Array

Objects

Free space

M
e

ta
d

a
ta

(w
o

rd
/o

b
je

ct)

Fig. 3: Pad organi-
zation.

Pads: Fig. 3 shows the internal structure of each pad. Most

space is devoted to the data array, which is managed as

a circular buffer. The data array has a contiguous block of

allocated objects followed by a block of free space. The data

array uses simple bump pointer allocation: fetched or newly

allocated objects are placed at the end of the allocated region.

Fig. 3 also shows that pads have some metadata (e.g., to

record whether each word holds a pointer) and a canonical tags

array, which is a decoupled tag store like the V-way cache [74].

We will later see how these auxiliary structures are used.

Key features: As explained in Sec. I, Hotpads relies on four

novel features: (1) implicit, object-based data movement, (2)

pointer rewriting to avoid associative lookups, (3) in-hierarchy

object allocation, and (4) unified hierarchical GC and evictions.

Fig. 4 illustrates these features through a simple example

showing a single-core system with two levels of pads. Only

the data array of each pad is shown. 1 shows the initial

state of the system: the core’s register file holds a pointer to

object A in the L2 pad, and A points to B in main memory.

The L1 and L2 pads also hold other objects (shown in solid

orange) that are not relevant to this example.

Implicit data movement and pointer rewriting: 2 shows the

state of the system after the core issues an access to A. First,

A is copied into the L1 pad, taking some free space. Second,

the pointer in the register file is rewritten to point to this L1

copy. This way, subsequent dereferences of this pointer access

the L1 copy directly.

Pointer rewriting applies not only to registers, but to pad

data as well. 3 shows the state of the system after the core

dereferences A’s pointer to B. B is copied into the L1 pad, the

core is given this L1 address, and the L1 A’s pointer to B is

rewritten to point to B’s L1 copy. Further dereferences simply

access the L1 data array, avoiding any associative lookups.

Pointer rewriting avoids most but not all associative lookups.

For example, given the state in 3 , if some other object in

the L1 had a pointer to A’s L2 copy, the L1 must detect that a

L1 Pad L2 Pad Main Mem

A
Objects

B

RegFile

A

B

A

B

A

B

A

A
B

A
B
C

A

B (stale)
A
B
C
D

A

B (stale)

B

D

Free

space

Free

space

Initial

state
1

2

Core issues

access to A.

A is copied

into L1 pad.

Core derefs

A’s pointer to B.
B copied into L1

and A’s pointer
is rewritten.

Core allocates

new object C.

L1 pad is full.

Only B has been

used recently.

L1 collection-

eviction (CE)

collects dead C

and evicts

live A & D to L2.

3

4

5

6

Fig. 4: Example showing Hotpads’s key features.

copy of A is already in the L1, then rewrite that pointer. This

is the role of the canonical tags, which we explain later.

In-hierarchy object allocation: 4 shows the state of the

system after the core creates a new object C. C is allocated

directly in the L1 pad’s free space, and requires no backing

storage in main memory or other pads.

Unified hierarchical garbage collection and evictions: In 5
the L1 pad has filled up, so the pad starts a collection-eviction

(CE) to free L1 space. Similarly to GC, a CE walks the data

array to detect live vs. dead objects. In addition to GC, a CE

evicts live but non-recently accessed objects to the next-level

pad. In this example, C is dead (i.e., unreferenced) and a new

object D is referenced from B, and thus live. Note that B’s

L1 copy has been modified, so the main memory data is now

stale. Only B has been accessed recently in the L1.

6 shows the state after the CE. First, C has been collected.

Second, A and D have been evicted to the L2 pad. Since A
already had an L2 copy and was not modified, this is a silent

eviction and requires no writeback (pointer rewrites are not

modifications). By contrast, D is allocated new space in the L2

pad. Third, B has been kept in the L1 and moved to the start

of the array. As in moving GC, live objects are compacted into

a contiguous region to simplify free space management.

CEs happen concurrently with program execution and are

hierarchical, i.e., each pad can perform a CE independently

from larger, higher-level pads. In our example, the L1 pad

performs its CE independently from the L2 pad. To ensure this,

we enforce a key invariant: objects at a particular level may

only point to objects at the same or higher levels (Sec. V-B).

For example, an L2 object may point to objects in the L2 or

main memory, but not to L1 objects.

3

IV. HOTPADS ISA: HIDING THE MEMORY LAYOUT

Hotpads treats pointers as abstract data types [54] whose

contents may not be accessed, enabling the microarchitecture

to manipulate them. Hotpads introduces new instructions to

support three pointer operations: dereference, comparison, and

object allocation, summarized in Table I.

Addressing discipline: Hotpads uses a single addressing mode,

base+offset, where the base register is always an object pointer.

As shown in Table I, the offset can be an immediate (base+

displacement) or a register (base+index). The standard load

and store instructions can be used to access non-pointer data.

In Hotpads, the base register rb used in memory accesses

must be an object pointer, i.e., it must contain the object’s

starting address. Pointers to arbitrary locations within an object

are not allowed. This restriction is not unique to Hotpads:

several JVMs enforce it to facilitate pointer manipulations.

Pointer load and store: Hotpads provides load and store

variants to access pointers: ldptr and stptr (Table I). These

instructions have the same semantics as ld and st, but they

let the system know that the data accessed is a pointer.

Pointer dereference: Hotpads includes a dereference instruc-

tion to facilitate pointer rewriting: derefptr (Table I). Like

ldptr, derefptr loads the pointer at address disp(rb).

Unlike ldptr, derefptr denotes that the program immediately

intends to access the pointed-to object.

derefptr enables efficient pointer rewriting on L1 data. If

the pointed-to object is not in the L1 pad, the system brings it

in and rewrites the dereferenced pointer in the L1 (e.g., A’s

pointer to B in Fig. 4 3). If a pointer was first accessed

using ldptr and then dereferenced with ld, it would be hard

for the system to, at ld time, rewrite the pointer’s original

location that ldptr accessed. Conversely, ldptr is also needed

because programs sometimes need to compare pointers, and

bringing in their pointed-to objects would be wasteful.

Pointer comparison: seqptr rd, rp1, rp2 (set-if-equal-

pointers) sets register rd to 1 if source registers rp1 and rp2

point to the same object, and to 0 otherwise (Table I). This

instruction is needed because registers may point to different

copies of the same object, and thus have different bit patterns.

Object layout: The Hotpads ISA imposes some rules about

the layout of objects within the pads:

1) Objects must be word-aligned and be at least two words

long (our implementation uses 64-bit words).

2) The first word of the object contains an immutable type id,

set at object creation. This type id lets the program identify

the object’s type (e.g., it can be a vtable pointer). The top

16 bits of the type id must be 0, as Hotpads uses them to

store some per-object metadata.

The type id is opaque to Hotpads. Hotpads does not rely

on type identifiers to determine which words of an object are

pointers. Instead, it relies on ldptr, stptr, and derefptr

to identify them. Reading the first word of an object (i.e.,

ld rd, 0(rb)) returns its type id; writing the first word of

an object (i.e., st rd, 0(rb)) is illegal and causes exception.

Object allocation: Finally, Hotpads provides an instruction to

allocate a new object: alloc rp, rs1, rs2 allocates a new

TABLE I: HOTPADS ISA.

Instruction Format Operation

Data Load ld rd, disp(rb) rd <- Mem[EffAddr]
Data Store st rd, disp(rb) Mem[EffAddr] <- rd

Pointer Load ldptr rp, disp(rb) rp <- Mem[EffAddr]
Pointer Store stptr rp, disp(rb) Mem[EffAddr] <- rp

Pointer derefptr rp, disp(rb) rp <- Mem[EffAddr];
Dereference brings object in L1

Pointer Equality seqptr rd, rp1, rp2 rd <- (rp1==prp2)? 1:0

Allocation alloc rp, rs1, rs2 NewAddr <- Alloc(rs1);
(rs1 = size) Mem[NewAddr] <- rs2;

(rs2 = type id) rp <- NewAddr;

rd/rs denote registers that hold data; rp/rb hold a pointer. All memory
accesses use base+offset addressing. The base is always an object pointer. The
table shows the base+displacement format disp(rb) where EffAddr = rb
+ disp and disp is an immediate. Instructions also have base+index variants,
e.g., ld rd, (rb,rs), where EffAddr = rb + rs.

object with size (in words) given in rs1, type id given in rs2,

and writes the new pointer to rp.

Code addresses: For simplicity, Hotpads treats the code

segment as a single object and does not hide code addresses

(Sec. V-H). Indirect jumps use normal addresses.

Pointer integrity: Hotpads tracks enough metadata to guaran-

tee the integrity of pad pointers. A program cannot transform

non-pointer data into a pointer to a pad. But Hotpads does not

store any metadata in main memory, and relies on language-

level memory safety to guarantee the integrity of main memory

pointers. This means that compiler or JIT engine bugs may

cause programs to fetch the wrong data from main memory, but

they will never corrupt or illegally access pad state. These bugs

are avoidable with a small, automatically verified trusted code

base [104]. Alternatively, Hotpads could track main-memory

object metadata to prevent these bugs in hardware (Sec. V-I).

V. HOTPADS MICROARCHITECTURE

We now present the microarchitecture of Hotpads. We first

explain the operation of Hotpads under several simplifications:

we assume all objects are of limited size (e.g., up to 64 bytes);

we only consider data accesses, not instruction accesses; and

we consider a single-core system running a single process. We

will remove these limitations from Sec. V-F onwards.

A. Pointer format

Fig. 5 shows the format of Hotpads pointers. The lower

48 bits contain the object’s address, and the upper 16 bits

contain several pieces of metadata, including the object’s size

(in words) and two bits whose roles we will introduce later.

Embedding metadata in pointers simplifies several operations.

Size (14b) Address (48b)

49 47 04863 50

Canonical bit (Sec. V-B) CE epoch bit (Sec V-E)

Fig. 5: Hotpads pointer format.

All object addresses in Hotpads are word addresses. Hotpads

maps the data arrays of all pads and main memory to different

addresses. We use power-of-2-aligned mappings for simplicity.

For example, a 64 KB L1 pad, a 1 MB L2 pad, and a 2 GB

main memory would use mappings 64–128 KB, 1–2 MB, and 2–

4 GB. These mappings make it trivial to determine an address’s

level, and the per-level address is the full address’s lower bits.

Finally, an empty (null) pointer is the all-zeros string.

4

B. Canonical levels and invariants

Objects start their life in the L1 pad and move up the

hierarchy as they are evicted by successive CEs. We define

an object’s canonical level as the largest level it has reached

since it was created. For example, in Fig. 4 4 , C’s canonical

level is L1, A’s is L2, and B’s is main memory. This is the

case even though the L1 pad has copies of A and B.

An object’s canonical address is the object’s address at

its canonical level. A pointer’s canonical bit (Fig. 5) stores

whether the address it holds is canonical.

For simplicity, Hotpads enforces four key invariants:

Invariant 1: An object always exists at its canonical level.

An object may have copies in smaller, lower levels than its

canonical, but the object’s canonical level is its backing store.

In other words, in Hotpads the canonical level acts like main

memory does in a cache hierarchy—it is the object’s “final

resting place”. Unlike in cache hierarchies, any level can be

an object’s canonical. This level only grows over time.

Invariant 2: Pointers in the L1 pad can hold either L1 or

canonical addresses, while pointers in other pads and memory

always hold canonical addresses.

This invariant simplifies pointer rewriting (Sec. V-D). While

it limits rewriting to the L1, this is where it is most valuable.

Invariant 3: Objects at a particular level may only point to

objects at the same or higher levels.

Invariant 4: When an object dies, it may only be garbage-

collected at its canonical level.

These two invariants enable hierarchical CEs (Sec. V-E).

C. Pad organization

As we saw in Sec. III, each pad consists of a data array, a

canonical tags (c-tags) array, and some per-object and per-word

metadata (Fig. 3). We now describe each of these components.

Fig. 6 shows the format of objects stored in the data array,

detailing the format of the first word. Hotpads manages the first

word’s upper 16 bits, which contain rarely accessed metadata

for coherence and CEs. In addition, if this object is non-

canonical (i.e., a copy), the object’s canonical pointer is stored

directly above the object. This allows translating from a non-

canonical to a canonical pointer with a single data array access.

Coherence (13b) Type id (48b)

49 47 04863 51

CE mark state (Sec V-E)

Canonical pointer (if copy)

First object word

Additional object words

Data Array
50

Canonical bit

Fig. 6: In-pad object format.

The c-tags array is a conventional set-associative structure

that allows mapping the canonical address of a resident object

into its per-level address. Fig. 7 shows the format of each

c-tag entry. The c-tags array is similar to the V-Way cache’s

decoupled tag array [74], but it maps objects rather than cache

lines to data array addresses.

Canonical Address (48b) Pad addressValid
bit

Fig. 7: Canonical tag entry format.

Only non-canonical objects (i.e., copies) need a c-tag entry.

For example, the L2 pad needs to hold the canonical-to-L2

address translation for every object whose canonical level is

L3 or main memory, but not for ones with canonical level L2.

Finally, Fig. 8 details the per-word and per-object metadata.

Each word has an associated pointer bit that tracks whether the

word holds a pointer. Each object has six associated metadata

bits: valid and dirty bits, and recency bits used for evictions.

Per-object metadata

(every two words)
Valid

bit
Dirty

bit
Recency (4b)Pointer

bit
Per-word

metadata

Fig. 8: In-pad metadata format.

This metadata is not in the data array because it is used

on nearly every access. Instead, it is kept in separate, narrow

arrays. Because each object can be at least two words long, the

per-object metadata array has one entry for every two words

of the data array (this way it can be indexed directly). Overall,

this metadata takes 4 bits/word, a 6.25% overhead.

D. Steady-state operation

We first explain Hotpads’s operation in steady state, i.e.,

between executions of the CE process. Sec. V-E explains CEs.

D.1. Performing memory accesses

L1 pad accesses: A request from the core includes both base

(object pointer) and offset (word within the object). Fig. 9

shows the flow of accesses. If the pointer is L1 and canonical,

the access proceeds with no checks (by Invariant 1, the data

must be there). If the pointer is L1 and non-canonical (i.e., a

copy), the pad checks the object’s valid bit. If the valid bit

is set, the access is performed by directly indexing the data

array. If the valid bit is unset, the L1 pad reads the object’s

canonical pointer and restarts the access with it. Loads check

the valid bit in parallel with the access. Stores set the dirty bit.

Lookup C-tag

Access data array

Valid?

Read canonical

Hit?

Pointer

(from core)

Access

next levelN

Y

Y

N

L1 canonical

L1 non-canonical

Non-L1 (canonical)

Recency

Adjust

Dirty Pointer

Fig. 9: Steps in L1 pad access. Wider arrows denote more frequent
events.

If the pointer is not L1, which implies it must be canonical

(by Invariant 2), the L1 pad first checks the c-tags to see if it

has a copy of the object. On a c-tag hit, the L1 pad obtains the

copy’s L1 address and proceeds as above. On a c-tag miss, the

L1 pad requests the object from the L2 pad. When it receives

the object, it copies it into the L1 data array (using some free

space), adds a c-tag entry, and performs the access.

Accesses beyond the L1 pad: Pad misses are sent to the

next-level pad. These misses always use a canonical pointer

(Invariant 2), but there may be copies of the object at levels

before its canonical. Therefore, an access traverses all levels

until it finds a copy or reaches the object’s canonical level.

Each access proceeds as in the L1, except that, on a hit,

the entire object is copied to the L1. For example, in Fig. 4

2 → 3 , the core is dereferencing A’s pointer to B, which

is a main memory address. B’s access misses on L1’s c-tags,

then on L2’s c-tags, then is served from main memory.

5

Invalidations: The c-tags array may fill up or suffer from con-

flicts, so inserting a new canonical→level address translation

may require removing another translation. In this case, the pad

picks the least-recently accessed object copy in the set and

marks it as invalid. If the copy is dirty, it is written back to

the next level. If the copy is clean, it is simply dropped.

In a single-core system, invalidations only happen when

a c-tag array entry needs to be removed. Multicore systems

extend invalidations to support coherence (Sec. V-G).

Pointer rewrites: Pointer rewriting is performed whenever the

L1 pad is accessed with a non-L1 pointer. If the access came

from a conventional load or store instruction, then the object’s

L1 address is sent to the core so that the relevant register can be

rewritten. If the access came from a derefptr instruction, the

L1 object’s field that contains the non-L1 pointer is rewritten.

Pointer rewrites of objects in the L1 pad are not writes, as

they do not change the pointer’s semantics—it still points to the

same object. Rewrites do not set the object’s dirty bit and, in

multicores, are performed even if the pad has a read-only copy

of the object (Sec. V-G). Pointer stores do set the dirty bit.

Although rewriting only happens in the L1 pad, Hotpads

saves significant energy because workloads generally enjoy

high L1 hit rates, and associativity overheads are higher in L1

pads because each access fetches a smaller amount of data (a

single 64-bit word vs. an entire object in higher-level pads).

D.2. Performing other pointer operations

Pointer comparison: In general, seqptr may try to compare

(1) two non-canonical (L1) pointers, (2) two canonical pointers,

or (3) a canonical and a non-canonical (L1) pointer. Cases

(1) and (2) are simple equality checks, done within the core.

For case (3), the core first obtains the L1 pointer’s canonical

pointer from the L1 pad, then compares canonical pointers.

Object allocation: The alloc instruction allocates small

objects in the L1 pad, and large objects in higher levels. In

our implementation, an object of size S is allocated as follows:

S ≤512 B 512 B< S ≤4 KB 4 KB< S <128 KB S ≥128 KB
→֒ L1 pad →֒ L2 pad →֒ L3 pad →֒ Main mem

Large objects are accessed in subobjects (Sec. V-F). The

object’s type id is written to its first word, and subsequent

words are zeroed.

D.3. Maintaining CE metadata

Pointer bits let CEs work without software intervention. A

word’s pointer bit is set if it holds a pad pointer—we need

not identify main-memory pointers, as CEs do not manipulate

them. Pointer bits are set on ldptr, stptr, and derefptr,

and are propagated through the hierarchy. They are not stored

in main memory, so objects copied from main memory start

with pointer bits cleared. This is safe because, by Invariants 2

and 3, they may only be main memory pointers. Pointer bits

also ensure integrity for pad pointers (Sec. IV).

Recency bits let CEs select which objects to evict. We use

4-bit coarse-grain LRU timestamps as in [79]. On an access, a

current timestamp value is written to the object’s recency bits.

When 1/8th of the pad’s capacity has been tagged with the

current timestamp, the timestamp is increased. We find that

this works nearly as well as perfect LRU.

Prior work has proposed higher-performing policies than

LRU [23, 36, 42, 74, 93, 103], but adapting them to Hotpads

is not trivial because CEs perform evictions in bulk rather than

one line at a time. Adapting the insights behind these policies

to Hotpads is interesting future work.

E. The collection-eviction (CE) process

When a pad’s free space reaches a low threshold, a collection-

eviction (CE) is triggered to free up space. Similar to GCs, CEs

traverse the data array to find dead objects. In addition, a CE

evicts live but non-recently accessed objects to the next-level

pad. Each CE seeks to free about 75% of the pad’s capacity

(this threshold works consistently well in our experiments).

Invariants 3 and 4 (Sec. V-B) enable hierarchical CEs: a pad

can perform a CE without involving larger, higher-level pads.

However, pads need to involve lower-level pads in their own

CE (e.g., an L2 CE needs help from the L1). We first explain

how L1 pad CEs work, then discuss CEs on higher-level pads.

An engine within the pad performs the CE, which involves

similar steps to moving GC: finding roots, marking live objects,

compacting or evicting live objects, and updating pointers:

1. Find roots: Roots are the pointers outside the pad that point

to objects in the pad. The L1 pad’s roots are the L1 pointers

currently in the core’s registers, which the core provides.

Root-finding has negligible cost in Hotpads, a key difference

with software GC. Software GCs interrupt each thread and

unwind its stack to find roots. This process can take significant

time (0.1–1 ms [17]), and biases generational GC to use large

young heaps (typically as large as the LLC [7, 82]). But since

Hotpads provides fast allocation, we allocate stack frames in

the heap. Because the stack is part of the heap, CEs need not

to traverse it separately like software GCs do.

2. Mark live objects: We use a standard tricolor mark pass [22]

to find which objects are live and referenced from the L1.

We use two bits in each object’s first word (CE mark state

in Fig. 6) to mark objects as unscanned, to-scan, or scanned.

Canonical objects start unscanned, while roots and copies

(Invariant 4) are marked to-scan. The pad iteratively inspects

the array and scans each to-scan object: it marks it scanned and

promotes all the unscanned L1 objects it points to to to-scan.

The process finishes when there are no to-scan objects left:

scanned objects are live, and those still unscanned are dead.

To accelerate this phase, we use a small FIFO of to-scan

pointers (16 in our implementation). If the FIFO is not full,

objects promoted to to-scan are inserted to it. If the FIFO is

not empty, the next object to scan is dequeued from it. If the

FIFO is empty, the data array is traversed for to-scan objects.

3. Compact or evict live objects: The engine now scans the

array, processing every live object. The object is evicted if its

recency field shows it is not in the most-recently accessed 25%

of capacity. Otherwise, the object is moved to the free space.

This way, moved objects stay in one compact chunk. Moving

an object frees its space, so this process can be bootstrapped

with very little free capacity—enough to fit one object.

During this phase, the controller builds a rename table that,

given the old address of a live object, returns the object’s new

pointer. This table is kept in the data array. We later describe

6

how to build the rename table without space overheads.

Finally, evictions must preserve Invariant 3: an object may

only point to objects in the same or higher levels. Thus, if an

evicted object E has pointers to other L1 objects, they must be

rewritten. For each pointed-to object P, if P’s canonical level is

not L1, E’s pointer is rewritten to P’s canonical. However, if P’s

canonical level is L1, then P is made an L2 canonical object,

so that E can point to P from the L2, as shown in Fig. 10. P

is not evicted from the L1 unless it is not recently-used.

E

P

E (stale)

Free

space

L2 PadL1 Pad

(a) Before E’s eviction.

L2 Pad

E

P (stale)

P

Free

space

L1 Pad

(b) After E’s eviction.
Fig. 10: Example of an eviction that requires changing the canonical
level of a non-evicted object (P).

4. Update pointers: Finally, the CE engine traverses all the

pointers in the array, querying the rename table to update each

old pointer to its new location. The core’s pointers are also

updated. Then, the rename table is discarded.

Concurrent operation: We use a simple alternating-bit proto-

col [91] to let CEs and program execution happen concurrently.

At the start of a CE, the pad’s controller flips an epoch bit.

This epoch bit is embedded in all pointers (Fig. 5), allowing

to distinguish old vs. new pointers. Mark and pointer updates

only apply to old pointers. Finally, if the core accesses an old

pointer during the compaction phase, the L1 needs to check

that its object has not been moved yet. This check is cheap

because the data array is compacted in sequence. If the object

has moved, the rename table is accessed to find its new location.

This slow path has a negligible performance impact because it

happens only on one phase of the CE process.

Dual-ended compaction: Enabling large rename tables

without space overheads. To make lookups cheap, we use

a directly addressed rename table with one pointer per two

words of the data array (since objects are at least two words

long). This table takes 50% of the pad’s capacity. Because the

CE frees about 75% of capacity, we use this free space to hold

the rename table, then release it when pointer updates finish.

For this to be efficient, it is crucial that the rename table

grows incrementally, as we perform the compaction pass and

free space for it (if we had to allocate the full rename table in

advance, we could not use more than 50% of the pad’s capacity

for objects!). Fig. 11 shows how we accomplish this. The key

idea is to place the rename table slightly after the end of the

old region, then alternate processing objects from the start and

end of the old region. Compacting from the start frees space

for the new region, and compacting from the end frees space

for the rename table. The table is immediately above the new

region, and is freed after pointer updates.

CEs at higher-level pads follow the same four steps as the L1,

with two key differences. First, root-finding involves traversing

all lower-level pads in addition to reading the core’s pointers.

Each pad looks for pointers to the level performing the CE,

and sends only those as roots. Second, the final update pointers

phase also requires lower-level pads in addition to the core to

D (hot)

Before CE
A (hot)

B
C

E

F
G (hot)

S
p

a
ce

 f
o

r
re

n
a

m
e

 t
a

b
le

During
Compact

D (hot)
C

G (hot)

A (hot)

Rename Tbl

1

2

3

4

G (hot)

A (hot)

Rename Tbl

E

5

6
7

D (hot)

Rename
Table

Contents
8 E pointer (L2)

6 D pointer

10 (empty)

4 C pointer (L2)

12 F pointer (L2)

2 B pointer (L2)

14 G pointer

0 A pointer

0

2

4

6

8

10

12

14

After
Compact

In
te

rl
e

a
v

e
d

 a
d

d
re

ss
in

g

Evict

Evict

Evict

Evict

Keep

Keep

Keep

Fig. 11: Dual-ended compaction example. All objects are 2 words
long, except E, which takes 4 words.

scan and update their pointers. Each pad looks for old pointers

to the level performing the CE and requests updated pointers

from the level’s rename table.

F. Supporting arbitrarily large objects

We have so far assumed that objects have a bounded size,

but supporting arbitrarily large objects is useful, e.g., for large

arrays. We accomplish this by caching subobjects: accesses to

objects larger than a threshold SS fetch a small subobject of size

at most SS into the L1 (SS = 64 bytes in our implementation).

Subobjects use pads like caches. One can see each object as

a distinct address space, and subobjects as the way to cache it.

To ease code generation, loads and stores to large objects

implicitly fetch the right subobject. However, this lowers

efficiency because pointers to the full object are not rewritten.

Fig. 12 shows an example how Hotpads accesses subobjects.

A is a 224-byte (28-word) object at L2 word address 0xA00.

Fig. 12 shows the state of the system after the core issues a

load to A at a 20-word offset. This fetches a subobject A.2
with words 16–23 of A into the L1. The L1 c-tag entry maps

A.2’s canonical address 0xA10 to its L1 address, 0xD0.

L2 PadL1 Pad

Subobj. A.2

ld rd, 20(rp)

0xD0

L1 c-tag

0xA00

0xA1B

RegFile
rp points to object A

1Size: 28 Addr: 0xA00

0xA10 0xD01

Object A

(224 bytes,

28 words)
State after core executes

Fig. 12: Example access to an L2-canonical object using subobjects.

We observe that accessing the same subobject repeatedly

through the same register is a common pattern, and the

associative lookups result in higher energy and latency cost. To

avoid the associative lookup costs in this case, we introduce

shadow subobject registers.

Each register has an associated shadow subobject register.

The shadow subobject register stores a pointer to the subobject

that was last accessed using its associated register. If an access

falls within the same subobject that is stored in the shadow

subobject register, Hotpads performs a direct access to the L1

pad instead of an associative lookup. Otherwise, the shadow

subobject register is overwritten with a new subobject pointer.

Finally, objects≥128 KB cannot encode their size in the poin-

ter’s 14 size bits (Fig. 5). These objects are allocated directly

in main memory (Sec.V-D2), their pointers’ size bits are set

to 0, and only their subobjects are fetched into the pads.

G. Object-level coherence

Hotpads is orthogonal to coherence. We implement MESI co-

herence with four simple changes over the single-core design:

First, we make the first shared pad level inclusive. For

example, we use core-private L1 and L2 pads and a fully shared

7

L3 pad. We make the L3 pad inclusive, so all main-memory

objects fetched into L1s are also allocated in the L3.

Second, this shared pad level uses some per-object space

to hold the object’s sharer set. We simulate systems of up to

4 cores, so a 4-bit sharer bit-vector suffices. This bit-vector

fits in the unused bits of the first word of each object (Fig. 6).

Systems with more cores could use extra words above each

object to store larger bit-vectors. We leave this to future work.

Third, we repurpose the valid and dirty bits to encode the

four coherence states (Modified, Exclusive, Shared, Invalid).

Accesses manipulate these bits as in conventional MESI and

trigger the same actions. For example, a store to an object in S

triggers an upgrade request to the shared pad, which invalidates

copies in other pads before granting exclusive permission.

Fourth, the private, intermediate levels (the L2 pad in our

case) store whether lower levels may have the object, so that

they can filter invalidations. For example, when the L1 evicts an

object, the L2 marks it as not present in the L1. If refetched, it

is marked as present. This acts as a one-entry sharer bit-vector.

A key advantage of this design is that it avoids false sharing

as long as contended data is in a separate object. For example,

two cores may contend on a small object, and only this

contended object is transferred on coherence actions.

Fig. 13 shows such an example on a two-core system with

private L1 pads and a shared L2 pad. Initially, core 0’s L1 has

a copy of B in E state (1). Core 1 then issues a store to

B (2). This invalidates B’s copy in core 0’s L1. Note A’s

pointer to B’s now-invalid L1 copy is not updated. Finally, core

0 traverses A’s pointer to B (3), finds B’s copy is invalid,

reads its canonical address above (Fig. 6), and fetches it to the

L1 (using the same space). This fetch downgrades core 1 L1’s

B copy to S and causes a dirty writeback to the shared pad.

Both cores’ L1s end up with read-only shared copies of B.

Shared PadL1 Pad 0

L1 Pad 1

A
B (in E) B (clean)

Shared PadL1 Pad 0

L1 Pad 1

A
B (in I) B (dirty)

B’ in M

Shared PadL1 Pad 0

L1 Pad 1

A
B’ in S B’ dirty

B’ in S

Initial state Core 1: st rd 8(B) Core 0: ld rd 16(B)1 2 3

Fig. 13: Example of object-level coherence in Hotpads.

Coherence requires some changes to the invalidation ma-

chinery and object format because now canonical objects may

need to be invalidated. For example, suppose B in Fig. 13 1
pointed to a newly created, L1 canonical object C. To preserve

Invariant 3 (an object may only point to objects in the same or

higher levels), when B is invalidated C must be made an L2

canonical object. Hotpads does so following the same procedure

as in Fig. 10. For this reason, accesses to canonical objects

must do a valid check, and canonical objects also include a

canonical pointer above as in Fig. 6. This pointer is used to

find the new canonical address if the object is invalidated.

This design handles subobjects in the same way. For large

objects, coherence is maintained at subobject granularity. The

shared pad uses extra bits (4 bits per subobject) to track

subobject sharers of large canonical objects.

H. Instruction pads vs. instruction caches

We have so far ignored instruction fetches. In principle, we

could use Hotpads to improve instruction fetch efficiency. For

example, if each basic block was its own object, branches could

be rewritten to use L1 addresses, making the L1 instruction

pad work like a trace cache [78] without associative lookups.

In practice, this approach would require drastic ISA and JIT

engine changes, so we leave it to future work. Instead, we

treat the code region as a single large object, and fetch it in

subobjects. Each core has a conventional L1 instruction cache

that accesses subobjects from the L2 pad.

I. Crosscutting issues

Banked pads: In multicores, shared pads should be banked to

achieve high throughput. We stripe the L3 pad’s address space

across banks, then manage each bank as a separate pad. Each

bank holds full objects—they are not split across banks.

To keep load balance, each L2 pad evicts L2-canonical ob-

jects across L3 banks in a round-robin fashion. We empirically

observe that this suffices to keep bank capacity and bandwidth

balanced. For objects whose canonical level is the L3 or main

memory, their address directly determines their L3 bank.

Finally, all L3 pad banks perform CEs together, as each

bank may hold objects with pointers to other banks.

Interfacing with main memory: In our implementation, each

L3 bank caches and evicts to a separate region of main memory.

Each bank thus holds its own main-memory bump pointer.

Since DDR3/4 impose a minimum burst length of 64 bytes,

small objects suffer from overfetching. We add a small cache to

the memory controller (8 KB in our implementation) to retain

overfetched data. Thanks to spatial locality, a small cache

avoids a large fraction of overfetch overheads.

In our implementation, we garbage-collect main memory

in software, using the same stop-the-world implementation as

our baseline JVM. We simply flush the pads and treat main

memory as a single large object, accessed in subobjects by the

GC thread. Concurrent main-memory GC is also possible, but

we leave it to future work. Finally, Hotpads could be generalized

to allow managing main memory with other techniques, like

reference-counting GC. We also leave this to future work.

Supporting legacy code: To ease adoption, Hotpads supports

memory-unsafe programs by treating all their memory as a

single large object. All addressing modes are supported, and

hardware treats addresses as offsets to the object. In this mode,

Hotpads is somewhat slower than caches due to serial c-tag

lookups (there is no pointer rewriting) and bulk evictions.

Virtual memory (VM) and multiple processes: We only

evaluate single-process setups and leave a detailed VM study

to future work. However, Hotpads should greatly reduce VM

overheads. At the extreme, OSes like Singularity [34] and

Verve [104] eliminate the need for VM and rely on verified

type and memory safety for process isolation. With a more

conventional OS, Hotpads could support partitioning each

pad’s capacity into process-private regions, and perform either

demand paging or segmentation of main memory only, with

address translation on L3 pad misses.

8

TABLE II: CONFIGURATION OF THE SIMULATED 4-CORE SYSTEM.

Cores

4 cores, x86-64 ISA, 3.6 GHz, Westmere-like OOO [81]:
16B-wide ifetch; 2-level bpred with 2048×10-bit BHSRs +
4096×2-bit PHT, 4-wide issue, 36-entry IQ, 128-entry ROB,
32-entry LQ, 32-entry SQ

C
a
ch

es

L1 64 KB, 8-way set-associative, split D/I caches, 64 B lines

L2 512 KB private per-core, 8-way set-associative

L3 4 banks, 2 MB/bank, 16-way set-associative, LRU replacement

H
o
tp

a
d

s L1D 64 KB data array, 1K ctag entries (+4KB metadata)

L1I 64 KB cache, 8-way set-associative, 128 B lines

L2 512 KB data array, 8K ctag entries (+32KB metadata)

L3 4×2 MB data array, 4×32K ctag entries (+4×128KB metadata)

Main mem 2 DDR3-1600 channels, 20 nJ per 64B access [59]

VI. EXPERIMENTAL METHODOLOGY

We prototype Hotpads using MaxSim [77], a simulation

platform that combines ZSim [81], a Pin-based [55] simulator,

and Maxine [101], a 64-bit metacircular research JVM.

A. Hardware

We simulate a 4-core processor with a three-level cache or

pad hierarchy, using parameters given in Table II.

Core modifications: We use out-of-order cores modeled and

validated after Westmere [81]. We encode the Hotpads ISA

using x86 opcodes that the JVM does not emit.

We believe that a Hotpads ISA designed from the ground

up should have separate architectural registers for data and

pointers (similar to the index registers of early computers). This

separation would enable multiple optimizations, e.g., placing

the pointer register file close to the L1 instead of early in the

pipeline. However, x86 has general-purpose registers, so for

ease of prototyping we allow any register to hold pointers.

Each physical register includes a pointer bit with the same

semantics as those in the pads: ldptr and derefptr set their

destination register’s pointer bit, and other instructions reset

their destination register’s pointer bit. An exception is triggered

if a non-pointer instruction attempts to use a register that holds

a pointer as a source operand (and vice versa).

To perform CE root-finding, the core flushes and quiesces

the pipeline, streams out its pointer registers to the pad starting

the CE, and resumes execution. This takes tens of cycles.

Pointer rewriting is performed lazily (at commit time), by

updating the physical register directly. Like in pads, pointer

rewrites are not treated like writes: an inflight instruction does

not list its pointer register as a destination, and the issue logic

can dispatch multiple instructions that use the same pointer

register. This may cause the core to issue a few back-to-back

accesses with a canonical address before the first of such loads

rewrites the pointer. This does not impact correctness.

Speculative execution: The L1 pad fetches and allocates

objects speculatively, before loads and alloc instructions

commit. When mispeculation is detected, the L1 pad simply

rolls back its bump pointer, freeing mis-allocated objects. Like

pointers, L1 c-tags are updated lazily, at commit time.

Cache scrubbing: Finally, we implement cooperative cache

scrubbing [82], which adds instructions to zero and scrub (i.e.,

undirty) cache lines and uses them in the JVM to reduce

memory traffic due to object allocation and recycling.

TABLE III: JAVA WORKLOADS AND INPUTS USED.

Suite Benchmark and input

DaCapo batik, fop, h2, jython, pmd, luindex, lusearch,

MR-9.12 lusearch-fix, sunflow, xalan (all use default inputs)

SpecJBB 1 warehouse per thread, 50K transactions

JgraphT pagerank, coloring with amazon-2008 graph

TABLE IV: LATENCY, ENERGY, AND AREA OF CACHES AND PADS.

Type
Latency (cycles) Energy (pJ) Area Leakage

Direct Hit Miss Direct Hit Miss (mm2) (mW)

L1
Cache – 2 1 – 74 250 0.26 32

Pad 2 3 1 16 27 194 0.28 32

L2
Cache – 9 2 – 371 402 1.53 77

Pad 7 9 2 348 378 30 1.55 81

L3
Cache – 14 5 – 742 795 21.46 791

Pad 9 14 5 655 771 828 21.88 793

We model 8-byte L1 accesses and 64-byte objects for pad misses and fills.

B. Software

JVM: Our cache-based systems use the Maxine JVM with the

C1X JIT compiler. For our Hotpads experiments, we modify

the JIT compiler to follow the Hotpads ISA. We fast-forward

JVM initialization and warm up the JIT compiler like prior

work [8] before starting simulation.

Our cache-based systems use a tuned, stop-the-world gener-

ational GC. We set the young heap size to 16 MB, twice the

LLC size, which provides the best average performance across

all benchmarks [24] (this matches prior work [7, 82]). The old

heap is tuned per application: for each workload, we first find

the smallest heap size that does not crash, and use 2× that

size. This is standard methodology [9, 82].

Hotpads performs concurrent CEs in hardware, and non-

generational, stop-the-world GC in software when the main-

memory heap fills up. Hotpads uses the same heap sizes as

the cache-based systems. Comparing stop-the-world young

GCs in software vs. concurrent CEs in Hotpads is fair, because

concurrent GCs have higher overheads (Sec. II) and we compare

throughput and efficiency, not pause times.

Workloads: We study 13 Java workloads: 10 from the Da-

Capo [8] suite, SPECjbb2005 [87], and the PageRank and

Coloring graph processing workloads from JgraphT [67], a

popular Java graph library. Table III describes their input sets.

VII. EVALUATION

A. Latency, energy, and area of caches vs. pads

Table IV reports the latency, dynamic energy, leakage, and

area for both caches and pads. We use CACTI 6.5 [64] to

derive these figures. We extend CACTI to model the pads in

detail. We optimize the L1s for delay, using parallel tag and data

accesses for L1 caches. L2s and L3s are optimized to minimize

energy-delay-area product. Their SRAM cells use low-leakage

transistors, and L2 and L3 caches perform serial tag and data

accesses. This is a commonly used methodology [46, 79, 106],

and cache figures agree with prior work [31, 41, 46].

Table IV shows that pads are slightly larger than caches

(2% overall area overhead), and have slightly higher leakage,

owing to their extra state. However, direct accesses to pads, i.e.,

those that do not check the c-tags, are faster and substantially

9

0.0

0.2

0.4

0.6

0.8

1.0

E
x
e
c
u
ti
o
n
 t
im

e
 b

re
a
k
d
o
w

n
 n

o
rm

a
liz

e
d
 t
o
 b

a
s
e
lin

e

B S H P B S H P B S H P B S H P B S H P B S H P B S H P B S H P B S H P

lusearch xalan lusearch-fix fop specjbb pmd pagerank coloring Average

B:Baseline S:Scrubbing H:Hotpads P:Perfect Mem

App (Non-GC) Young GC Full GC

(a) Execution time.

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

n
e
rg

y

B S H B S H B S H B S H B S H B S H B S H B S H B S H

lusearch xalan lusearch-fix fop specjbb pmd pagerank coloring Average

App (Non-GC) L1I/D L2 L3 Mem GC

(b) Dynamic energy in the memory hierarchy.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
M

A
T

 (
c
y
c
le

s
)

B S H B S H B S H B S H B S H B S H B S H B S H B S H

lusearch xalan lusearch-fix fop specjbb pmd pagerank coloring Average

App (Non-GC) L1I/D L2 L3 Mem

(c) Average memory access time (AMAT).

Fig. 14: Simulation results for single-threaded workloads.

more efficient. This difference is largest in the L1: a direct L1

pad access consumes 16 pJ, 4.3× less than an L1 cache hit.

As we will see, direct accesses are the common case in the

L1. Table IV shows smaller differences for higher levels, but

Table IV assumes 64-byte objects. In practice, L2 and L3 pads

transfer fewer words than caches, which improves efficiency.

B. Hotpads outperforms traditional hierarchies

We first analyze single-threaded workloads. Due to space

constraints, we show results for 8 representative apps out of

the 13 benchmarks. All averages include all 13 apps. We first

discuss general trends, then differences across apps.

Performance: Fig. 14a compares the end-to-end runtime of

different schemes, and includes the contributions of application

(i.e., non-GC) work and GC overheads (lower is better). In

addition to Baseline, Scrubbing, and Hotpads we also evaluate

a Perfect memory system, where all memory accesses take one

cycle and no GCs are ever triggered. This unimplementable

memory system serves as an upper bound.

Overall, Hotpads outperforms the baseline by 34% on

average and by up to 86% (on lusearch). These gains stem

from both reducing GC overheads, which take 11% of time

on average on the baseline vs. 1.5% on Hotpads, and reducing

application runtime by 21% due to better memory performance.

By contrast, Scrubbing outperforms the baseline by only

17%. Scrubbing reduces application runtime because it (i)

allocates new objects directly in caches instead of fetching

their unused space from main memory, and (ii) avoids writing

back the cache lines of dead objects. However, Scrubbing does

not accelerate GC, so Hotpads outperforms Scrubbing by 15%.

Focusing on GC overheads, most time is taken by young GCs,

as full GCs happen rarely. Hotpads’s CEs eliminate young-

GC overheads, reducing overall GC cost by 8×. Although

young-GC overheads are larger than full-GC overheads, our

software schemes use the best-performing young heap size,

16 MB (about the L3 size). Larger young heaps increase young

GC costs due to higher main memory traffic, and smaller young

heaps make full GCs more frequent and expensive.

Finally, the perfect memory system improves performance

by 57% over the baseline. Hotpads thus bridges 61% of the

performance gap between the baseline and a perfect memory

system, whereas Scrubbing bridges 30% of the gap.

Memory hierarchy energy: Fig. 14b shows the breakdown

of dynamic energy in the memory hierarchy.

Hotpads reduces the memory hierarchy’s dynamic energy

by 2.6× over the baseline, due to three major factors. First, L1

(instruction and data) dynamic energy is 2.3× smaller because

L1 data pads receive mostly direct accesses (Sec. VII-E),

making them much more efficient than L1 data caches. Second,

Hotpads reduces main memory energy by 4.1×. Third, Hotpads

CEs take 2.9× less energy than software GCs.

By contrast, Scrubbing reduces dynamic energy by 22% over

the baseline, chiefly by reducing main memory traffic. Hotpads

consumes 2.1× less energy than Scrubbing.

Memory hierarchy latency: Fig. 14c shows the breakdown

of average memory access time (AMAT) by hierarchy level

for application work, i.e., excluding GC.

Fig. 14c shows that Hotpads’s L1 pad efficiency comes at a

slight cost in AMAT: L1 latency is 6% higher due to the longer

latency of L1 accesses that require a c-tag lookup (which take

an extra cycle over caches, see Table IV). Thanks to pointer

rewriting, most L1 pad accesses do not incur this penalty. As

a result, Hotpads’s AMAT is 4% lower than the baseline’s and

is only 7% higher than Scrubbing’s AMAT.

Differences across apps: Fig. 14 sorts apps by the mean

lifetime of their objects. Hotpads’s benefits vary across them.

The first three apps (lusearch, xalan, lusearch-fix)

allocate many short-lived objects that fit in on-chip pads.

Hotpads collects them before they reach main memory, and thus

nearly eliminates main memory traffic and enjoys minimal GC

energy. By contrast, the baseline and Scrubbing still incur main

memory traffic because contention from code and non-heap

data evict part of the young heap to main memory.

The next three apps (fop, specjbb, pmd) have a mix of

short- and long-lived objects. Hotpads’s CEs evict long-lived

objects to main memory, incurring some main memory traffic,

although much less traffic than the baseline and Scrubbing, as

short-lived objects are collected on-chip.

Finally, the last two apps (pagerank, coloring) have large,

long-lived data structures that reside in main memory. Hotpads’s

benefits for them mostly come from reducing GC overheads,

but main memory traffic is only slightly lower than the cache-

based schemes.

C. Cache hierarchy enhancements vs. Hotpads

Fig. 15 shows results for cache hierarchies enhanced with

state-of-the-art techniques: using DRRIP [36] in the LLC

10

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
liz

e
d

 e
x
e

c
u

ti
o

n
 t

im
e

B B
+E

S S
+E

H B B
+E

S S
+E

H B B
+E

S S
+E

H B B
+E

S S
+E

H

lusearch specjbb coloring Average

App Y. GC F. GC

(a) Execution time.

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 e

n
e

rg
y

B B
+E

S S
+E

H B B
+E

S S
+E

H B B
+E

S S
+E

H B B
+E

S S
+E

H

lusearch specjbb coloring Average

L1I/D L2 L3 Mem GC

(b) Energy breakdowns.

Fig. 15: Simulation results for baselines w/ DRRIP & prefetchers.

and stream prefetchers modeled after Nehalem’s between the

L1s and L2 (B+E for enhanced baseline; S+E for enhanced

Scrubbing). These features improve performance by 8% over

the baseline and 5% over Scrubbing, but Hotpads still outper-

forms them by 23% and 12%. Moreover, prefetchers degrade

memory energy over Scrubbing due to mispredicted prefetches,

increasing Hotpads’s advantage.

We observe that the enhanced cache hierarchies help GCs and

bump-pointer object allocation, which have regular, scanning

access patterns. However, they barely help application accesses

to objects, which are irregular. Because Scrubbing already

accelerates allocation, these enhancements do not reduce

application runtime over Scrubbing, and improve GCs only.

These results show that Hotpads’s features are more effective

than conventional cache optimizations. Moreover, Hotpads

could adapt similar optimizations e.g., by prefetching related

objects or consecutive subobjects (Sec. IX).

D. Hotpads reduces data movement across the hierarchy

Fig. 16 shows the read and write traffic in bytes for each

level, averaged across all apps and normalized to the baseline’s.

L1 reads and writes are due to loads and stores; L2+ reads are

due to object or line fetches, and writes are due to evictions of

dirty data from lower levels. Hotpads saves significant traffic

beyond the L1, up to 6.6× in main memory, while scrubbing

only saves 66%. These savings stem from two Hotpads features.

First, Hotpads moves objects rather than cache lines. Smaller

objects improve pad utilization, leading to fewer misses, and

reduce the amount of data transferred per miss. Second, CEs

collect dead objects quickly, which reduces write traffic.

Object lifetime analysis: Fig. 17 shows the number of

canonical object bytes that are allocated or evicted into each

level (In bar), and the number of object bytes that are evicted

out of or collected at each level (Out bar). Most of the data is

allocated and collected in the L1 pad. Therefore, Hotpads only

needs to evict a small portion of allocated bytes to larger levels,

and only 10% reaches main memory. This explains Fig. 16’s

drastic reduction in write traffic beyond the L1.

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 R

/W
 b

y
te

s

B S H B S H B S H B S H

L1I/D L2 L3 Mem

App R App W GC R GC W

Fig. 16: Breakdown of bytes read
and written per level.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
b

je
c
ts

 b
y
te

s
 n

o
rm

a
liz

e
d

to
 t

o
ta

l
a

llo
c
a

te
d

 b
y
te

s

In Out In Out In Out In Out

L1I/D L2 L3 Mem

Allocated Evicted Collected

Fig. 17: Allocated, evicted, and
collected bytes per pad level.

0.0

0.2

0.4

0.6

0.8

1.0

B
re

a
k
d
o
w

n
 o

f
a
c
c
e
s
s
e
s

to
 e

a
c
h
 p

a
d
 l
e
v
e
l

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

lusearch xalan lusearch-fix fop specjbb pmd pagerank coloring

100%
3.3%

0.1%
100%

2.7%
0.5%

100%
3.2%

0.1%
100%

2.1%
0.4%

100%
1.6%

0.6%
100%

3.3%
0.4%

100%
1.2%

0.8%
100%

0.8%
0.7%

Direct Access Canonical Tag Hit Canonical Tag Miss

Fig. 18: Breakdown of access types across pad levels.

Data array utilization: Hotpads uses on-chip capacity more

efficiently than caches. We define utilization as the ratio

between the number of accessed words and the number of

total words brought or allocated in the cache or pad. In the L1,

Hotpads achieves 35% utilization across all benchmarks, while

the baseline and Scrubbing achieve 29% and 33% utilization.

L2s and L3s show similar differences.

E. Pointer rewriting avoids most associative lookups

Fig. 18 shows the fraction of direct accesses, c-tag hits, and

c-tag misses for all Hotpads levels. The number above each bar

is the fraction of total accesses that reach this level (L1=100%,

as all accesses start at the L1).

Pointer rewriting is highly effective, turning 80% of the L1

pad accesses into direct accesses. This explains why L1 pads

consume far less energy than L1 caches (Fig. 14b), and why

they only incur a small AMAT penalty (Fig. 14c).

Pointer rewriting only works at the L1, so larger pads have a

lower fraction of direct accesses (only objects whose canonical

level is that pad see direct accesses). However, because the L1

filters most accesses, the fraction of L2 and L3 direct accesses

has a small impact on overall energy consumption.

F. CEs are fast and infrequent

Table V shows the duration and frequency of CEs on all

pads, averaged across all apps. CEs are short and are active for

a small fraction of cycles at all levels. While smaller pads have

more frequent CEs, each CE is also very cheap (e.g., L1 CEs

are about 1000× more frequent and cheaper than L3 CEs).

Fig. 19 shows distributions (CDFs) of L1 pad CE length

and interval between consecutive CEs for three representative

apps. Two main factors determine the length of each CE. First,

apps with more live pad capacity have longer CEs, as evictions

dominate CE time. For example, lusearch-fix has short

L1 CEs (<5Kcycles) because a lot of its data dies in the L1

TABLE V: CE DURATION AND FREQUENCY ACROSS PAD LEVELS.

Pad level L1 L2 L3

Avg. CE length (cycles) 5.1K 251K 5.7M

Avg. interval between CEs (cycles) 128K 3.9M 237M

Fraction of time running CEs 3.99% 6.29% 2.41%

0 5000 10000 15000
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
L
1
 C

E
 l
e
n
g
th

specjbb

lusch-fix

pagerank

(a) CE length (cycles).

0 100000 200000 300000
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
L
1
 C

E
 i
n
te

rv
a
ls

specjbb

lusch-fix

pagerank

(b) Interval between CEs (cycles).

Fig. 19: CDFs of lengths and intervals for L1 CEs.

11

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

B S H B S H B S H B S H B S H

pmd lusch-fix jbb xalan Avg

App Y. GC F. GC

(a) Execution time.

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 e

n
e

rg
y

B S H B S H B S H B S H B S H

pmd lusch-fix jbb xalan Avg

L1I/D L2 L3 Mem GC

(b) Energy breakdowns.

Fig. 20: Simulation results for multithreaded workloads.

pad, while the other two apps have longer CEs. Second, the

pad gives priority to demand accesses over CE accesses, so

CEs take longer on apps with more frequent pad accesses.

We also observe that the interval between CEs depends on

the allocation rate. For example, lusearch-fix has shorter

inter-CE intervals (<100Kcycles) than the other apps. Finally,

these CDFs show that, although there is variability among

CEs, even in the worst case (longest CE and shortest inter-CE

interval), CEs are only active for a small fraction of the time.

G. Hotpads performs well on multithreaded workloads

Fig. 20 shows the runtime and energy breakdowns for

multithreaded workloads. The key difference is that GC

overheads are larger because Maxine’s GC is not parallel.

This is a hard-to-address limitation of Maxine. We expect

that a parallel GC would achieve similar GC overheads as

the single-thread results. Due to serial young GCs, Hotpads

improves performance further (by 68%). Hotpads reduces non-

GC runtime similarly to single-thread results, and also achieves

a similar energy reduction over the baseline (2.7×).

H. Case study: Hotpads benefits on compiled code

We have so far focused on Java workloads, where JIT

overheads and JITted code quality limit performance compared

to compiled applications (e.g., those written in C/C++, Go, or

Rust). Nonetheless, compiled programs can also benefit from

Hotpads as long as they use the Hotpads ISA.

To demonstrate this, we study GCBench [11], a C benchmark

for garbage collection. GCBench creates and traverses binary

trees of different sizes. We compare three variants of GCBench:

• Manual allocates objects (trees and tree nodes) using malloc,

and frees each object manually when it goes out of scope.

This is the standard C implementation. We report results

under the standard glibc malloc and Google’s tcmalloc [27].

• Automatic uses garbage collection to avoid freeing objects

explicitly. We report results under the Boehm GC, a non-

moving GC for C/C++ [10], and Hotpads.

• Custom uses a fully customized memory management

strategy: it allocates an arena [30] for each tree. Tree nodes

are allocated compactly in the arena using very simple bump-

pointer allocation. When the tree goes out of scope, the

arena is deallocated, freeing all tree nodes in bulk. This

is currently the fastest implementation of GCBench in the

computer language benchmarks game [28].

Fig. 21 shows simulation results, normalized to glibc’s

malloc. TCMalloc improves over the default in all metrics.

TCMalloc’s allocation routines are faster, reducing execution

time and instructions. TCMalloc also stores small object more

compactly, reducing memory energy and footprint.

0.0

0.2

0.4

0.6

0.8

1.0

E
x
e
c
u
ti
o
n
 t
im

e

m
a
llo

c
tc

m
a
llo

c
B

o
e
h
m

H
o
tp

a
d
s

C
u
st

o
m

0.0

0.2

0.4

0.6

0.8

1.0

In
s
tr

u
c
ti
o
n
s

m
a
llo

c
tc

m
a
llo

c
B

o
e
h
m

H
o
tp

a
d
s

C
u
st

o
m

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

n
e
rg

y

m
a
llo

c
tc

m
a
llo

c
B

o
e
h
m

H
o
tp

a
d
s

C
u
st

o
m

1.5x

0.0

0.2

0.4

0.6

0.8

1.0

M
e
m

o
ry

 f
o
o
tp

ri
n
t

m
a
llo

c
tc

m
a
llo

c
B

o
e
h
m

H
o
tp

a
d
s

C
u
st

o
m

3.1x

Fig. 21: Simulation results for GCbench.

Boehm’s GC provides automatic memory management at

the cost of memory energy (1.5× worse than the baseline) and

footprint (3.1× worse). It is also slightly slower than TCMalloc.

Custom achieves the best performance due to its specialized

allocation strategy. It reduces execution time and instructions

by 4.3×, memory energy by 3.5×, and footprint by 67%.

Finally, Hotpads retains the simplicity of GC and delivers

performance close to Custom. Hotpads reduces execution

time by 3.6×. It achieves the lowest memory energy, a 4.2×

reduction. And its memory footprint is only 5% worse than

the baseline and much lower than Boehm’s GC.

This result shows that Hotpads can also substantially benefit

compiled applications. Compiled languages are moving away

from explicit memory management. For example, modern C++

advocates using smart pointers [89], and Go uses tracing GC.

Workloads in these languages could be compiled to use Hotpads

automatically. We leave this to future work.

I. Legacy mode incurs small performance overheads

Finally, Hotpads’s legacy mode incurs modest overheads

on programs that use conventional loads and stores. We

run unmodified SPEC CPU2006 applications in legacy mode

(Sec. V-I). Hotpads is 4% slower than a cache hierarchy on

average (up to 14% on xalancbmk). This slowdown stems from

two factors. First, in this mode Hotpads caches subobjects from

a single main-memory object and does not rewrite pointers.

This causes serial tag-data lookups that hurt access latency.

Second, Hotpads performs bulk evictions. This keeps the data

array partly unused, whereas caches stay nearly full with lines.

VIII. ADDITIONAL RELATED WORK

Though we have focused on GC-based languages, prior

work has proposed software [1, 5, 66] and hardware [13,

65, 97] techniques to make languages with manual memory

management memory-safe, e.g., by tracking bounds for all

pointers. Hotpads could be combined with these techniques to

work on C/C++ programs. These programs often have sizable

memory allocation costs [39, 40], which Hotpads would avoid.

Adaptive-granularity designs like sector caches [53, 86] and

Amoeba [47] improve utilization and reduce traffic, but they

have more involved tag lookups and require predictors to fetch

data at the right granularity [37, 47]. Hotpads avoids these

overheads while fetching data at fine granularity.

The V-Way cache [74] decouples tag and data arrays similarly

to how c-tag and data arrays are decoupled in pads. V-Way

improves associativity by oversizing the tag array, whereas pads

need this organization to manage the data array independently.

GPUs and many accelerators [14, 15, 26, 29, 98] use soft-

ware-managed scratchpads to avoid the inefficiencies of caches.

12

But scratchpads are hard to use—they require programmers

or compilers to manage data placement and movement. As a

result, only regular programs can use them well [50].

Stash [46] seeks to combine the benefits of scratchpads and

caches. Programmers can map a global memory region onto the

Stash and access it like a scratchpad. Hits achieve scratchpad-

like efficiency, and misses automatically fetch data like a cache.

Like Stash, Hotpads achieves cheap direct accesses. However,

Hotpads does not require programmers to explicitly map data.

Virtual memory and caches conventionally use two separate

associative lookups, on TLBs and cache tags. TLC [85],

D2D [83], D2M [84], and cTLB [49] fold cache tag information

into the TLB to reduce or eliminate cache tag lookups. However,

they still require an associative lookup (to the TLB) on every

access and introduce other complexities. By contrast, Hotpads

avoids associative lookups on most accesses.

IX. FUTURE WORK AND CONCLUSION

Beyond our specific implementation, Hotpads opens up

exciting new avenues in many aspects of memory systems

that we leave to future work. These include:

• Security: Since Hotpads has no caches and hides addresses,

it should effectively avoid the speculation-related cache side

channels [70] that underpin the recent Spectre [45] and Melt-

down [52] attacks. A secure Hotpads implementation might

need to close other side channels, e.g., randomizing CEs.

• Isolation: Hotpads may reduce or eliminate VM overheads

(Sec. V-I), e.g., by segmenting shared pad capacity among

processes. Beyond functional isolation, this would provide

performance isolation much more cheaply than cache parti-

tioning, which has considerable overheads [73, 80, 99].

• Hierarchy management: How should Hotpads leverage the

insights that prior work has developed to manage caches? For

example, how to adapt recent replacement policies to bulk

evictions (Sec. V-D)? Could we perform locality-aware level

selection and bypass [42, 94] for new and fetched objects?

Could we rearrange objects in pads to facilitate prefetching?

• Concurrency and non-volatility: Hotpads need not over-

write old copies of objects on an eviction or invalidation,

making it possible to have pads act as log-like multiversioned

stores, which could be used to implement transactional

memory [25, 63] or accelerate NVM logging [35, 69, 105].

In conclusion, we have shown that the key insight behind

memory-safe languages, hiding the memory layout, can be

applied to design efficient memory hierarchies. Hotpads outper-

forms cache hierarchies because it moves objects rather than

lines, avoids most associative lookups, and greatly reduces GC

overheads. Hotpads lights the path to future memory systems

that support the needs of modern programs.

ACKNOWLEDGMENTS

We sincerely thank Maleen Abeydeera, Joel Emer, Mark

Jeffrey, Christos Kozyrakis, Hyun Ryong Lee, Xiaosong Ma,

Anurag Mukkara, Suvinay Subramanian, Victor Ying, Guowei

Zhang, and the anonymous reviewers for their feedback. This

work was supported in part by NSF grant CAREER-1452994

and by a grant from the Qatar Computing Research Institute.

REFERENCES

[1] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds
errors.” in Proc. PLDI, 2009.

[2] O. Anderson, E. Fortuna, L. Ceze, and S. Eggers, “Checked load:
Architectural support for javascript type-checking on mobile processors,”
in Proc. HPCA-17, 2011.

[3] T. A. Anderson, M. ONeill, and J. Sarracino, “Chihuahua: A concurrent,
moving, garbage collector using transactional memory,” TRANSACT,
2015.

[4] A. W. Appel, J. R. Ellis, and K. Li, “Real-time concurrent collection
on stock multiprocessors,” in Proc. PLDI, 1988.

[5] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of all
pointer and array access errors,” in Proc. PLDI, 1994.

[6] D. F. Bacon, P. Cheng, and V. Rajan, “A real-time garbage collector
with low overhead and consistent utilization,” in Proc. PLDI, 2003.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Myths and realities:
The performance impact of garbage collection,” in SIGMETRICS, 2004.

[8] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg et al., “The DaCapo benchmarks:
Java benchmarking development and analysis,” in Proc. OOPSLA, 2006.

[9] S. M. Blackburn and K. S. McKinley, “Immix: a mark-region garbage
collector with space efficiency, fast collection, and mutator performance,”
in Proc. PLDI, 2008.

[10] H.-J. Boehm, “A garbage collector for C and C++,” http://www.hboehm.
info/gc/, archived at https://perma.cc/L5WY-Y28N, 2002.

[11] H.-J. Boehm, “An artificial garbage collection benchmark,” http:
//hboehm.info/gc/gc bench.html, archived at https://perma.cc/Y4BY-
7RN4, 2002.

[12] H.-J. Boehm, A. J. Demers, and S. Shenker, “Mostly parallel garbage
collection,” in Proc. PLDI, 1991.

[13] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry,
V. Ramachandran, O. Ruwase et al., “Flexible hardware acceleration
for instruction-grain program monitoring,” in Proc. ISCA-35, 2008.

[14] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proc. ASPLOS-XIX, 2014.

[15] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ISCA-43, 2016.

[16] J. Choi, T. Shull, M. J. Garzaran, and J. Torrellas, “Shortcut: Archi-
tectural support for fast object access in scripting languages,” in Proc.
ISCA-44, 2017.

[17] A. Clements and R. Hudson, “Go proposal: Eliminate STW stack re-
scanning,” http://github.com/golang/proposal/blob/master/design/17503-
eliminate-rescan.md, archived at https://perma.cc/7FHN-MDDH, 2016.

[18] G. E. Collins, “A method for overlapping and erasure of lists,”
Communications of the ACM, vol. 3, no. 12, 1960.

[19] A. R. Cunha, C. N. Ribeiro, and J. A. Marques, “The architecture
of a memory management unit for object-oriented systems,” in Proc.
ISCA-18, 1991.

[20] W. J. Dally and J. T. Kajiya, “An object oriented architecture,” in Proc.
ISCA-12, 1985.

[21] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic, “HardBound:
Architectural support for spatial safety of the C programming language,”
in Proc. ASPLOS-XIII, 2008.

[22] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F.
Steffens, “On-the-fly garbage collection: An exercise in cooperation,”
Communications of the ACM, vol. 21, no. 11, 1978.

[23] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V.
Veidenbaum, “Improving cache management policies using dynamic
reuse distances,” in Proc. MICRO-45, 2012.

[24] Y. L. Gan, “Redesigning the memory hierarchy for memory-safe
programming languages,” Master’s thesis, MIT, 2018.

[25] M. J. Garzarán, M. Prvulovic, J. M. Llaberı́a, V. Viñals, L. Rauchwerger,
and J. Torrellas, “Tradeoffs in buffering memory state for thread-level
speculation in multiprocessors,” in Proc. HPCA-9, 2003.

[26] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J.
Dally, “Unifying primary cache, scratch, and register file memories in
a throughput processor,” in Proc. MICRO-45, 2012.

[27] S. Ghemawat and P. Menage, “TCMalloc: Thread-Caching Malloc
http://goog-perftools.sourceforge.net/doc/tcmalloc.html,” 2007.

[28] I. Gouy, “The computer language benchmarks game,” https://
benchmarksgame-team.pages.debian.net/benchmarksgame, archived at
https://perma.cc/7AW2-6NPN, 2002.

[29] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics,” in Proc. MICRO-49, 2016.

[30] D. R. Hanson, “Fast allocation and deallocation of memory based on
object lifetimes,” Software: Practice and Experience, vol. 20, 1990.

[31] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in Proc. ISSCC, 2014.

[32] M. E. Houdek, F. G. Soltis, and R. L. Hoffman, “Ibm system/38 support
for capability-based addressing,” in Proc. ISCA-8, 1981.

[33] R. Hudson and A. Clements, “Request oriented collector (ROC)
algorithm,” http://golang.org/s/gctoc, archived at https://perma.cc/S2SV-
SVHX, 2016.

13

http://www.hboehm.info/gc/
http://www.hboehm.info/gc/
https://perma.cc/L5WY-Y28N
http://hboehm.info/gc/gc_bench.html
http://hboehm.info/gc/gc_bench.html
https://perma.cc/Y4BY-7RN4
https://perma.cc/Y4BY-7RN4
http://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
http://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
https://perma.cc/7FHN-MDDH
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://perma.cc/7AW2-6NPN
http://golang.org/s/gctoc
https://perma.cc/S2SV-SVHX
https://perma.cc/S2SV-SVHX

[34] G. C. Hunt and J. R. Larus, “Singularity: Rethinking the software stack,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 2, 2007.

[35] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via JUSTDO logging,” in Proc. ASPLOS-XXI, 2016.

[36] A. Jaleel, K. Theobald, S. C. Steely, and J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP),” in
Proc. ISCA-37, 2010.

[37] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for
servers: Hit ratio, latency, or bandwidth? Have it all with footprint
cache,” in Proc. ISCA-40, 2013.

[38] J. A. Joao, O. Mutlu, and Y. N. Patt, “Flexible reference-counting-based
hardware acceleration for garbage collection,” in Proc. ISCA-36, 2009.

[39] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proc. ISCA-42, 2015.

[40] S. Kanev, S. L. Xi, G.-Y. Wei, and D. Brooks, “Mallacc: Accelerating
Memory Allocation,” in Proc. ASPLOS-XXII, 2017.

[41] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs
and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, 2011.

[42] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block
prediction for last-level caches,” in Proc. MICRO-43, 2010.

[43] C. Kim, J. Kim, S. Kim, D. Kim, N. Kim, G. Na, Y. H. Oh, H. G.
Cho et al., “Typed architectures: Architectural support for lightweight
scripting,” in Proc. ASPLOS-XXII, 2017.

[44] C. Kim, S. Kim, H. G. Cho, D. Kim, J. Kim, Y. H. Oh, H. Jang,
and J. W. Lee, “Short-circuit dispatch: Accelerating virtual machine
interpreters on embedded processors,” in Proc. ISCA-43, 2016.

[45] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher et al., “Spectre attacks: Exploiting speculative
execution,” arXiv preprint arXiv:1801.01203, 2018.

[46] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou,
P. Srivastava, S. V. Adve, and V. S. Adve, “Stash: Have your scratchpad
and cache it too,” in Proc. ISCA-42, 2015.

[47] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and
L. Shannon, “Amoeba-cache: Adaptive blocks for eliminating waste in
the memory hierarchy,” in Proc. MICRO-45, 2012.

[48] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight Jr, and A. DeHon, “Low-
fat pointers: Compact encoding and efficient gate-level implementation
of fat pointers for spatial safety and capability-based security,” in Proc.
CCS, 2013.

[49] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A
fully associative, tagless DRAM cache,” in Proc. ISCA-42, 2015.

[50] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis, “Comparing memory systems for
chip multiprocessors,” in Proc. ISCA-34, 2007.

[51] P. Liden and S. Karlsson, “The Z garbage collector: An introduction,”
in FOSDEM, 2018.

[52] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Man-
gard, P. Kocher, D. Genkin et al., “Meltdown,” arXiv preprint
arXiv:1801.01207, 2018.

[53] J. S. Liptay, “Structural aspects of the System/360 Model 85, II: The
cache,” IBM Systems Journal, vol. 7, no. 1, 1968.

[54] B. Liskov and S. Zilles, “Programming with abstract data types,” in
ACM Sigplan Notices, vol. 9, no. 4. ACM, 1974.

[55] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi et al., “Pin: Building customized program
analysis tools with dynamic instrumentation,” in Proc. PLDI, 2005.

[56] F. Mao, E. Z. Zhang, and X. Shen, “Influence of program inputs on
the selection of garbage collectors,” in VEE, 2009.

[57] J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, Part I,” Comm. ACM, vol. 3, no. 4, 1960.

[58] P. McGachey, A.-R. Adl-Tabatabai, R. L. Hudson, V. Menon, B. Saha,
and T. Shpeisman, “Concurrent GC leveraging transactional memory,”
in Proc. PPoPP, 2008.

[59] Micron, “1.35V DDR3L power calculator (4Gb x16 chips),” 2013.
[60] Microsoft, “Memory management and garbage collection in .NET,”

http://docs.microsoft.com/en-us/dotnet/standard/garbage-collection,
archived at https://perma.cc/XG3P-5CDF, 2017.

[61] D. A. Moon, “Garbage collection in a large lisp system,” in Proc. LISP
and functional programming. ACM, 1984.

[62] D. A. Moon, “Architecture of the symbolics 3600,” in Proc. ISCA-12,
1985.

[63] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: Log-based transactional memory.” in Proc. HPCA-12, 2006.

[64] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, Tech. Rep., 2009.

[65] S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Watchdog: Hardware
for safe and secure manual memory management and full memory
safety,” in Proc. ISCA-39, 2012.

[66] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly compatible and complete spatial memory safety for C,” in Proc.
PLDI, 2009.

[67] B. Naveh, “JGraphT,” http://jgrapht.org, 2018.
[68] T. Nojiri, S. Kawasaki, and K. Sakoda, “Microprogrammable processor

for object-oriented architecture,” in Proc. ISCA-13, 1986.
[69] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in

Proc. ISCA-41, 2014.
[70] C. Percival, “Cache missing for fun and profit,” BSDCan, 2005.

[71] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek,
“Schism: Fragmentation-tolerant real-time garbage collection,” in Proc.
PLDI, 2010.

[72] Python Software Foundation, “Garbage collector interface, the Python
standard library,” https://docs.python.org/3/library/gc.html, 2018.

[73] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,” in Proc. MICRO-39, 2006.

[74] M. Qureshi, D. Thompson, and Y. Patt, “The V-way cache: Demand
based associativity via global replacement,” in Proc. ISCA-32, 2005.

[75] Redox Developers, “Redox OS,” https://www.redox-os.org/, 2018.
[76] C. G. Ritson, T. Ugawa, and R. E. Jones, “Exploring garbage collection

with Haswell Hardware Transactional Memory,” ACM SIGPLAN Notices,
vol. 49, no. 11, 2015.

[77] A. Rodchenko, C. Kotselidis, A. Nisbet, A. Pop, and M. Luján, “Maxsim:
A simulation platform for managed applications,” in Proc. ISPASS, 2017.

[78] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: A low latency
approach to high bandwidth instruction fetching,” in Proc. MICRO-29,
1996.

[79] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling ways and
associativity,” in Proc. MICRO-43, 2010.

[80] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain
cache partitioning,” in Proc. ISCA-38, 2011.

[81] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Proc. ISCA-40, 2013.

[82] J. B. Sartor, W. Heirman, S. M. Blackburn, L. Eeckhout, and K. S.
McKinley, “Cooperative cache scrubbing,” in Proc. PACT-23, 2014.

[83] A. Sembrant, E. Hagersten, and D. Black-Schaffer, “The direct-to-data
(D2D) cache: Navigating the cache hierarchy with a single lookup,” in
Proc. ISCA-41, 2014.

[84] A. Sembrant, E. Hagersten, and D. Black-Schaffer, “A split cache
hierarchy for enabling data-oriented optimizations,” in Proc. HPCA-23,
2017.

[85] A. Sembrant, E. Hagersten, and D. Black-Shaffer, “TLC: A tag-less
cache for reducing dynamic first level cache energy,” in Proc. MICRO-
46, 2013.

[86] A. Seznec, “Decoupled sectored caches: Conciliating low tag imple-
mentation cost,” in Proc. ISCA-21, 1994.

[87] Standard Performance Evaluation Corporation, “SPECjbb2005 (Java
server benchmark),” https://www.spec.org/jbb2005/, 2006.

[88] P. Steenkiste and J. Hennessy, “Tags and type checking in lisp: Hardware
and software approaches,” in Proc. ASPLOS-II, 1987.

[89] B. Stroustrup and H. Sutter, “Core C++ guidelines,” https://isocpp.github.
io/CppCoreGuidelines/, archived at https://perma.cc/ZRW6-TS8N, 2018.

[90] Sun Microsystems, “Memory management in the Java HotSpot
virtual machine,” http://www.oracle.com/technetwork/java/
javase/memorymanagement-whitepaper-150215.pdf, archived at
https://perma.cc/Z97A-27AB, 2006.

[91] A. S. Tanenbaum and D. J. Wetherall, Computer networks, 5th ed.,
P. Hall, Ed., 2010.

[92] G. Tene, B. Iyengar, and M. Wolf, “C4: The continuously concurrent
compacting collector,” in Proc. ISMM, 2011.

[93] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in Proc. MICRO-49, 2016.

[94] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined
cache hierarchies,” in Proc. ISCA-44, 2017.

[95] D. Ungar, “Generation scavenging: A non-disruptive high performance
storage reclamation algorithm,” in ACM Sigplan notices, vol. 19, no. 5.
ACM, 1984.

[96] D. Ungar, R. Blau, P. Foley, D. Samples, and D. Patterson, “Architecture
of SOAR: Smalltalk on a RISC,” in Proc. ISCA-11, 1984.

[97] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-
tracker: Efficient and programmable support for memory access
monitoring and debugging,” in Proc. HPCA-13, 2007.

[98] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank et al., “Baring it all to software: Raw machines,”
IEEE Computer, vol. 30, no. 9, 1997.

[99] X. Wang, S. Chen, J. Setter, and J. F. Martı́nez, “SWAP: Effective fine-
grain management of shared last-level caches with minimum hardware
support,” in Proc. HPCA-23, 2017.

[100] P. R. Wilson, “Uniprocessor garbage collection techniques,” in Memory
Management. Springer, 1992.

[101] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan, L. Daynès,
and D. Simon, “Maxine: An approachable virtual machine for, and
in, java,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 9, no. 4, 2013.

[102] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann et al., “The CHERI capability
model: Revisiting RISC in an age of risk,” in Proc. ISCA-41, 2014.

[103] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer, “SHiP: Signature-based hit predictor for high performance
caching,” in Proc. MICRO-44, 2011.

[104] J. Yang and C. Hawblitzel, “Safe to the last instruction: Automated
verification of a type-safe operating system,” in Proc. PLDI, 2010.

[105] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing
the performance gap between systems with and without persistence
support,” in Proc. MICRO-46, 2013.

[106] T. Zheng, H. Zhu, and M. Erez, “SIPT: Speculatively indexed, physically
tagged caches,” in Proc. HPCA-24, 2018.

14

http://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://perma.cc/XG3P-5CDF
http://jgrapht.org
https://docs.python.org/3/library/gc.html
https://www.redox-os.org/
https://www.spec.org/jbb2005/
https://isocpp.github.io/CppCoreGuidelines/
https://isocpp.github.io/CppCoreGuidelines/
https://perma.cc/ZRW6-TS8N
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
https://perma.cc/Z97A-27AB

	Introduction
	Background on Memory-Safe Languages
	Hotpads Overview
	Hotpads ISA: Hiding the memory layout
	Hotpads Microarchitecture
	Pointer format
	Canonical levels and invariants
	Pad organization
	Steady-state operation
	Performing memory accesses
	Performing other pointer operations
	Maintaining CE metadata

	The collection-eviction (CE) process
	Supporting arbitrarily large objects
	Object-level coherence
	Instruction pads vs. instruction caches
	Crosscutting issues

	Experimental Methodology
	Hardware
	Software

	Evaluation
	Latency, energy, and area of caches vs. pads
	Hotpads outperforms traditional hierarchies
	Cache hierarchy enhancements vs. Hotpads
	Hotpads reduces data movement across the hierarchy
	Pointer rewriting avoids most associative lookups
	CEs are fast and infrequent
	Hotpads performs well on multithreaded workloads
	Case study: Hotpads benefits on compiled code
	Legacy mode incurs small performance overheads

	Additional Related Work
	Future Work and Conclusion
	References

