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Ã A memory hierarchy designed from the ground up for object-based programs

ÄProvides first-class support for objects and pointers in the ISA

ÄHides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Hotpadsmanages objects 

instead of cache lines

Hotpadsprovides architectural 

support for in-hierarchy object 

allocation and recycling
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L3
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Hotpadsrewrites pointers to 

reduce associative lookups
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Ã Object-oriented/typed systems [iAPX432, Dally ISCAõ85, CHERI ISCAõ14, Kim et al. ASPLOSõ17] 

focus on core microarchitecture design

ÄAccelerate virtual calls, object references

and dynamic type checks

Ã Hardware accelerators for GC [The Lisp Machine,

Joao et al. ISCAõ09, Maas et al. ISCAõ18]
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We focus on redesigning the memory hierarchy

Prior work uses standard cache hierarchies
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Ã Data array

ÄManaged as a circular buffer using simple 

bump pointer allocation

ÄStores variable-sized objects compactly

Ã C-Tags

ÄDecoupled tag store used only for a fraction 

of accesses

Ã Metadata

ÄPointer? valid? dirty? recently-used?
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Core issues access to A.

A is copied into L1 pad. 
Hotpads instructions:
l d r0, (r1).value

ÃAll loads/stores follow a single addressing mode: Base+offset

ÃBump pointer allocation stores A compactly after other objects

class Node {
int value;
Node next;

} 
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C-Tags: A,B
Program code:
v = A.next.value ;

Hotpads instructions:
derefptr r2, (r1).next
l d r3, (r2).value

ÃSubsequent dereferences of A.next access the L1 copy of B directly,

without associative lookups

Ã C-tags let dereferencing other pointers of A and B find their L1 copies

class Node {
int value;
Node next;

} 
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L1 Pad L2 Pad Main MemRegFile

Core allocates new object C.
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Program code:
Node C = new Node();

Hotpads instructions:
alloc r3, t ype=Node

Ã In-hierarchy allocation reduces data movement and requires no 

backing storage in main memory or larger pads

class Node {
int value;
Node next;

} 
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ÃWhen a pad fills up, it triggers a collection-eviction (CE) to free space

ÄDiscards dead objects

ÄEvicts live, non-recently used objects to the next level in bulk

Ã C is dead (unreferenced). Other objects are live. Only B is recently used.

L1 pad is now full
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contiguous chunk of free space
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Invariant: Objects at a particular 

level may only point to objects at 

the same or larger levels.

Result: No need to check the L2 pad when 

performing a collection-eviction in the L1 pad. 

Ã CEs happen concurrently with 

program execution and are 

hierarchical

Ã Each pad can perform a CE 

independently from larger, 

higher-level pads ĄMakes CE 

cost proportional to pad size
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Ã Hotpads unifies the locality principle and the generational hypothesis

Ã Hotpads acts like a super-generational collector

ÄAccesses to short-lived objects are cheap and fast

ÄMost of main-memory data is live

Most objects are collected in 

the L1 pad

90% of object bytes never 

reach main memory 



See paper for additional features

16



See paper for additional features

Ã Supporting large objects with subobject fetches

16



See paper for additional features

Ã Supporting large objects with subobject fetches

Ã Object-level pad coherence

16



See paper for additional features

Ã Supporting large objects with subobject fetches

Ã Object-level pad coherence

Ã Legacy mode to support flat-address-based programs

16



See paper for additional features

Ã Supporting large objects with subobject fetches

Ã Object-level pad coherence

Ã Legacy mode to support flat-address-based programs

Ãé and more details!
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Evaluation

Ã We simulate Hotpads using MaxSim [Rodchenko et al., ISPASSõ17]

ÄA simulator combining ZSim and Maxine JVM

Ã Modeled system

Ä4 OOO cores

Ä3-level cache or pad hierarchy 

Ã Workloads

Ä13 Java workloads from Dacapo, SpecJBB, and JgraphT

ÄJVM modified to use the Hotpads ISA
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Hotpadsoutperforms conventional hierarchies

18

34% 

improvement

1. In-hierarchy allocation reduces 

memory stalls in application code

2. Hardware-based collection-

evictions reduce GC overheads
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