Rethinking the Memory Hierarchy for
Modern Languages

Po-An Tsal Yee Ling Gan, and Daniel Sanchez

i

CSAIL

Memory systems expose an inexpressive interface

Memory systems expose an inexpressive interface

Flat address I Arbitrary loads
space and stores

Memory hierarchy

Memory systems expose an inexpressive interface

Flat address I Arbitrary loads
space and stores

Memory hierarchy

Programmers think of objects and pointers
among objects

Modern languages exposa objectbased memoryodel

ooy P

Objectbased I Object accesses

model
Runtime/Compiler

Flat address I loads and stores
space to objects

Memory hierarchy

i Strictly hiding the flat address space provides many benefits:
A Memory safety prevents memory corruption bugs
A Automatic memory management (garbage collection) simplifies programming
3

The inexpressive flat address space Is inefficient

T S
|

Objectbased
model

Runtime/Compiler

Flat address
space

Memory hierarchy

The inexpressive flat address space Is inefficient

®.
!

Objectbased
model

Runtime/Cor ailer

Flat address
space

Memory hierarchy

Smantic gap between
programs and the
memory hierarchy

The inexpressive flat address space Is inefficient

BT S
!

Objectbased
model

Main Mem.

Runtime/Cor ailer ,

Flat address
space

Memory hierarchy

OxFEFF

Semantic gap between ~ -~ _
programs and the S
memory hierarchy

The inexpressive flat address space Is inefficient

®.
.
i

Objectbased
model

Main Mem.

Runtime/Cor ailer ,
/
/

Semantic gap between ~ -~ _
programs and the T~
memory hierarchy

Flat address
space

Memory hierarchy

OXFFFF

x Mismatch between
objects and cache lines

The inexpressive flat address space Is inefficient

®.
.
i

Objectbased
model

Main Mem.

Runtime/Cor ailer ,
/
/

Semantic gap between ~ -~ _
programs and the T~
memory hierarchy

Flat address
space

Memory hierarchy

OXFFFF

x Mismatch between x Costly associative
objects and cache lines lookups

Hotpads Anobjectbased memory hierarchy

Hotpads Anobjectbased memory hierarchy

A memory hierarchy designed from the ground uplipectbased programs
Provides firstlass support for objects and pointers in the ISA
Hides the memory layout from software and takes control over it

Hotpads Anobjectbased memory hierarchy

A A memory hierarchy designed from the ground uplipectbased programs
A Provides firstlass support for objects and pointers in the ISA
A Hides the memory layout from software and takes control over it

Objectbased ISA I Object operations

Manages objects

Hotpads Anobjectbased memory hierarchy

A A memory hierarchy designed from the ground uplipectbased programs
A Provides firstlass support for objects and pointers in the ISA
A Hides the memory layout from software and takes control over it

= ogan

Objectbased ISA I Object operations

K Hotpads .

y Manages objects S o

Hotpads Anobjectbased memory hierarchy

A A memory hierarchy designed from the ground uplipectbased programs
A Provides firstlass support for objects and pointers in the ISA
A Hides the memory layout from software and takes control over it

& Hotpadsmanages objects

Objectbased ISA I Object operations

K Hotpads .

y Manages objects S o

Instead of cache lines

Hotpads Anobjectbased memory hierarchy

A A memory hierarchy designed from the ground uplipectbased programs
A Provides firstlass support for objects and pointers in the ISA
A Hides the memory layout from software and takes control over it

& Hotpadsmanages objects

Objectbased ISA I Object operations Instead of cache lines

Manages objects

Hotpadsrewrites pointers to
reduce associative lookups

Hotpads Anobjectbased memory hierarchy

A A memory hierarchy designed from the ground uplipectbased programs
A Provides firstlass support for objects and pointers in the ISA
A Hides the memory layout from software and takes control over it

& Hotpadsmanages objects

Objectbased ISA I Object operations Instead of cache lines

Hotpads Hotpadsrewrites pointers to

Manages objects _ reduce associative lookups

Hotpadsprovides architectural

support for inhierarchy object
allocation and recycling

Prior architectural support for objdised programs

Prior architectural support for objdised programs

i Objectoriented/typed systems
focus ortore microarchitecture design

A Accelerate virtual calls, object reference
and dynamic type checks

Prior architectural support for objdised programs

i Objectoriented/typed systems
focus ortore microarchitecture design

A Accelerate virtual calls, object reference
and dynamic type checks

i Hardware accelerators for GC

Prior architectural support for objdised programs

i Objectoriented/typed systems
focus ortore microarchitecture design

A Accelerate virtual calls, object reference
and dynamic type checks

i Hardware accelerators for GC

GC unit i:::;:;;:;;:;ig'

Core
E_l ! L2
- $ $ ==

Prior work uses standard cache hierarchies

Prior architectural support for objdised programs

i Objectoriented/typed systems
focus ortore microarchitecture design

A Accelerate virtual calls, object reference
and dynamic type checks

i Hardware accelerators for GC

GC unit
Core rA

LA =
Prior work uses standard cache hierarchies

We focusonredesigning the memoryierarchy

Hotpadsoverview

Hotpadsoverview

Hotpadsoverview

:;;;;;;;;;;;;;;;gg 4 Data array

A Managed as a circular buffer using simple
bump pointer allocation

A Stores variablesized objects compactly

Data Array ',

Objects

Free space

Hotpadsoverview

= . Data array

A Managed as a circular buffer using simple
bump pointer allocation

A Stores variablesized objects compactly

Data Array ',

EEJGC'[S -—

Free space

Hotpadsoverview

= < Dawarray

A Managed as a circular buffer using simple
bump pointer allocation

A Stores variablesized objects compactly

Free space

Hotpadsoverview

= . Data array

A Managed as a circular buffer using simple
bump pointer allocation

A Stores variablesized objects compactly

i CG-Tags
A Decoupled tag store used only for a fractior
of accesses

Free space

C-Tags

Hotpadsoverview

= . Data array

A Managed as a circular buffer using simple
bump pointer allocation

A Stores variablesized objects compactly

i CG-Tags
A Decoupled tag store used only for a fractior
of accesses

Free space
- i Metadata

Metadata
(word/object)

C-Tags

A Pointer? valid? dirty? recentiged?

Hotpadsexample

Hotpadsexample

class Node {
Int value;
Node next;

Hotpadsexample

class Node {
Int value;
Node next:

L2 Pad Main Mem

RegFile L1 Pad
ro Objects
rl
r2 Free
3 space

—L-E-

Initial state.

Hotpadsmoves object implicitly

class Node {

Int value;
Node next:

Program code:

Int v= A.value :

RegFile

L1 Pad L2 Pad Main Mem

Hotpads instructions:
| d 10O, (rl).value

ﬁ_L-_

Core issues access to A.
A Is copiedinto L1 pad.

Hotpadsmoves object implicitly

class Node { RegFile Ll1Pad L2Pad Main Mem

Int value;
Node next; ro
} rl ' =
2 IL-_
3
Program code: Hotpads instructions: Core iss_uesf accessto A.
int v= Auvalue ; | d r0, (r1).value Als copiedinto L1 pad.

All loads/stores follow a single addressing mode: Base+offset

Hotpadsmoves object implicitly

class Node { RegFile | 1 Pad

L2 Pad Main Mem

Int value;
Node next; ro
} rl
2 \\l-_
3
Program code: Hotpads instructions: Core iss_uesf accessto A.
int v= Auvalue ; | d r0, (r1).value Als copiedinto L1 pad.

All loads/stores follow a single addressing mode: Base+offset
Bump pointer allocation storesompactly after other objects

Hotpadsrewrites pointers to avoid associative lookups

class Node { RegFile Ll1Pad L2Pad Main Mem

int value;
Node next; 0
} =
r3
Program code: Hotpads instructions: Core issues access to A.
int v= Auvalue ; | d r0, (r1).value Als copiedinto L1 pad.

rl1 1 s rewriltten t

10

Hotpadsrewrites pointers to avoid associative lookups

class Node { RegFile Ll1Pad L2Pad Main Mem

int value;
Node next; 0
} =
r3
Program code: Hotpads instructions: Core issues access to A.
int v= Auvalue ; | d r0, (r1).value Als copiedinto L1 pad.

rl1 1 s rewriltten t

Subsequent dereferencesofrlacce@8ss L1 copy dire
without associative lookups (like a scratchpad)

10

Hotpadsrewrites pointers to avoid associative lookups

class Node { RegFile Ll1Pad L2Pad Main Mem

int value;
Node next; 0
} =
r3
Program code: Hotpads instructions: Core issues access to A.
int v= Auvalue ; | d r0, (r1).value Als copiedinto L1 pad.

rl1 1 s rewriltten t

Subsequent dereferences ofrlacce8ss L1 copy direct |
without associative lookups (like a scratchpad)

Hotpads rewrites pointers safely because it hides the memory layout from sof
10

Pointer rewriting applie® L1 pad dataaswell

class Node {

Int value;
Node next:

Program code:
v = A.next.value

RegFile L1 Pad L2 Pad Main Mem

r0
rl1—. -
2 — L—;-
3
Hotpads instructions: ~B copied in_to L1. |
derefptr r2, (r1).next AOs polnter |

| d r3, (r2).value

11

Pointer rewriting applie® L1 pad dataaswell

class Node {
Int value;
Node next:

Program code:
v = A.next.value

RegFile L1 Pad L2 Pad Main Mem

r0
rl1——. -
rZ—-ﬂ —\ _»L-g-
3
Hotpads instructions: ~B copied in_to L1. |
derefptr r2, (rl).next AO0s polnter |

| d r3, (r2).value

11

Pointer rewriting applie® L1 pad dataaswell

class Node {

Int value;
Node next:

Program code:
v = A.next.value

RegFile L1 Pad L2 Pad Main Mem

r0
rl1——. -
2 L--3-
3
Hotpads instructions: ~B copied in_to L1. |
derefptr r2, (r1).next AOs polnter |

| d r3, (r2).value

11

Pointer rewriting applie® L1 pad dataaswell

class Node { RegFile Ll1Pad L2Pad Main Mem

Int value;
Node next; r0
! rl .
o]|
3
Program code: Hotpads instructions: ~B copied in_to L1 _
v= Anextvalue derefptr r2, (r1).next AO0s pointer |

| d r3, (r2).value

Subseguent dereferences of A.next access the L1 céyireictly,
without associative lookups

11

Pointer rewriting applie® L1 pad dataaswell

class Node { RegFile Ll1Pad L2Pad Main Mem

Int value;
Node next: r0
} rl
r2— 1-3-
3
Program code: Hotpads instructions: = TagS.A,B| ~B copied in_to L1. |
v = A.next.value derefptr r2, (rl).next AOs polnter |

| d r3, (r2).value
Subseguent dereferences of A.next access the L1 céyireictly,
without associative lookups

C-tags let dereferencing other pointers/ofand B find their L1 copies
11

Hotpadssupportan-hierarchyobjectallocation

class Node {
Int value;
Node next;

Program code:
Node C = new Node();

RegFile L1 Pad

r0
rl—. =
r2

rC%;“7

Hotpads instructions:
alloc r3, type=Node

L2 Pad

Main Mem

L-3-

Core allocates new object C.

12

Hotpadssupportan-hierarchyobjectallocation

C'aSSimNO\‘jaelu{e; RegFile Ll1Pad L2Pad Main Mem

Node next; r(i
} r | — R
rz;“7 L-5-
3

Core allocates new object C.

Program code: Hotpads instructions:
Node C = new Node(); alloc r3, type=Node

Inhierarchy allocation reduces data movement and requires no
backing storage in main memory or larger pads

12

Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad L2 Pad Main Mem

13

Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad L2 Pad Main Mem

L1 pad is now full

13

Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad L2 Pad Main Mem

L1 pad is now full

i When a pad fills up, it triggers a collectieniction (CE) to free spac

A Discards dead objects
A Evicts live, nerecently used objects to the next level in bulk

13

Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad L2 Pad Main Mem

L1 pad is now full

When a pad fills up, it triggers a collectieniction (CE) to free spac

A Discards dead objects
A Evicts live, nerecently used objects to the next level in bulk

Cis dead (unreferenced). Other objects are live. Gnb/recently used.

13

Hotpadsunifies garbagecollectiorand objectevictions

RegFile L1 Pad

Free
space

L2 Pad

Main Mem

L1 collectioreviction (CE) collects dead C and
evicts live A & D to L2. It leaves a large
contiguous chunk of free space

14

Hotpadsunifies garbagecollectiorand objectevictions

A CEs happen concurrently WiRegFile L1 Pad L2 Pad Main Mem
program execution and are

hierarchical N -
space B (stale) |

L1 collectioreviction (CE) collects dead C and
evicts live A & D to L2. It leaves a large
contiguous chunk of free space

14

Hotpadsunifies garbagecollectiorand objectevictions

CEs happen concurrently WifgegFile L1 Pad L2 Pad Main Mem
program execution and are

hierarchical RRAR =
Space B (stale)

Each pad can perform a CE
iIndependently from larger, L1 collectiomviction (CE) collects dead C and

higherlevel padsA Makes CE evicts live A & D to L2. It leaves a large
cost proportional to pad size contiguous chunk of free space

14

Hotpadsunifies garbagecollectiorand objectevictions

CEs happen concurrently WifgegFile L1 Pad L2 Pad Main Mem
program execution and are

hierarchical AR -
space B (stale)

Each pad can perform a CE
iIndependently from larger, L1 collectiomviction (CE) collects dead C and

higherlevel padsA Makes CE evicts live A & D to L2. It leaves a large
cost proportional to pad size contiguous chunk of free space

| ' Invariant: Objectsat a particular,
. ' level may only pointb objectsat |

Ithe same olarger levels |

14

Hotpadsunifies garbagecollectiorand objectevictions

CEs happen concurrently WifgegFile L1 Pad L2 Pad Main Mem
program execution and are

hierarchical AR —~
space B (stale)

Each pad can perform a CE
iIndependently from larger, L1 collectiomviction (CE) collects dead C and

higherlevel padsA Makes CE evicts live A & D to L2. It leaves a large
cost proportional to pad size contiguous chunk of free space

Invariant: Objectsat a particular ' ' Result:No need to check the L2 pad when:

| ‘level may only poirto objectst ' performing a collecticaviction in the L1 pad
Ithe same olarger levels R Sty gt e g e ;

Collectiorevictions reduce data movement

15

Collectiorevictions reduce data movement

Hotpads unifies the locality principle and the generational hypothesis

15

Collectiorevictions reduce data movement

Hotpads unifies the locality principle and the generational hypothesis

Hotpads acts like a supgenerational collector

Accesses to shdited objects are cheap and fast
Most of mairmemory data is live

15

Collectiorevictions reduce data movement

i Hotpads unifies the locality principle and the generational hypothesis

i Hotpads acts like a supgenerational collector

A Accesses to shdited objects are cheap and fast

A Most of maimmemory data is live

1 Allocated EZZ1 Evicted K1 Collected
§g 08
< 0.
0.6
0.5
0.4
0.3
0.2
0.1
0.0

to total allocated b

Objects bytes normali

In Out In Out In Out In Out
L11/D L2 L3 Mem

Collectiorevictions reduce data movement

i Hotpads unifies the locality principle and the generational hypothesis

i Hotpads acts like a supgenerational collector

A Accesses to shdited objects are cheap and fast
A Most of maimmemory data is live

1 Allocated

o
D w

N @
]

Objects bytes normali
to total allocated by

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Evicted EXJ Collected

In Out
L11/D

L2

In Out

In Out

L3

In Qut

Mem

Most objects are collected|i

the L1pad

15

Collectiorevictions reduce data movement

i Hotpads unifies the locality principle and the generational hypothesis

i Hotpads acts like a supgenerational collector
A Accesses to shdited objects are cheap and fast

A Most of maimmemory data is live
1 Allocated

o
D w

N @
]

Objects bytes normali
to total allocated by

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Evicted EXJ Collected

In Qut

L11/D

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

In OQut In Out
L2 L3

Most objects are collected|i

the L1pad

90% of object bytes never

reachmain memory

15

See paper for additional features

16

See paper for additional features

Supporting large objects with subobject fetches

16

See paper for additional features

Supporting large objects with subobject fetches

Objectlevel pad coherence

16

See paper for additional features

Supporting large objects with subobject fetches
Objectlevel pad coherence

Legacy mode to support flaiddressbased programs

16

See paper for additional features

Supporting large objects with subobject fetches
Objectlevel pad coherence
Legacy mode to support flaiddressbased programs

e and more detail s

16

Evaluation

17

Evaluation

i We simulate Hotpads using MaxSirn
A A simulator combining ZSim and Maxine JVM

17

Evaluation

~

A

~

A

We simulate Hotpads using MaxSimo d ¢ hen ko
A A simulator combining ZSim and Maxine JVM
Modeled system

-0
A 4 00O cores >
A 3-level cache or pad hierarchy

o

et

al .

17

Evaluation

~

A

~

A

~

A

We simulate Hotpads using MaxSimo d ¢ hen k o
A A simulator combining ZSim and Maxine JVM

Modeled system —>H—>=

A 4 OOO cores >
A 3-level cache or pad hierarchy

o
Workloads

A 13 Java workloads from Dacapo, SpecJBB, and JgraphT
A JVM modified to use the Hotpads ISA

et

al .

17

Hotpadsoutperformsonventiondtierarchies

18

Hotpadsoutperformsonventiondtierarchies

I App (Non-GC) 273 GC

-

S

5 € [BBaseline H:Hotpads

T2 1.0l e S T T T
R

S o8t Blm Ele Bl tle Tl B Bl By B 4
'DO

2= 0.6 ({8 [IS 18

-;m

=N 0.4

2 € 02

o -

O 0o

(4b]

LﬁCD'DBHBH B H BH BH BH BH BH BH BH BH BH BH BH

aQe* LV SPRTAASIPLN none 0 O 100 \N : e
\mﬂd.e Su“i\?tea‘ G\-\\Eseaﬁ:- ool e n \ \J\ho o™ 5 peo\nvage(20 £0P C,O\o““%\ \Ie(ag

Hotpadsoutperformsonventiondtierarchies

c
= o
= 1.0
S B
©% 08
'DO
Ego.ﬁ
=N 04
o
gg 0.2
o
<00
L

I App (Non-GC)

272 GC

BH BH BH BH BH BH BH BH BH BH BH BH BH BH

| AANPR n 0 0 00 % - e
\\i‘“deﬁsu“‘\ot ot o\\f“‘"‘eam et e we ot o pec\%age‘ a0\ {0P . 0\0““%\ yere?
\

B:Baseline H:Hotpads

uo

} 34%

improvement

18

Hotpadsoutperformsonventiondtierarchies

g o 8 App (Non-GC) EZZ4 GC

3£ 40 B:Baseline H:Hotpads o

s¢ PmB_H B BB B |78 BB) } 34%
8¢9 " improvement
0= 06 . N N . . . , , , . . B

ET ‘

=8 04 L R | - . - . FIE B R

ST |

£ E 0.2

] ‘

© 2 0.0

i BH B H BH BH BH BH BH BH BH BH BH BH BH B H

: X N ook N W 0 o) 00 'S : e
\0‘“‘3@*5““‘\?:;6&‘G“\Eéemo vt yaeh W -\\]xho o sve“"bgag@‘ o 1o¥ 00\0“0%5'9‘ag

1. Inhierarchy allocation reducds
memory stalls in application code

18

Hotpadsoutperformsonventiondtierarchies

s o [App (Non-GC) EZZ3 GC
Q. B:Baseline H:Hotpads
20 1.0 .
28 0.8 } 34%
8¢9 " improvement
0= 06
= O
N 04
o'z \
S E 0.2
38 |
LﬁD'DBHBH BH BH BH BH BH BH BH BH BH BH BH B H
o suf\‘\‘::l AN A a0t gl e e @:\0“ pﬁ‘d o0 d\"gaga(a0 00 00\0"‘“%\ (ex0%®
1. Inhierarchy allocation reducds 2. Hardwarebased collection
memory stalls in application code evictions reduce GC overheads

18

Hotpadsreduces dynamic memory hierarchy ene

19

Hotpadsreduces dynamic memory hierarchy ene

App (Non-GC) |3 L1I/D B L2 L3 B Mem

o o o =
> O ©® O

Normalized energy

o O
o M

BH BH BH BH BH BH BH BH BH BH BH BH BH BH
WS oo o @a® W ot g R A
WS

19

Hotpadsreduces dynamic memory hierarchy ene

> 2.6X
reduction

19

