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Programmers think of objects and pointers
among objects




Modern languages exposa objectbased memoryodel
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i Strictly hiding the flat address space provides many benefits:
A Memory safety prevents memory corruption bugs
A Automatic memory management (garbage collection) simplifies programming
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Hotpads Anobjectbased memory hierarchy

A A memory hierarchy designed from the ground uplipectbased programs
A Provides firstlass support for objects and pointers in the ISA
A Hides the memory layout from software and takes control over it

& Hotpadsmanages objects

Objectbased ISA I Object operations Instead of cache lines

Hotpads Hotpadsrewrites pointers to

Manages objects _ reduce associative lookups

Hotpadsprovides architectural

support for inhierarchy object
allocation and recycling
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Prior architectural support for objdised programs

i Objectoriented/typed systems
focus ortore microarchitecture design

A Accelerate virtual calls, object reference
and dynamic type checks

i Hardware accelerators for GC

GC unit
Core rA

LA =
Prior work uses standard cache hierarchies

We focusonredesigning the memoryierarchy
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Hotpadsoverview

= . Data array

A Managed as a circular buffer using simple
bump pointer allocation

A Stores variablesized objects compactly

i CG-Tags
A Decoupled tag store used only for a fractior
of accesses

Free space
- i Metadata

Metadata
(word/object)

C-Tags

A Pointer? valid? dirty? recentiged?
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Hotpadsexample

class Node {
Int value;
Node next:

L2 Pad Main Mem

RegFile L1 Pad
ro Objects
rl
r2 Free
3 space

—L-E-

Initial state.



Hotpadsmoves object implicitly

class Node {

Int value;
Node next:

Program code:

Int v= A.value :

RegFile

L1 Pad L2 Pad Main Mem

Hotpads instructions:
| d 10O, (rl).value
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Core issues access to A.
A Is copiedinto L1 pad.
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Hotpadsmoves object implicitly

class Node { RegFile | 1 Pad

L2 Pad Main Mem

Int value;
Node next; ro
} rl
2 \\l-_
3
Program code: Hotpads instructions: Core iss_uesf accessto A.
int v= Auvalue ; | d r0, (r1).value Als copiedinto L1 pad.

All loads/stores follow a single addressing mode: Base+offset
Bump pointer allocation storesompactly after other objects
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Hotpadsrewrites pointers to avoid associative lookups

class Node { RegFile Ll1Pad  L2Pad Main Mem

int value;
Node next; 0
} =
r3
Program code: Hotpads instructions: Core issues access to A.
int v= Auvalue ; | d r0, (r1).value Als copiedinto L1 pad.

rl1 1 s rewriltten t

Subsequent dereferences ofrlacce8ss L1 copy direct |
without associative lookups (like a scratchpad)

Hotpads rewrites pointers safely because it hides the memory layout from sof
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Pointer rewriting applie® L1 pad dataaswell

class Node {

Int value;
Node next:

Program code:
v = A.next.value

RegFile L1 Pad L2 Pad Main Mem

r0
rl1—. -
2 — L—;-
3
Hotpads instructions: ~B copied in_to L1. |
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class Node {

Int value;
Node next:

Program code:
v = A.next.value

RegFile L1 Pad L2 Pad Main Mem

r0
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2 L--3-
3
Hotpads instructions: ~B copied in_to L1. |
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Pointer rewriting applie® L1 pad dataaswell

class Node { RegFile Ll1Pad  L2Pad Main Mem

Int value;
Node next; r0
! rl .
o ]|
3
Program code: Hotpads instructions: ~B copied in_to L1 _
v= Anextvalue derefptr  r2, (r1).next AO0s pointer |

| d r3, (r2).value

Subseguent dereferences of A.next access the L1 céyireictly,
without associative lookups
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Pointer rewriting applie® L1 pad dataaswell

class Node { RegFile Ll1Pad  L2Pad Main Mem

Int value;
Node next: r0
} rl
r2— 1-3-
3
Program code: Hotpads instructions: = TagS.A,B| ~B copied in_to L1. |
v = A.next.value derefptr  r2, (rl).next AOs polnter |

| d r3, (r2).value
Subseguent dereferences of A.next access the L1 céyireictly,
without associative lookups

C-tags let dereferencing other pointers/ofand B find their L1 copies
11



Hotpadssupportan-hierarchyobjectallocation

class Node {
Int value;
Node next;

Program code:
Node C = new Node();

RegFile L1 Pad

r0
rl—. =
r2

rC%;“7

Hotpads instructions:
alloc r3, type=Node

L2 Pad

Main Mem

L-3-

Core allocates new object C.
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Hotpadssupportan-hierarchyobjectallocation

C'aSSimNO\‘jaelu{e; RegFile Ll1Pad  L2Pad Main Mem

Node next; r(i
} r | — R
rz;“7 L-5-
3

Core allocates new object C.

Program code: Hotpads instructions:
Node C = new Node(); alloc r3, type=Node

Inhierarchy allocation reduces data movement and requires no
backing storage in main memory or larger pads

12



Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad L2 Pad Main Mem

13



Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad L2 Pad Main Mem

L1 pad is now full

13



Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad L2 Pad Main Mem

L1 pad is now full

i When a pad fills up, it triggers a collectieniction (CE) to free spac

A Discards dead objects
A Evicts live, nerecently used objects to the next level in bulk

13



Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad L2 Pad Main Mem

L1 pad is now full

When a pad fills up, it triggers a collectieniction (CE) to free spac

A Discards dead objects
A Evicts live, nerecently used objects to the next level in bulk

Cis dead (unreferenced). Other objects are live. Gnb/recently used.
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Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad

Free
space

L2 Pad

Main Mem

L1 collectioreviction (CE) collects dead C and
evicts live A & D to L2. It leaves a large
contiguous chunk of free space
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Hotpadsunifies garbagecollectiorand objectevictions

CEs happen concurrently WifgegFile L1 Pad L2 Pad Main Mem
program execution and are

hierarchical AR —~
space B (stale)

Each pad can perform a CE
iIndependently from larger, L1 collectiomviction (CE) collects dead C and

higherlevel padsA Makes CE evicts live A & D to L2. It leaves a large
cost proportional to pad size contiguous chunk of free space

__________________________

Invariant: Objectsat a particular ' ' Result:No need to check the L2 pad when:

| ‘level may only poirto objectst ' performing a collecticaviction in the L1 pad
Ithe same olarger levels R Sty gt e g e ;
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i Hotpads unifies the locality principle and the generational hypothesis

i Hotpads acts like a supgenerational collector

A Accesses to shdited objects are cheap and fast

A Most of maimmemory data is live
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Collectiorevictions reduce data movement

i Hotpads unifies the locality principle and the generational hypothesis

i Hotpads acts like a supgenerational collector

A Accesses to shdited objects are cheap and fast
A Most of maimmemory data is live

1 Allocated

o
D w

N @
]

Objects bytes normali
to total allocated by

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Evicted EXJ Collected

In Out
L11/D

L2

In Out

In Out

L3

In Qut

Mem

Most objects are collected|i

the L1pad
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Collectiorevictions reduce data movement

i Hotpads unifies the locality principle and the generational hypothesis

i Hotpads acts like a supgenerational collector
A Accesses to shdited objects are cheap and fast

A Most of maimmemory data is live
1 Allocated

o
D w

N @
]

Objects bytes normali
to total allocated by

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Evicted EXJ Collected

In Qut

L11/D

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

In OQut In Out
L2 L3

Most objects are collected|i

the L1pad

90% of object bytes never

reachmain memory
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See paper for additional features

Supporting large objects with subobject fetches
Objectlevel pad coherence
Legacy mode to support flaiddressbased programs

e and more detail s
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A

We simulate Hotpads using MaxSimo d ¢ hen k o
A A simulator combining ZSim and Maxine JVM

Modeled system —>H—>=

A 4 OOO cores >
A 3-level cache or pad hierarchy

o
Workloads

A 13 Java workloads from Dacapo, SpecJBB, and JgraphT
A JVM modified to use the Hotpads ISA

et

al .
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