
Rethinking the Memory Hierarchy for 

Modern Languages

Po-An Tsai, Yee Ling Gan, and Daniel Sanchez



Memory systems expose an inexpressive interface

2



Memory systems expose an inexpressive interface

2

Memory hierarchy

Arbitrary loads 

and stores

Flat address 

space

Program



Memory systems expose an inexpressive interface

2

Memory hierarchy

Arbitrary loads 

and stores

Flat address 

space

Program

Obj. A

Obj. B

Programmers think of objects and pointers 

among objects

0x0000

0xFFFF



Modern languages expose an object-based memory model

3

Memory hierarchy

Loads and stores 

to objects

Flat address 

space

Runtime/Compiler

Program

Object-based 

model
Object accesses

Ã Strictly hiding the flat address space provides many benefits:

ÄMemory safety prevents memory corruption bugs

ÄAutomatic memory management (garbage collection) simplifies programming

Obj. A

Obj. B

0x0000

0xFFFF



The inexpressive flat address space is inefficient

4

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model



The inexpressive flat address space is inefficient

4

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model

Semantic gap between 

programs and the 

memory hierarchy



The inexpressive flat address space is inefficient

4

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model

Semantic gap between 

programs and the 

memory hierarchy

Main Mem.

Core
L1

$

L2

$

Obj. A Obj

B Obj. C

0x0000

0xFFFF



The inexpressive flat address space is inefficient

4

Mismatch between 

objects and cache lines

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model

Semantic gap between 

programs and the 

memory hierarchy

Main Mem.

Core
L1

$

L2

$

Obj. A Obj

B Obj. C

0x0000

0xFFFF



The inexpressive flat address space is inefficient

4

Mismatch between 

objects and cache lines

Costly associative 

lookups

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model

Semantic gap between 

programs and the 

memory hierarchy

Main Mem.

Core
L1

$

L2

$

Obj. A Obj

B Obj. C

0x0000

0xFFFF



Hotpads: An object-based memory hierarchy

5



Hotpads: An object-based memory hierarchy

5

Ã A memory hierarchy designed from the ground up for object-based programs

ÄProvides first-class support for objects and pointers in the ISA

ÄHides the memory layout from software and takes control over it



Hotpads: An object-based memory hierarchy

5

Ã A memory hierarchy designed from the ground up for object-based programs

ÄProvides first-class support for objects and pointers in the ISA

ÄHides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects



Hotpads: An object-based memory hierarchy

5

Ã A memory hierarchy designed from the ground up for object-based programs

ÄProvides first-class support for objects and pointers in the ISA

ÄHides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Core L1

pad

L2

pad

L3

pad



Hotpads: An object-based memory hierarchy

5

Ã A memory hierarchy designed from the ground up for object-based programs

ÄProvides first-class support for objects and pointers in the ISA

ÄHides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Hotpadsmanages objects 

instead of cache lines

Core L1

pad

L2

pad

L3

pad



Hotpads: An object-based memory hierarchy

5

Ã A memory hierarchy designed from the ground up for object-based programs

ÄProvides first-class support for objects and pointers in the ISA

ÄHides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Hotpadsmanages objects 

instead of cache lines

Core L1

pad

L2

pad

L3

pad

Hotpadsrewrites pointers to 

reduce associative lookups



Hotpads: An object-based memory hierarchy

5

Ã A memory hierarchy designed from the ground up for object-based programs

ÄProvides first-class support for objects and pointers in the ISA

ÄHides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Hotpadsmanages objects 

instead of cache lines

Hotpadsprovides architectural 

support for in-hierarchy object 

allocation and recycling

Core L1

pad

L2

pad

L3

pad

Hotpadsrewrites pointers to 

reduce associative lookups



Prior architectural support for object-based programs

6



Prior architectural support for object-based programs

6

Ã Object-oriented/typed systems [iAPX432, Dally ISCAõ85, CHERI ISCAõ14, Kim et al. ASPLOSõ17] 

focus on core microarchitecture design

ÄAccelerate virtual calls, object references

and dynamic type checks

Core

L1

$

L2

$

Type check unit

vFunctionunit



Prior architectural support for object-based programs

6

Ã Object-oriented/typed systems [iAPX432, Dally ISCAõ85, CHERI ISCAõ14, Kim et al. ASPLOSõ17] 

focus on core microarchitecture design

ÄAccelerate virtual calls, object references

and dynamic type checks

Ã Hardware accelerators for GC [The Lisp Machine,

Joao et al. ISCAõ09, Maas et al. ISCAõ18]

Core

L1

$

L2

$

Type check unit

vFunctionunit

Core

L1

$

L2

$

GC unit



Prior architectural support for object-based programs

6

Ã Object-oriented/typed systems [iAPX432, Dally ISCAõ85, CHERI ISCAõ14, Kim et al. ASPLOSõ17] 

focus on core microarchitecture design

ÄAccelerate virtual calls, object references

and dynamic type checks

Ã Hardware accelerators for GC [The Lisp Machine,

Joao et al. ISCAõ09, Maas et al. ISCAõ18]

Core

L1

$

L2

$

Type check unit

vFunctionunit

Core

L1

$

L2

$

GC unit

Prior work uses standard cache hierarchies



Prior architectural support for object-based programs

6

Ã Object-oriented/typed systems [iAPX432, Dally ISCAõ85, CHERI ISCAõ14, Kim et al. ASPLOSõ17] 

focus on core microarchitecture design

ÄAccelerate virtual calls, object references

and dynamic type checks

Ã Hardware accelerators for GC [The Lisp Machine,

Joao et al. ISCAõ09, Maas et al. ISCAõ18]

Core

L1

$

L2

$

Type check unit

vFunctionunit

Core

L1

$

L2

$

GC unit

We focus on redesigning the memory hierarchy

Prior work uses standard cache hierarchies



Hotpadsoverview

7



Hotpadsoverview

7

Core L1

pad

L2

pad

L3

pad



Hotpadsoverview

7

Ã Data array

ÄManaged as a circular buffer using simple 

bump pointer allocation

ÄStores variable-sized objects compactly

Core L1

pad

L2

pad

L3

pad

Objects

Data Array

Free space



Hotpadsoverview

7

Ã Data array

ÄManaged as a circular buffer using simple 

bump pointer allocation

ÄStores variable-sized objects compactly

Core L1

pad

L2

pad

L3

pad

Objects

Data Array

Free space

Obj. A



Hotpadsoverview

7

Ã Data array

ÄManaged as a circular buffer using simple 

bump pointer allocation

ÄStores variable-sized objects compactly

Core L1

pad

L2

pad

L3

pad

Objects

Data Array

Free space

Obj. A

Obj. B



Hotpadsoverview

7

Ã Data array

ÄManaged as a circular buffer using simple 

bump pointer allocation

ÄStores variable-sized objects compactly

Ã C-Tags

ÄDecoupled tag store used only for a fraction 

of accesses

Core L1

pad

L2

pad

L3

pad

C-Tags

Objects

Data Array

Free space

Obj. A

Obj. B



Hotpadsoverview

7

Ã Data array

ÄManaged as a circular buffer using simple 

bump pointer allocation

ÄStores variable-sized objects compactly

Ã C-Tags

ÄDecoupled tag store used only for a fraction 

of accesses

Ã Metadata

ÄPointer? valid? dirty? recently-used?

Core L1

pad

L2

pad

L3

pad

C-Tags

M
e

ta
d
a

ta

(w
o
rd

/o
b
je

c
t)

Objects

Data Array

Free space

Obj. A

Obj. B



Hotpadsexample

8



Hotpadsexample

8

class Node {
int value;
Node next;

} 



Hotpadsexample

8

class Node {
int value;
Node next;

} 

L1 Pad L2 Pad Main Mem

A
Objects

B

r0
r1
r2
r3

RegFile

Free

space

Initial state.



Hotpadsmoves object implicitly

9

Program code:
int v = A.value ;

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 
Hotpads instructions:
l d r0, (r1).value

class Node {
int value;
Node next;

} 



Hotpadsmoves object implicitly

9

Program code:
int v = A.value ;

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 
Hotpads instructions:
l d r0, (r1).value

ÃAll loads/stores follow a single addressing mode: Base+offset

class Node {
int value;
Node next;

} 



Hotpadsmoves object implicitly

9

Program code:
int v = A.value ;

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 
Hotpads instructions:
l d r0, (r1).value

ÃAll loads/stores follow a single addressing mode: Base+offset

ÃBump pointer allocation stores A compactly after other objects

class Node {
int value;
Node next;

} 



Hotpadsrewrites pointers to avoid associative lookups

10

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 

r1 is rewritten to Aõs L1 pad address.

Program code:
int v = A.value ;

class Node {
int value;
Node next;

} 

Hotpads instructions:
l d r0, (r1).value



Hotpadsrewrites pointers to avoid associative lookups

10

Ã Subsequent dereferences of r1 access Aõs L1 copy directly,

without associative lookups (like a scratchpad)

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 

r1 is rewritten to Aõs L1 pad address.

Program code:
int v = A.value ;

class Node {
int value;
Node next;

} 

Hotpads instructions:
l d r0, (r1).value



Hotpadsrewrites pointers to avoid associative lookups

10

Ã Subsequent dereferences of r1 access Aõs L1 copy directly,

without associative lookups (like a scratchpad)

Ã Hotpads rewrites pointers safely because it hides the memory layout from software

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 

r1 is rewritten to Aõs L1 pad address.

Program code:
int v = A.value ;

class Node {
int value;
Node next;

} 

Hotpads instructions:
l d r0, (r1).value



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

Aõs pointer is rewritten.

A

B

r0
r1
r2
r3

A

Program code:
v = A.next.value ;

Hotpads instructions:
derefptr r2, (r1).next
l d r3, (r2).value

class Node {
int value;
Node next;

} 



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

Aõs pointer is rewritten.

A

B

r0
r1
r2
r3

A
B

Program code:
v = A.next.value ;

Hotpads instructions:
derefptr r2, (r1).next
l d r3, (r2).value

class Node {
int value;
Node next;

} 



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

Aõs pointer is rewritten.

A

B

r0
r1
r2
r3

A
B

Program code:
v = A.next.value ;

Hotpads instructions:
derefptr r2, (r1).next
l d r3, (r2).value

class Node {
int value;
Node next;

} 



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

Aõs pointer is rewritten.

A

B

r0
r1
r2
r3

A
B

Program code:
v = A.next.value ;

Hotpads instructions:
derefptr r2, (r1).next
l d r3, (r2).value

ÃSubsequent dereferences of A.next access the L1 copy of B directly,

without associative lookups

class Node {
int value;
Node next;

} 



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

Aõs pointer is rewritten.

A

B

r0
r1
r2
r3

A
B

C-Tags: A,B
Program code:
v = A.next.value ;

Hotpads instructions:
derefptr r2, (r1).next
l d r3, (r2).value

ÃSubsequent dereferences of A.next access the L1 copy of B directly,

without associative lookups

Ã C-tags let dereferencing other pointers of A and B find their L1 copies

class Node {
int value;
Node next;

} 



Hotpadssupports in-hierarchy object allocation

12

L1 Pad L2 Pad Main MemRegFile

Core allocates new object C.

A

B

r0
r1
r2
r3

A
B
C

Program code:
Node C = new Node();

Hotpads instructions:
alloc r3, t ype=Node

class Node {
int value;
Node next;

} 



Hotpadssupports in-hierarchy object allocation

12

L1 Pad L2 Pad Main MemRegFile

Core allocates new object C.

A

B

r0
r1
r2
r3

A
B
C

Program code:
Node C = new Node();

Hotpads instructions:
alloc r3, t ype=Node

Ã In-hierarchy allocation reduces data movement and requires no 

backing storage in main memory or larger pads

class Node {
int value;
Node next;

} 



Hotpadsunifies garbage collection and object evictions

13

L1 Pad L2 Pad Main MemRegFile

A

B (stale)

A
B
C
D



Hotpadsunifies garbage collection and object evictions

13

L1 Pad L2 Pad Main MemRegFile

A

B (stale)

A
B
C
D

L1 pad is now full



Hotpadsunifies garbage collection and object evictions

13

L1 Pad L2 Pad Main MemRegFile

A

B (stale)

A
B
C
D

ÃWhen a pad fills up, it triggers a collection-eviction (CE) to free space

ÄDiscards dead objects

ÄEvicts live, non-recently used objects to the next level in bulk

L1 pad is now full



Hotpadsunifies garbage collection and object evictions

13

L1 Pad L2 Pad Main MemRegFile

A

B (stale)

A
B
C
D

ÃWhen a pad fills up, it triggers a collection-eviction (CE) to free space

ÄDiscards dead objects

ÄEvicts live, non-recently used objects to the next level in bulk

Ã C is dead (unreferenced). Other objects are live. Only B is recently used.

L1 pad is now full



Hotpadsunifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space



Hotpadsunifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space

Ã CEs happen concurrently with 

program execution and are 

hierarchical



Hotpadsunifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space

Ã CEs happen concurrently with 

program execution and are 

hierarchical

Ã Each pad can perform a CE 

independently from larger, 

higher-level pads ĄMakes CE 

cost proportional to pad size



Hotpadsunifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space

Invariant: Objects at a particular 

level may only point to objects at 

the same or larger levels.

Ã CEs happen concurrently with 

program execution and are 

hierarchical

Ã Each pad can perform a CE 

independently from larger, 

higher-level pads ĄMakes CE 

cost proportional to pad size



Hotpadsunifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space

Invariant: Objects at a particular 

level may only point to objects at 

the same or larger levels.

Result: No need to check the L2 pad when 

performing a collection-eviction in the L1 pad. 

Ã CEs happen concurrently with 

program execution and are 

hierarchical

Ã Each pad can perform a CE 

independently from larger, 

higher-level pads ĄMakes CE 

cost proportional to pad size



Collection-evictions reduce data movement

15



Collection-evictions reduce data movement

15

Ã Hotpads unifies the locality principle and the generational hypothesis



Collection-evictions reduce data movement

15

Ã Hotpads unifies the locality principle and the generational hypothesis

Ã Hotpads acts like a super-generational collector

ÄAccesses to short-lived objects are cheap and fast

ÄMost of main-memory data is live



Collection-evictions reduce data movement

15

Ã Hotpads unifies the locality principle and the generational hypothesis

Ã Hotpads acts like a super-generational collector

ÄAccesses to short-lived objects are cheap and fast

ÄMost of main-memory data is live



Collection-evictions reduce data movement

15

Ã Hotpads unifies the locality principle and the generational hypothesis

Ã Hotpads acts like a super-generational collector

ÄAccesses to short-lived objects are cheap and fast

ÄMost of main-memory data is live

Most objects are collected in 

the L1 pad



Collection-evictions reduce data movement

15

Ã Hotpads unifies the locality principle and the generational hypothesis

Ã Hotpads acts like a super-generational collector

ÄAccesses to short-lived objects are cheap and fast

ÄMost of main-memory data is live

Most objects are collected in 

the L1 pad

90% of object bytes never 

reach main memory 



See paper for additional features

16



See paper for additional features

Ã Supporting large objects with subobject fetches

16



See paper for additional features

Ã Supporting large objects with subobject fetches

Ã Object-level pad coherence

16



See paper for additional features

Ã Supporting large objects with subobject fetches

Ã Object-level pad coherence

Ã Legacy mode to support flat-address-based programs

16



See paper for additional features

Ã Supporting large objects with subobject fetches

Ã Object-level pad coherence

Ã Legacy mode to support flat-address-based programs

Ãé and more details!

16



Evaluation

17



Evaluation

Ã We simulate Hotpads using MaxSim [Rodchenko et al., ISPASSõ17]

ÄA simulator combining ZSim and Maxine JVM

17



Evaluation

Ã We simulate Hotpads using MaxSim [Rodchenko et al., ISPASSõ17]

ÄA simulator combining ZSim and Maxine JVM

Ã Modeled system

Ä4 OOO cores

Ä3-level cache or pad hierarchy 

17

Core L1

Shared L3

Core

L2

L1 L2

é
é



Evaluation

Ã We simulate Hotpads using MaxSim [Rodchenko et al., ISPASSõ17]

ÄA simulator combining ZSim and Maxine JVM

Ã Modeled system

Ä4 OOO cores

Ä3-level cache or pad hierarchy 

Ã Workloads

Ä13 Java workloads from Dacapo, SpecJBB, and JgraphT

ÄJVM modified to use the Hotpads ISA

17

Core L1

Shared L3

Core

L2

L1 L2

é
é



Hotpadsoutperforms conventional hierarchies

18



Hotpadsoutperforms conventional hierarchies

18



Hotpadsoutperforms conventional hierarchies

18

34% 

improvement



Hotpadsoutperforms conventional hierarchies

18

34% 

improvement

1. In-hierarchy allocation reduces 

memory stalls in application code



Hotpadsoutperforms conventional hierarchies

18

34% 

improvement

1. In-hierarchy allocation reduces 

memory stalls in application code

2. Hardware-based collection-

evictions reduce GC overheads



Hotpadsreduces dynamic memory hierarchy energy

19



Hotpadsreduces dynamic memory hierarchy energy

19



Hotpadsreduces dynamic memory hierarchy energy

19

2.6x

reduction


