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Abstract—Cache partitioning is now available in commercial
hardware. In theory, software can leverage cache partitioning
to use the last-level cache better and improve performance. In
practice, however, current systems implement way-partitioning,
which offers a limited number of partitions and often hurts
performance. These limitations squander the performance
potential of smart cache management.

We present KPart, a hybrid cache partitioning-sharing
technique that sidesteps the limitations of way-partitioning and
unlocks significant performance on current systems. KPart first
groups applications into clusters, then partitions the cache
among these clusters. To build clusters, KPart relies on a
novel technique to estimate the performance loss an application
suffers when sharing a partition. KPart automatically chooses
the number of clusters, balancing the isolation benefits of way-
partitioning with its potential performance impact. KPart uses
detailed profiling information to make these decisions. This
information can be gathered either offline, or online at low
overhead using a novel profiling mechanism.

We evaluate KPart in a real system and in simulation. KPart

improves throughput by 24% on average (up to 79%) on
an Intel Broadwell-D system, whereas prior per-application
partitioning policies improve throughput by just 1.7% on
average and hurt 30% of workloads. Simulation results show
that KPart achieves most of the performance of more advanced
partitioning techniques that are not yet available in hardware.

Keywords-cache partitioning; multicore architectures; perfor-
mance isolation; application clustering

I. INTRODUCTION

Cache partitioning lets system software divide cache

capacity among threads or processes. Partitioning can be

used to improve performance and fairness [21, 30, 39, 53],

prioritize critical applications [12], and implement isolation

among workloads to provide performance guarantees [28,

34]. After years of research showing its potential, recent

multicores from Intel [19] and Cavium [9, 59] now implement

cache partitioning on the shared last-level cache (LLC).

The problem is that these recent systems implement way-

partitioning, a simple cache partitioning technique that has

significant limitations. Way-partitioning divides the few (8

to 32) cache ways among partitions. Therefore, the system

can support only a limited number of partitions (as many

as ways); these partitions are coarsely sized (in multiples

of way size); and small partitions have few ways and thus

low associativity, adding cache misses. For these reasons,

way-partitioning sacrifices significant performance, limiting

its usability in current systems.

∗Part of the QCRI-MIT Joint Research Program.

Prior work has proposed cache partitioning techniques

that address the issues of way-partitioning and can support

hundreds of finely-sized partitions without hurting perfor-

mance [42, 58]. However, they are not yet available in

hardware. Until better techniques make it to real systems,

we should find how to best use the hardware we have.

In this work we focus on using way-partitioning to improve

performance. Prior techniques like the widely-used utility-

based cache partitioning (UCP) [39] give a partition to each

application, and allocate more space to applications that use it

better. To do this, UCP relies on per-application miss curves,

which capture the misses that the application would incur

for each possible partition size.

UCP is effective because it complements the replacement

policy. Replacement policies make frequent decisions on what

specific cache line to evict on each miss, so even sophisticated

policies must be simple and act on local information. By

contrast, UCP makes infrequent decisions about overall cache

allocation, which lets it use more expensive optimization and

global information that captures long-term utility. However,

UCP is completely ineffective in current systems, because

the performance loss incurred by way-partitioning squanders

UCP’s benefits—in fact, UCP often hurts performance even

though its only goal is to improve it.

We solve this problem through two contributions. Our first

and main contribution is KPart, a hybrid cache partitioning-

sharing technique that sidesteps the limitations of way-

partitioning (Sec. III). KPart first groups applications into

clusters, then partitions the cache among these clusters. To

do clustering effectively, KPart relies on a novel algorithm

to estimate the performance loss of sharing a cache partition.

KPart estimates performance for different numbers of clusters

and automatically chooses the best-performing cluster count.

KPart, like prior partitioning policies, requires detailed

profiling information (e.g., miss curves) to find high-quality

configurations. Unfortunately, commodity systems lack the

performance monitoring hardware needed to gather this

information online (e.g., cache utility monitors [39]). Without

this support, prior real-system partitioning techniques either

rely on extensive offline profiling, which precludes online

adaptation and requires advance application knowledge, or

resort to lower-performance partitioning policies that work

with limited information [12, 34, 45].

Our second contribution, DynaWay, tackles this problem

by enabling low-overhead online profiling (Sec. IV). Dyn-
aWay exploits way-partitioning support to perform profiling.
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DynaWay periodically samples different partition sizes across

co-running applications and uses basic performance counters

to infer the per-application cache demand during workload

execution. This information can be used to guide several

cache and memory optimizations; in this work we use it to

guide KPart’s clustering and partitioning decisions.

We implement KPart and DynaWay and evaluate them

using a wide range of application mixes running on an Intel

Broadwell-D system with way-partitioning (Sec. V). We first

evaluate KPart with offline application profiles to study the

quality of its clustering and partitioning decisions. Whereas a

conventional policy that assigns cache partitions to individual

applications improves throughput by just 1.7% on average

and hurts performance on 30% of the mixes, KPart improves

throughput by 24% on average (up to 79%) and does not hurt

performance in any mix. We demonstrate that KPart’s cache-

aware clustering is key to achieving good performance—

simpler clustering techniques yield minimal benefits.

We then evaluate KPart+DynaWay, which relies on

online profiling to make dynamic clustering and partitioning

decisions, and adapts to applications’ time-varying cache

demands. KPart+DynaWay matches or outperforms KPart
with offline profiling information and does not require a-priori

knowledge of application characteristics.

We also use simulation to compare KPart with Van-

tage [42], a fine-grained partitioning technique that does not

yet exist in real hardware. KPart performs almost as well as

Vantage+UCP, closing most of the gap with high-performance

partitioning when the goal is to improve performance.

Finally, we show that KPart+DynaWay can be extended

to handle mixes of latency-critical and batch applications, im-

proving throughput for batch applications without degrading

tail latency for a latency-critical application.

In summary, KPart is a simple technique that extracts

significant performance from basic way-partitioning hardware.

However, KPart is not a full replacement for more advanced

partitioning techniques. First, fine-grained partitioning always

outperforms partitioning-sharing, as shown by Brock et al. [8].

Second, while KPart improves performance, it does not

implement strict isolation, making it inadequate when many

applications want strict performance guarantees. KPart is

publicly available at http://kpart.csail.mit.edu.

II. BACKGROUND AND RELATED WORK

Cache partitioning enables dividing cache capacity among

cores or threads. This section provides background on prior

software and hardware partitioning techniques to enforce

partition sizes, policies to determine partition sizes, and

current implementations of cache partitioning in real systems.

A. Cache partitioning techniques

Software techniques rely on page coloring to partition the

cache along sets, restricting the physical pages used by each

partition so they map to specific cache sets [32, 47, 54, 65,

66]. Page coloring needs no hardware support and does not

sacrifice associativity, but despite much prior work, it is

rarely used. This is due to four main drawbacks. First, page

coloring requires heavy modifications to the OS’s virtual

memory subsystem and precludes the use of other beneficial

features, such as superpages. Second, partitions are coarsely

sized (in multiples of page size×cache ways), so the number

of partitions is limited. This limitation is worse when caches

are indexed using hashing, common in LLCs of modern

systems [36]. Third, the application’s memory footprint

imposes a lower bound on partition size. For example, an

application that uses half of physical memory must get at least

half of the cache. This is unfortunate, because high-footprint

applications often use the cache poorly and should use small

partitions. Fourth, repartitioning incurs high overheads due

to the costly process of recoloring (copying) memory pages.

Why not use page coloring? The above limitations are

qualitatively severe, yet one might ask whether they have a

major quantitative effect. We perform a simple experiment

to answer this question. Consider just one of the virtual

memory features that page coloring is incompatible with,

superpages. Current OSs use superpages whenever possible

to reduce TLB pressure and thus translation overheads. In our

baseline system, disabling superpages (by turning off Linux’s

Transparent Huge Pages [13]) degrades performance by 10%

on average on our applications, with individual applications

slowing down by up to 33%. Since cache partitioning

improves performance by 20-25%, even this single drawback

erases about half of the potential benefits. We conclude that

coloring is at a severe quantitative disadvantage.

Hardware techniques modify the cache to support parti-

tioning. Way-partitioning [1, 2, 11, 40], the most common

technique, restricts insertions from each partition to its

assigned subset of ways. Though simple, way-partitioning has

significant limitations: it supports a small number of coarsely-

sized partitions (in multiples of way size), and partition

associativity is proportional to its way count, so partitioning

can easily degrade performance.

Prior work has proposed alternative hardware techniques

that avoid the problems of way-partitioning. Some techniques

make the indexing function configurable to partition the

cache by sets instead of ways [4, 40, 57] while avoiding

the problems of page coloring. Other techniques modify

the insertion and replacement policies [35, 42, 58, 62, 64].

Among these, Vantage [42] and Futility Scaling [58] provide

strong probabilistic bounds on partition size and isolation

among partitions. These techniques support hundreds of

partitions and do not degrade performance. However, they

are not available in existing hardware, which implements

basic way-partitioning.

Hybrid techniques: Finally, Wang et al. [59] recently

proposed SWAP, a technique that combines set- and way-

partitioning to achieve finer-granularity partitions than are

possible with either technique. SWAP and KPart share the
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(a) With no partitioning (our baseline), all appli-
cations share all ways.
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(b) With per-application partitioning, each appli-
cation is mapped to a different partition.
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(c) With KPart, multiple applications can be
mapped to a single partition.

Figure 1: Real-system example demonstrating the limitations of conventional UCP in a way-partitioned cache on an 8-core Intel Broadwell processor.

same goal: making way-partitioning useful. However, they

take different approaches. SWAP leverages page coloring to

achieve finer-grain partitions. SWAP thus inherits the limita-

tions of page coloring: SWAP reduces but does not remove

the recoloring problem, requires heavy OS modifications, and

does not work with superpages (since a 2 MB x86 superpage

covers all cache sets). By contrast, KPart leverages clustering

to make good use of coarse-grain partitions. KPart avoids the

performance and complexity issues of page coloring, but does

not provide isolation among applications in the same cluster.

B. Cache partitioning policies

A partitioning policy allocates cache capacity to each

partition to satisfy system-level objectives, such as maxi-

mizing system throughput [8, 39], improving fairness [32,

37, 60], or guaranteeing quality of service [34, 67]. A key

aspect of partitioning policies is how they map applications

to partitions. Most policies map each core or application to a

different partition [37, 39], and some use multiple partitions

per core or application [5, 38]. By contrast, KPart clusters

applications so that these policies work well even when

hardware supports a limited number of partitions.

The most popular partitioning policy for optimizing system

throughput, which is the focus of this work, is Utility-based

Cache Partitioning (UCP) [39]. UCP decides partition sizes

using per-core miss curves. These curves capture the misses

that the core would incur for each possible partition size. UCP

proposes simple hardware monitors to estimate miss curves,

though other proposals profile them offline or infrequently

in software [55]. UCP proposes the Lookahead algorithm,

a quadratic-time algorithm that finds the partition sizes that

seek to maximize the expected total number of cache hits

(i.e., the cache utility). Prior work has extended online miss

curve profiling and cache partitioning to non-uniform cache

architectures (NUCAs) [4, 26, 31, 56] and to perform thread

mapping [6, 25]. In place of the Lookahead algorithm, prior

work has also used dynamic programming to find the optimal

partition sizes [8, 37, 50].

KPart adopts UCP’s Lookahead algorithm, but allocates

cache ways across groups of applications. In addition

to performing cache-aware application clustering, KPart
improves UCP’s decisions by (i) using instructions per cycle

(IPC) speedup, a more direct performance metric, as the utility

objective, and (ii) accounting for bandwidth contention.

C. Cache partitioning in real systems

Recent processors from Intel [19] and Cavium [9, 59]

feature hardware support for cache partitioning, but are

limited in two aspects. First, they implement way-partitioning,

hurting performance when many partitions are used. Second,

they do not have hardware miss curve monitors, which limits

the information available to dynamic partitioning policies.

These handicaps have so far limited the range of policies

these systems can support. While Cook et al. [12], Hera-

cles [34], and Dirigent [67] exploit this hardware support,

they seek to prioritize or isolate a single critical application.

Therefore, they use two partitions only (one for the critical

application and another for all other processes), and their

partitioning algorithm is driven by the performance needs

of the critical application rather than by overall efficiency.

By contrast, techniques that optimize for overall efficiency,

like UCP, assign cache partitions on a per-application basis

and fare poorly on real hardware with coarse-grained way-

partitioning (see motivating example in the next section).

Finally, concurrently with our work, Selfa et al. [45] have

recently proposed to leverage way-partitioning to improve

system fairness. Like KPart, Selfa et al. group applications

into clusters, then partition the cache among clusters. Because

current systems lack hardware miss curve monitors, Selfa et

al. rely on k-means to cluster applications based on a single

hardware performance counter. This simplistic clustering

can degrade system throughput significantly unless clusters

use overlapping cache partitions, and even then, it does

not improve system throughput [45]. By contrast, KPart
groups applications using richer profiling information and

significantly improves system throughput. Our evaluation

shows that clustering based on detailed profiling information

is essential to achieving high-performance configurations.

III. KPART DESIGN

KPart is a hybrid cache partitioning-sharing technique.

It avoids the granularity and associativity pitfalls of way-

partitioning by grouping applications into a few clusters, then

partitioning the cache among these clusters. While reducing

the number of partitions by grouping applications is a straight-

forward concept, finding the right set of clusters is not.

Motivating example: Fig. 1 showcases the need for KPart
using a concrete example. We run a mix of applications on

an Intel Broadwell-D processor where eight cores share a
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Figure 2: KPart overview. KPart uses hierarchical clustering to group applications, estimates the performance of each number of clusters under partitioning,
chooses the number of clusters that yields the best estimated performance, then assigns cache partitions to clusters.

12 MB, 12-way LLC. Fig. 1a shows the eight-application mix

we use running in the baseline, unpartitioned configuration,

where all applications share the whole LLC. Fig. 1b shows

how a conventional per-application partitioning policy, UCP,

divides cache capacity. In this machine, each partition must

receive at least one way. Therefore, all applications but hmmer

receive one or two ways, and suffer from poor associativity.

As a result, UCP ends up degrading throughput (measured as

weighted speedup) over the unpartitioned baseline by 3.8%.

Fig. 1c shows how KPart sidesteps way-partitioning’s

limitations. Using application cache profiles, KPart groups

this set of applications into three clusters of one, three, and

four applications each. It then partitions the cache among

clusters. Applications within a cluster share the cluster’s

partition. That way, each partition is larger than with UCP and

associativity is thus sufficient. KPart improves performance

by 17% over the baseline on this mix.

Overview: Fig. 2 provides an overview of KPart’s design.

First, KPart profiles applications to collect information about

their cache access patterns. Profiling can be done either

offline, once per application (Sec. III-A), or online, adapting

dynamically to application behavior (Sec. IV). Second, given

an application mix, KPart uses a hierarchical clustering

algorithm to group applications with compatible cache-access

behaviors into cache-sharing clusters (Sec. III-B). Third,

KPart combines performance estimation heuristics and UCP’s

Lookahead algorithm to generate the LLC partitioning plan

for each possible number of clusters, which we denote as K

(Sec. III-C). Finally, KPart automatically selects the number

of clusters K estimated to produce the best throughput for

the application mix (Kauto), and partitions the LLC according

to the partitioning plan for this cluster count (Sec. III-D).

A. Profiling information

KPart uses information about an application’s memory-

access patterns to guide its decisions, particularly several

curves that capture how sensitive the application’s perfor-

mance is to cache capacity, collected either offline or online.

In offline profiling, the performance curves are constructed

by executing each application with various cache partition

sizes (in terms of cache ways) on the target machine. KPart
measures the following metrics in each run: cache misses

(in misses per kiloinstruction (MPKI)), average instructions

per cycle (IPC), and average memory bandwidth (in GB/s).

The cache miss measurements provide the application’s

miss curve, which describes how misses change as a function

of available cache capacity. KPart’s clustering algorithm

(Sec. III-B) uses such per-application miss curves to compute

a distance metric between applications in a given workload

mix and group them into clusters. Similarly KPart builds

per-application IPC curves and memory bandwidth curves

from IPC and bandwidth readings at different cache sizes.

While KPart’s clustering algorithm only uses miss curves,

the IPC and bandwidth curves are important to find the

cache partitioning plan for a given set of clusters and to

choose the right number of clusters. In particular, IPC curves

give a more direct measure of application performance than

miss curves. For example, we find that, due to prefetching

and memory-level parallelism, an application can have large

reductions in misses but little to no change in IPC.

Online profiling produces the same curves described above,

but during workload execution, using a novel and efficient

sampling technique (detailed in Sec. IV).

B. Clustering applications

KPart groups applications based on their cache-sharing

compatibility levels. To achieve this, KPart uses a distance

metric between application miss curves that captures how

many additional cache misses are expected when two

applications share a partition versus when they are isolated

in separate partitions.

Distance metric: Our pairwise distance metric is the same

as that proposed for Whirlpool [38]. To quantify the expected

additional cache misses when two applications share a cache

partition, KPart first estimates the “combined” and the

“partitioned” miss curves for those applications:

• The combined miss curve gives the expected misses when

two applications share a cache partition for the range

of possible partition sizes. For each partition capacity,

Whirlpool’s model [38] estimates the cache space each

application would occupy on average when sharing the

partition. The expected misses is the sum of the misses of

individual applications at their estimated cache occupancies
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(computed from the applications’ miss curves).1

• The partitioned miss curve gives the estimated total

number of cache misses when a specific amount of cache

capacity is partitioned among two applications (using

UCP’s Lookahead algorithm).

KPart then computes the distance between two applications

as the area between their combined and partitioned miss

curves. At each cache size, the partitioned miss curve has

lower misses than the combined miss curve, indicating the

benefit of cache partitioning. The area between the two

curves reflects how many additional misses are expected

when these applications share the cache, aggregated over

different cache sizes. A larger area indicates an overall higher

relative performance gain by isolating the two applications

over letting them freely share cache capacity.

Note that Whirlpool [38] uses the distance metric for

a different objective: to cluster a single application’s data

structures into pools and partition the cache dynamically

among them. In contrast, KPart aims to group applications

into clusters so that they can share a single cache partition.

Hierarchical clustering: For a given mix of N applications,

the objective of KPart’s clustering algorithm is to learn how

the applications should be mapped to a given number of

clusters K (K ∈ [1,N]). With K=1 (which we call NoPart)
the LLC is left unpartitioned, while with K=N (which we

call NoClust) each application receives its own partition.

KPart uses a simple hierarchical clustering [24] algorithm

that produces the application groupings for all possible cluster

counts in one pass. The algorithm works iteratively. It starts

with each application in a separate cluster. In each iteration,

it computes the pairwise distances between all clusters using

the above distance metric and merges the two closest clusters.

To compute the miss curve of the new cluster, KPart
combines the miss curves of the individual clusters with the

same miss curve combining algorithm used to compute the

pairwise distances. This new per-cluster combined miss curve

is then used in the next iteration to compute the pairwise

distances between the new cluster and remaining clusters.

Note that the miss curves capture the estimated total cache

misses, so clusters of different sizes (containing different

numbers of application instances) are properly weighted in

the distance calculation and comparison. This process repeats

until all applications are merged into a single cluster.

Clustering example: Fig. 3 illustrates KPart’s hierarchical

clustering algorithm on an example 6-application mix. Each

iteration merges two clusters. After 5 iterations, the algorithm

produces clustering results for all K values, from 6 down

to 1. Fig. 3 shows the application clusters generated by

the algorithm for each K. For example, with K=2, hmmer

and sphinx share a cluster (shown in green), while the

remaining applications share the second cluster (in red). With

1 We use Whirlpool’s combined miss curve model because it is simple
and accurate. Prior work has proposed other ways to estimate combined
miss curves [10, 52, 63]. KPart could be used with these techniques instead.
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Figure 3: KPart’s hierarchical clustering on an example 6-application mix.

K=3, KPart places libq, a streaming application, in its own

cluster to separate it from its more cache-sensitive peers.

C. Partitioning for a fixed number of clusters

KPart’s hierarchical clustering algorithm produces appli-

cation groups for all possible numbers of clusters K. We

now explain how KPart partitions cache capacity among

clusters for a given K (Sec. III-D discusses how to select

the best K). Performing cache partitioning among clusters is

very similar to partitioning among applications. In fact, we

could simply apply standard UCP, feeding the per-cluster

miss curves to the Lookahead algorithm to find the sizes that

minimize total cache misses across the system. The miss

curve of each cluster is readily available—it is the combined

miss curve used by the clustering algorithm.

Optimizing speedups: Partitioning using miss curves works

well, as we will see in Sec. V, but we can do better. Because

KPart seeks to maximize weighted speedup, it is better

to optimize on speedup curves. We define an application’s

speedup curve as:

Speedup(s) =
IPC(s)

IPC(C/N)
(1)

where IPC(s) is the IPC curve, i.e., the application’s instruc-

tions per cycle when it is given cache size s (Sec. III-A), C is

the total cache capacity, and N is the number of applications

(hence C/N is the amount of cache that would correspond to

the application if the cache was divided evenly). The speedup

curve reflects how application performance changes when it

is given more or less cache space than its fair share.

Since KPart partitions among clusters, it needs the speedup

curve of each cluster. The per-cluster speedup curve for a

given cache size s is the sum of the speedups of the cluster’s

applications 1, ..., j, at the cache sizes they consume s1, ...,s j,

i.e., Speedup(s) = ∑
j
i=1 Speedupi(si), where s = ∑

j
i=1 si.

Luckily, s1, ...,s j are readily available, because the algorithm

that we use to compute the combined miss curve (Sec. III-B)

already tracks the fraction of space that each application in

the cluster would consume at each size s.

Once KPart has computed the per-cluster speedup curves,

it simply feeds them into the Lookahead algorithm to find

the partition sizes that maximize aggregate speedup.

5



Prior simulation-based studies proposed to perform parti-

tioning on IPC curves directly, but found minor throughput

gains [33]. We do observe about 5% higher weighted speedup

on average when using speedup curves instead of miss curves,

with larger gains in some mixes. The reason is that some

applications have large differences in misses over partition

sizes, but their IPCs barely change. This happens when

prefetchers are effective or the core can issue many memory

references in parallel, reducing their latency impact.

Accounting for memory bandwidth contention: In addi-

tion to cache capacity, applications also compete for main

memory bandwidth. We find that memory bandwidth is

often saturated, which affects applications’ performance

(i.e., IPC) differently. Hence, it is important to account for

bandwidth contention in KPart’s decisions. KPart uses a

simple technique to achieve this. This technique leverages

each application’s memory bandwidth curve, which reflects

how much data is transferred to and from memory at each

possible cache size (Sec. III-A). Once the partitioning plan

is done, KPart uses the bandwidth curves to estimate the

total memory bandwidth consumption. If this value exceeds

the system’s memory bandwidth, KPart derates IPCs to stay

within the system’s memory bandwidth. Specifically, KPart
scales each application’s IPC curve by a constant derating

factor. KPart then performs a second round of partitioning

using these scaled IPC curves to find the final partition sizes.

In general, it is hard to infer exactly how slower memory

accesses slow down each application. KPart does something

very simple: it derates each application’s performance in

proportion to its memory bandwidth (e.g., an application

that consumes 4 GB/s will be slowed down twice as much

as an application that consumes 2 GB/s). This is simplistic

but captures the first-order effect of bandwidth contention. It

relies on the assumption that each application has identical

memory-level parallelism. Although prefetchers make this

assumption grossly inaccurate in theory, real prefetchers

throttle themselves when memory bandwidth is limited, so

we find our approach is reasonably accurate in practice.

KPart could be combined with more sophisticated slowdown

estimation techniques [51], which we leave to future work.

By default, KPart uses speedup curves and accounts for

memory bandwidth contention to partition cache capacity.

In Sec. V, we will see how these techniques improve

performance over partitioning solely based on miss curves.

D. Selecting the best number of clusters

KPart predicts the number of clusters K that would produce

the highest improvement for a given workload using a

simple but effective approach. A nice side effect of using

speedup curves to size partitions, as presented above, is that

the optimization algorithm produces an estimated aggregate

speedup, which is directly correlated to weighted speedup.

Therefore, KPart produces partitioning plans across the whole

range of numbers of clusters K, and then chooses the K that

is estimated to perform best. We refer to this automatically

selected K as Kauto.

We also experimented with other machine-learning clus-

tering indexes that estimate a ratio between inter-cluster

dissimilarity and intra-cluster similarity, but found our simple

technique to be more effective. Although our technique

requires repeating the partitioning process across the full

range of K values, we find it has small overheads at the

scales we study.

E. Overhead

The key overhead in KPart is running the quadratic-

time Lookahead algorithm [39] for each possible K. For

a specific number of clusters K, the runtime complexity

to partition a N-way LLC with the Lookahead algorithm

is O(K ·N2). Therefore, for a system with a N-way LLC

running M applications, the runtime complexity of Kauto

is O(∑M
k=1 k ·N2) = O(M2

·N2). In our experiments, with 8

applications and 12 ways, the whole KPart algorithm finishes

in less than 1 ms. However, larger systems with hundreds of

cores and applications may need more efficient approaches,

such as sampling a few K values or using Peekahead [4], an

O(K ·N) implementation of Lookahead.

IV. DYNAWAY: DYNAMIC PROFILING USING

WAY-PARTITIONING

KPart uses miss, IPC, and bandwidth curves to guide

its decisions. Ideally, the system should include hardware

monitors that sample this information for free. Unfortunately,

existing systems lack such monitoring infrastructure.

Specifically, prior work has proposed utility monitors

(UMONs) [39] to profile miss curves in hardware. UMONs

are small set-associative tag arrays (e.g., 1–4 KB per core)

that sample a fraction of the accesses. UMONs leverage

address sampling to simulate large caches efficiently and

the stack property of LRU to profile multiple partition

sizes at once. Although UMONs alone do not provide IPC

curves, these could be accurately estimated from miss curves

given additional performance counters designed to predict

the impact of varying miss rates, such as CPI stacks [17].

Similarly, bandwidth curves can be easily derived from miss

curves given the fraction of dirty data in the LLC, as their

key difference is that they include dirty writebacks.

Lacking this support, prior work has proposed many

software techniques to estimate miss curves in software [7,

44, 46, 55]. Like UMONs, these methods rely on address

sampling, which is expensive to perform in software, re-

quiring either binary instrumentation [44] or interrupting

the thread on every memory access [7, 46]. These tools

then use efficient analytical models, such as StatCache [7]

or StatStack [15], to estimate miss curves from address

traces. Even with careful time- or phase-based sampling [44,

46], these techniques incur substantial slowdowns, of 21%

to over 2× [46], making them too slow for our purposes
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(RapidMRC [55] has lower overheads because it uses IBM

POWER5’s SDAR performance counters, which are not

available in commodity systems).

To overcome the lack of hardware monitors while avoiding

the overheads of software address sampling, we design

DynaWay, a simple technique that exploits way-partitioning

to perform online profiling.

DynaWay works by periodically taking control of way-

partitioning hardware for a brief profiling phase. In this phase,

it profiles one application at a time. It splits cache capacity

into two partitions: one for the target application and the

other shared by all remaining applications. Then, it sweeps

the application’s partition size over multiple measurement

intervals. At the end of each interval, DynaWay measures

the LLC misses, IPC, and memory accesses for the profiled

application. This yields the miss, IPC, and bandwidth curves

for all applications.

During each profiling phase, DynaWay’s sweeps will

degrade the performance of cache-sensitive applications.

However, as we will see in Sec. V, this has a minor impact on

overall performance, for two reasons. First, profiling sparingly

(e.g., one profiling phase per 40 B cycles) is sufficient. Second,

we introduce two simple optimizations that reduce the number

of measurement intervals and their length:

Optimization 1—Reducing the number of measurement

intervals: On a system with A applications and a W -way

cache, naive DynaWay would require A ·W measurement

intervals. Instead of sweeping all possible cache allocations

per application, we find it is sufficient to sample few

allocations and interpolate to estimate the whole curve. On

our 12-way LLC, we profile 6 evenly spaced allocations (1, 3,

..., 11 ways), halving the number of measurement intervals.

Optimization 2—Reducing measurement interval length:

On each measurement interval, DynaWay should ideally

capture the steady-state behavior of the profiled partition

size. The problem is that each measurement phase incurs

a significant transient period: when DynaWay changes

partition sizes, threads take time to fill and leverage their

new allocations. These transients can be tens of milliseconds

long [28], so it is crucial to minimize them.

We observe that an effective strategy to reduce warmup

length is to sample decreasing partition sizes. Fig. 4 illustrates

this process. Each application is first given a single warmup

interval where it is allowed to take over the cache. Then,

each successive measurement interval decreases its allocation.

Because part of its allocation is given to all other applications

in the system, they fill this space quickly, resulting in a short

transient between successive intervals. Profiling increasing

partition sizes (e.g., starting at 1 way and giving 2 extra

ways each interval) is comparatively much slower, as a single

application takes more time to fill in cache space.

This simple strategy effectively reduces measurement

interval sizes. With our strategy, 20 Mcycle intervals produce
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Figure 4: DynaWay’s profiling phase. DynaWay samples decreasing
partition sizes to reduce the impact of transients.

accurate curves. Meanwhile, sampling increasing partition

sizes requires 80–100 Mcycle intervals to achieve comparable

accuracy. Our strategy thus yields a 4–5× reduction in

measurement interval length.

Overhead: DynaWay, and indeed any other software miss

curve profiling technique, will cause some performance

degradation on each profiling phase. In DynaWay, the length

of the profiling phase scales linearly with core count. This

adds small overheads on systems with up to tens of cores, as

we show in our evaluation (Sec. V-F). However, systems with

hundreds of cores would suffer from long profiling phases,

and may need less-frequent sampling or hardware support

for profiling (e.g., UMONs [39]).

V. EVALUATION

A. Experimental methodology

Platform: We evaluate KPart on an 8-core Intel Broadwell

D-1540 processor that supports way-partitioning [19]. Table I

details the system’s main characteristics and configuration.

Applications: We use applications from the SPEC

CPU2006 [18] and PBBS [48] benchmark suites. We select

the 18 applications that are LLC-intensive, i.e., have an L2

miss rate of at least 5 MPKI. We classify each application

TABLE I: SPECIFICATIONS OF THE SYSTEM USED.

Core 8 Xeon D-1540 cores (Broadwell), 2.0 GHz

L1 caches 32 KB, per-core, split D/I, 8-way set-associative
L2 cache 256 KB, private per-core, 8-way set-associative
L3 cache 12 MB, shared, 12-way set-associative, inclusive,

DRRIP high-performance replacement policy [23,
61]; Way-partitioning with Intel CAT [19], sup-
ports 12 partitions

Memory 32 GB (2×16 GB DIMMs), DDR4 2133 MT/s

OS Ubuntu 14.04, Linux kernel version 4.2.3

TABLE II: APPLICATIONS USED IN OUR EVALUATION (CS =
CACHE-SENSITIVE, ST = STREAMING).

Suite Class Applications

SPEC
CPU2006

[18]

CS mcf, omnetpp, sphinx3, xalancbmk
ST hmmer, milc, leslie3d, GemsFDTD, lbm,

libquantum

PBBS
[48]

CS bfs, delaunay, matching, refine, sa, st
ST mis, remDups
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as either cache-sensitive (CS) or streaming (ST), similar to

prior work [22]. Cache-sensitive applications are those that

observe an IPC improvement of at least 10% over cache

allocations, while streaming or cache-insensitive applications

do not. Table II lists these applications and their classification.

Workload mixes: For most of our evaluation, we execute

30 different multiprogrammed workloads (i.e., mixes). Each

workload consists of 8 applications selected randomly (with

replacement) from our pool of LLC-intensive applications

(Table II). Each application is pinned to a different core,

thereby utilizing all cores in the system. Most of our

experiments also enforce a balanced 1:1 ratio between cache-

sensitive and streaming applications on each mix. Sec. V-E

explores different workload sizes and ratios of cache-sensitive

and streaming applications.

Like prior work, we use a fixed-work methodology [20] to

run each workload. All applications in the mix start together

and are kept running until each application completes at least

10 billion instructions. We consider only the first 10 billion

instructions of each application when reporting performance.

Metrics and techniques: We measure system throughput

using weighted speedup [16, 49], calculated as follows for a

mix of N applications:

WeightedSpeedup =
1

N

N

∑
i=1

IPCi

IPCi,NoPart

(2)

NoPart refers to the baseline configuration, where the LLC

is left unpartitioned and is shared among all applications.

For a given mix of N applications, we evaluate KPart
while varying K (the number of clusters) from 2 to N, in

separate runs. We refer to K=N as NoClust, since this scheme

represents a conventional policy where each application

receives its own partition, with no clustering.

We exhaustively evaluate all possible K values and not only

our estimated Kauto (from Sec. III-C) to better understand

how KPart performs under different K choices, as well as to

verify Kauto’s quality. In particular, we examine the K that

produced the best actual throughput, Kbest , and compare its

performance to that of our predicted Kauto.

Profiling information: Secs. V-B through V-E focus on

analyzing KPart alone, and use per-application profiling infor-

mation gathered offline. Sec. V-F evaluates KPart+DynaWay,

which uses online profiling.

B. KPart performance

Fig. 5 summarizes the performance of KPart and other

partitioning schemes when running 30 different 8-application

mixes using offline application profiles. Fig. 5a shows the

distribution of weighted speedups (S-Curve or inverse CDF)

of KPart with fixed and automatically-chosen numbers

of clusters. Each line shows the distribution of weighted

speedups over NoPart for a single scheme. Each line is

sorted independently. (For clarity, we omit the lines with

K=3, 5, and 7 from the S-curve.) Fig. 5b shows the average

performance gains across all mixes for all schemes.
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Figure 5: Performance of KPart over NoPart for various configurations.
Kbest is the best-performing number of clusters (K). Kauto is KPart’s
automatically chosen K. K = 2...7 are KPart with a fixed number of clusters.
NoClust, i.e., K = 8, is KPart’s partitioning without application clustering.

These results show that KPart improves system throughput

by up to 78.9% over an unpartitioned system and by 24.2%

on average under KPart’s estimated Kauto. By contrast, we

find that using a conventional, per-application partitioning

policy like NoClust with coarse-grained way-partitioning

improves average performance by 1.7% only, and hurts

performance for 30% of the mixes.

We now take a closer look at Kbest , the K value that

actually produces the highest throughput for each mix. Fig. 6a

shows the distribution of Kbest . Overall, smaller cluster counts

work better: grouping applications into 2 or 3 cache-sharing

clusters yielded the highest throughput in 66% of our mixes.

However, a significant fraction of mixes perform best with a

large number of clusters. For example, 15% of mixes have

Kbest = 5. Moreover, grouping applications into as many as

7 clusters still outperforms NoClust significantly.
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Figure 6: Choosing the K in KPart: (a) Lower K values (2, 3) are generally
better. (b) KPart correctly estimates Kbest around 60% of the time and
deviates from Kbest ’s throughput by only 1.7% on average.

How good is KPart’s Kauto? Fig. 6b studies the quality of

KPart’s estimated Kauto across the mixes by quantifying how

much KPart’s throughput improvement deviated from that of

the best possible improvement for the same mix, given by the

oracle Kbest . A zero deviation implies that KPart was able to

select the exact Kbest , which is the case in around 60% of the

mixes. Overall, KPart’s delivers high-quality performance

estimations and automatic selection of K: the performance

of Kauto deviates on average from the performance of Kbest

across the mixes by only 1.7% (mispredicting mostly among

K values that perform very similarly).
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C. Analysis of KPart’s performance gains

To deepen our understanding of where KPart’s perfor-

mance gains come from, we isolate and study the effect

of two key components in the design of KPart: application

clustering and performance-based partitioning.

Effect of clustering: KPart’s hybrid sharing-partitioning

approach relies on miss curves to cluster applications. We

investigate how sensitive KPart is to the quality of the pro-

duced clustering configuration, by designing another scheme,

RandClust, that maps applications to clusters randomly.

RandClust is also a hybrid sharing-partitioning scheme, but

unlike KPart, RandClust is oblivious to the cache behavior

of the applications when it clusters them.

After random clustering, RandClust applies the same

subsequent steps as KPart does and produces a per-cluster

partitioning plan. We evaluate RandClust with the same

30 mixes. Fig. 7 compares the average performance of

RandClust with that of KPart under different cluster counts.
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Figure 7: Performance gains of KPart and RandClust (which randomly
clusters applications) at various K values.

The results show that KPart outperforms RandClust sig-

nificantly. RandClust achieves improvements of 4–8% across

different K values, and the smallest improvement happens

at K=2, where it is crucial to choose the right applications.

By contrast, KPart consistently improves performance with

fewer clusters, achieving gains of over 20% with K=2 and

K=3. Since the only difference between KPart and RandClust
is how they group applications, we conclude that KPart’s
cache-aware clustering algorithm is essential to realize the

potential of hybrid partitioning-sharing.

Effect of performance-based partitioning: As discussed

in Sec. III-C, KPart performs partitioning using per-clus-

ter speedup curves and accounts for memory bandwidth

contention. This is different from conventional policies like

UCP, which determine partition sizes using miss curves only

and do not account for memory contention. To study the

effect of these partitioning enhancements, we implemented

two derivatives of KPart that perform application clustering

exactly like KPart, but determine the per-cluster partition

sizes differently. The first scheme partitions using speedup

curves like KPart, while the second partitions based on per-

cluster miss curves (i.e., like UCP but on a per-cluster basis).

Neither scheme takes into account bandwidth contention.
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Figure 8: Comparison of partitioning techniques: speedup curve partitioning
with bandwidth contention estimation (SC + BW), speedup curve partitioning
(SC), and miss curve partitioning (MC).

Fig. 8 compares KPart with the two simplified schemes.

It shows that KPart’s partitioning approach outperforms

traditional miss-curve-based partitioning significantly, and

that accounting for memory contention enhances KPart’s
partitioning quality, particularly for larger cluster counts. In

K=8 (i.e. NoClust), performance degrades over NoPart when

disabling these partitioning enhancements.

D. A closer look into KPart: Case studies

We now take a closer look at selected, representative mixes

to better understand how different applications within a mix

interact, as well as the impact of their grouping or isolation.

In particular, we analyze the following scenarios:

• Case 1: The mix that exhibits the highest throughput

improvement under KPart and where a low K (number of

clusters) works better.

• Case 2: A mix where a high K works better.

• Case 3: A mix where cache partitioning does not signifi-

cantly improve performance.

Fig. 9 shows detailed performance results for these cases.

The left-most plots show system throughput for each mix

under different schemes; the middle plots display per-

application speedups (measured as IPCi,scheme/IPCi,NoPart)

for selected schemes; and the right-most plots report the

corresponding cache partitioning plans.

As expected, we find that cache-sensitive (CS) applications

typically benefit the most from KPart’s hybrid approach. This

is the case even when KPart places these CS applications in

a shared partition with several other applications.

For example, in Case 1 (K=2), four different CS applica-

tions share a large cache partition of 11 ways: xalanc, bfs,

omnet, and hmmer. KPart with K=2 ends up isolating these

CS applications from the streaming applications in the mix,

which are all assigned to share a small, 1-way partition. This

configuration benefits the CS applications without hurting the

streaming ones. For instance, omnet performs 4.8× times

better under K=2 compared to the NoPart configuration, as

can be seen in Fig. 9a. Overall, KPart improves system

throughput for this mix by 78.9% over NoPart.
However, simply grouping applications into two partitions,

one for CS and another for ST ones, is rarely the best

configuration. We examined all K=2 configurations in our
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Figure 9: Case studies: performance gain of each scheme (left), per-application speedups over NoPart (middle), and LLC partitioning plans (right).

mixes and found that in only 4 mixes KPart groups all CS

applications in a cluster and all ST applications in another.

Case 2 (Fig. 9b) is a mix where K=6 works best. This can

be explained by the significant performance gains achieved

by one CS application, xalanc, which is given 7 cache ways

under K=6. Other CS applications in the mix (e.g., matching

and st) benefit more from sharing a large partition under

K=2, but their gains do not improve system throughput as

much as xalanc does with K=6. This shows that cache-

aware clustering is highly workload-dependent: while K=2

or K=3 work well in most cases, there are cases where a

larger number of clusters excels.

Finally, Case 3 (Fig. 9c) is a mix with relatively low

improvements under most partitioning schemes. Under the

best scheme for this mix, K=2, three CS applications (two

copies of delaunay and st) benefit from sharing a 10-way

partition, improving system throughput by 8.5% over NoPart.
Using more partitions does not give any additional benefit.

In fact, NoClust degrades performance by 4.8%.

Summary of case studies: The mixes discussed above

highlight the importance of combining cache sharing and

partitioning to make the best of coarse-grained way-parti-

tioning. Our clustering algorithm is effective in exploiting

cache-sharing compatibility between co-running applications,

particularly the cache-sensitive applications, by letting them

share partitions while staying isolated from streaming ap-

plications that would otherwise pollute the cache. These

streaming, cache-insensitive applications share a small cache

partition, which saves LLC capacity and improves system

throughput significantly.

E. Sensitivity analysis

We now analyze KPart’s sensitivity to the characteristics

of the workload mix, particularly the ratio between cache-

sensitive and streaming applications and the mix size.

Effect of workload cache-sensitivity distribution: To as-

sess KPart’s effectiveness working with diverse workload

mixes, which may not have a balanced distribution between

cache-sensitive and streaming members, we generate random

mixes while enforcing specific ratios between these two

classes of applications.

Fig. 10 reports KPart’s performance when running 10

different workloads that are dominated either by (a) cache-

sensitive applications, or (b) streaming applications.
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(b) CS:ST ratio = 1:3

Figure 10: Effect of the ratio between cache-sensitive (CS) and streaming
(ST) applications in 8-application workloads.

We find that when mixes are dominated by cache-sensitive

applications (Fig. 10a), the benefits of partitioning become

more muted, and KPart improves performance by 10% on

average. The need for KPart however remains crucial here,

to avoid the significant throughput degradation that would

otherwise happen under a policy like NoClust (which hurts

throughput by 7.6% on average). Unsurprisingly, with more

cache-sensitive applications, NoClust is forced to spread

cache ways thin, hurting most applications due to reduced

associativity. For similar reasons, high cluster counts with

KPart also end up hurting system throughput.

By contrast, when streaming applications dominate the mix

(Fig. 10b), KPart improves system throughput by 18.3% on

average and up to 64.5%, as it packs these cache-insensitive

applications together and gives them small LLC allocations,

saving the majority of ways for the cache-hungry minority.

Effect of workload size: So far we have evaluated KPart
while fully utilizing all eight cores available. We now study

KPart’s performance under smaller workload mixes that

consist of 4 and 6 applications. Fig. 11 reports these results.

As expected, the improvements are higher when the number

of co-executing applications grows, due to the increased cache

contention, for both space and associativity. With both 4- and

6-application mixes, Kauto still performs reasonably close to

Kbest , and smaller K values also fare better. Meanwhile, the

no-clustering strategy, NoClust, is less harmful than with

8-application mixes, as the low per-application allocation

problem is less severe with fewer applications per mix. These

results suggest that the benefit of KPart is likely to be more

visible on systems where the core-to-way ratio is higher or

the cores tend to be fully occupied (such as datacenter nodes

with optimized VM/task scheduling).
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Figure 11: Effect of workload mix size on the 8-core system.

F. KPart with DynaWay’s online profiling

The results presented so far were obtained when KPart uses

offline profiles. But offline profiling limits KPart’s potential

in certain scenarios, such as when program input deviates

significantly from that used for profiling or when application

cache demands vary over time (e.g., due to phase changes).

KPart+DynaWay addresses these issues (Sec. IV). We

have implemented KPart+DynaWay in C++ and evaluate it

with the same Broadwell system and applications used so far.

To better study the value of online profiling and explore a

wide range of reconfiguration intervals, we run the workloads

in these experiments for a longer period. Specifically, we run

mixes until all applications within a mix complete at least

200 B instructions, with the first 60 B instructions used as

a warmup period, during which DynaWay performs one or

more profiling phases.
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Figure 12: Performance of KPart with online profiling and dynamic
cache reconfiguration (KPart+DynaWay) versus offline profiling and static
configuration (KPart[Static]).

Fig. 12a shows KPart+DynaWay’s average performance

gains across 10 workload mixes as a function of the

reconfiguration interval used (i.e., the time between profiling

phases). We find that, for this system and applications,

profiling applications and reconfiguring the cache every 40 B

cycles strikes the best balance between profiling overheads

and performance gains, improving system throughput by

26.2% on average over an unpartitioned system. This

performance gain not only matches but even surpasses the

gain achieved by Kauto[Static] (25.4% for these workloads),

which does not perform any online profiling. Fig. 12b zooms

in on the KPart+DynaWay[40B] performance by showing

the distribution of the throughput gains across the mixes.

KPart+DynaWay[40B] improves system throughput by up

to 52.3% over an unpartitioned system.

In terms of time spent profiling (which overlaps with

regular computation since applications are not stopped during

profiling), we find that, under KPart+DynaWay[40B], total

profiling time comprises only 1.7% of workload execution

time on average across mixes. Moreover, since applications

are kept running during profiling, the performance impact is

significantly smaller than 1.7%.
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Figure 13: Case study demonstrating the differences between static KPart
and KPart+DynaWay’s decisions for a mix of applications that benefits
more from dynamic profiling and partitioning.

Case study: KPart+DynaWay does not use a priori profiling

information, and since it profiles applications periodically, it

improves performance when applications have time-varying

cache needs. We demonstrate this through a case study.

The mix shown in Fig. 13 benefits more significantly from

KPart+DynaWay (36.6% improvement over baseline) than

static KPart (22.3% improvement over baseline). Static KPart
groups these applications into two clusters and dedicates a

large 11-way partition to three cache-sensitive applications

based on their offline profiles, which capture average

behavior over the entire execution interval. By contrast,

KPart+DynaWay’s decisions change over time in response

to varying applications needs: KPart+DynaWay’s decisions

match static KPart’s on certain phases, but on phases where

xalanc’s cache demand increases, KPart+DynaWay adapts

its clustering and partitioning decisions accordingly (e.g.,

120–160 Bcycles in Fig. 13). As a result, xalanc benefits

more from KPart+DynaWay, increasing system throughput.

G. KPart vs. high-performance partitioning

Finally, after evaluating KPart on a real system with

hardware way-partitioning, we study how KPart fares against

fine-grained cache-partitioning techniques that do not exist

yet in real systems. Our goal is to understand how much

of the gap between way-partitioning and more advanced

partitioning techniques does KPart bridge. Specifically, we

compare against Vantage [42], which supports hundreds of

fine-grained partitions without degrading performance.

For these experiments, we perform microarchitectural,

execution-driven simulation using zsim [43]. We simulate a 8-

core system with a 12MB LLC that matches the configuration

of the Broadwell machine described in Table I. We evaluate

way-partitioned schemes on a 12-way hashed set-associative

cache and Vantage using a ZCache [41] with 4 ways and

52 replacement candidates.

We use the same methodology described in Sec. V-A

to generate 30 mixes of SPEC CPU2006 and PBBS apps.

However, to avoid long simulation times, we only simulate

2 billion instructions after fast-forwarding for 10 billion.

All the experiments we present use partitioning based on

miss curves (not speedup curves), because Vantage uses
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Figure 14: Simulation results show that KPart achieves most of the
performance benefits of Vantage, a fine-grained partitioning technique that
does not exist in real hardware.

miss curves. Therefore, we report KPart results for fixed K

values and Kbest , but not Kauto, which relies on speedup-curve

partitioning. We use the simulator to gather miss curves, and

run Lookahead on them. Note that, like NoClust, Vantage
gives each application a different cache partition.

Fig. 14 shows the performance gains of these schemes over

NoPart. Fig. 14a shows the distribution of performance gains,

and Fig. 14b shows the average gain of each scheme. Trends

are similar to the real-system results (Fig. 5): K=2 and K=3

perform best among KPart variations, while performance

drops for higher K values, and NoClust hurts performance on

average. Vantage performs best overall, with a 22% speedup

over NoPart on average. K=2 and K=3 both achieve a 18%

speedup over NoPart, and Kbest achieves 20%.

These results show that KPart achieves most of the benefits

of advanced, fine-grained partitioning techniques that do

not exist yet in real hardware, when partitioning is used to

improve system throughput. Effectively, KPart bridges the

gap between current and future cache partitioning techniques

without requiring any OS modifications or special hardware.

H. KPart with latency-critical applications

Datacenters must often run both latency-critical (LC) and

batch applications. LC applications require low tail (e.g., 95th

percentile) latencies. They thus suffer from low utilization

when running alone and are hard to colocate with other

applications [3, 14]. To address this issue, recent work [28,

34, 67] proposes to leverage cache partitioning to avoid tail

latency violations when colocating LC and batch applications.

Since KPart is a throughput-oriented partitioning scheme,

it will hurt the tail latency of LC applications if applied

directly [28]. Fortunately, it is straightforward to combine

KPart with a QoS-oriented cache partitioning policy, such

as Ubik [28] or Heracles [34], to improve the throughput

of batch applications while avoiding tail latency violations

of the LC application. In this setup, the QoS-oriented cache

partitioning technique first determines the capacity required

by the LC application, and KPart divides the remaining

capacity among batch applications.

Methodology: We use the same 8-core Broadwell-D proces-

sor described in Sec. V-A. We dedicate four cores to execute
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one multithreaded LC application, configured to span four

threads. The remaining four cores are used to run a mix

of four randomly-selected batch applications. As in prior

experiments, all threads are pinned to cores.

For the LC workloads, we experimented with three applica-

tions from the TailBench suite [29], which represent request-

driven workloads typical in datacenter environments: moses,

a statistical machine translation system; masstree, a scalable

in-memory key-value store; and xapian, an open-source

online search engine. We use TailBench’s standard, open-

loop harness: requests are sent at a fixed rate (i.e., queries

per second, QPS) without waiting for responses to previous

requests. Each workload’s QPS is set to the value that, when

the workload runs alone with full cache capacity, achieves

50% CPU utilization. This is a typical setup [27, 29].

We implement and compare the following schemes:

• NoPart uses an unpartitioned LLC, with the LC and batch

applications sharing all 12 ways.

• HC+NoPartBatch uses two partitions, one for the LC

application and another for all batch applications. The

technique seeks to maintain a tail latency target for the LC

application by using simple feedback-based hill-climbing

(HC), as in Heracles [34]. Initially, the cache is divided

equally. If the LC application’s current tail latency is below

the target, the LC application donates capacity to the batch

applications; otherwise, the LC application steals capacity

from the batch applications to reduce its tail latency.

• HC+KPartBatch uses the same hill-climbing technique as

above to determine the LC partition capacity. However the

cache capacity available to batch applications is partitioned

using KPart+DynaWay instead.

The HC policies use a different tail latency target for

each application. This target is determined by first measuring

the LC application’s tail latency when given 50% of cache

capacity and co-running with the batch applications, which

share the remaining 50% of the cache. The target is this tail

latency, plus 2% to allow for small performance degradations.

Results: Fig. 15 compares the above schemes. Each plot

reports results for a single mix, and each dot shows, for

a single scheme, the throughput of the batch applications

(x-axis) and the 95th percentile latency of the LC application

(y-axis). All results are normalized to HC+NoPartBatch’s.

We find that HC+NoPartBatch effectively maintains LC

applications at or under their latency targets. However,

HC+NoPartBatch has the lowest batch throughput of all

schemes, because it leaves relatively little capacity to batch

applications, and this capacity is unpartitioned.

By contrast, NoPart improves batch throughput by up to

14% over HC+NoPartBatch. But xapian and masstree vi-

olate their target tail latencies, as they suffer from insufficient

cache capacity. Curiously, NoPart improves tail latency for

moses. This happens because moses is bandwidth-sensitive,

and giving more cache to batch applications reduces their

memory bandwidth demand, leaving more for moses.
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Figure 15: Combining KPart with simple hill-climbing (HC) for latency-
critical applications improves throughput for batch applications while
protecting/improving the tail latency of the latency-critical application.

Finally, HC+KPartBatch improves batch throughput sig-

nificantly (by up to 28%) while meeting the tail latency

targets for all LC applications. For moses, HC+KPartBatch
improves tail latency over HC+NoPartBatch even more

(by 7%), because KPart+DynaWay reduces the bandwidth

demands of batch applications even further.

VI. CONCLUSION

We have presented KPart, a hybrid cache partitioning-

sharing technique that significantly improves throughput in

commodity multicores with way-partitioned caches, without

requiring OS changes. KPart groups applications into clusters

based on their cache-behavior compatibility, then partitions

the cache among these clusters. KPart uses detailed profiling

information, gathered either offline or online. To achieve

low-overhead online profiling, we introduce DynaWay, a

simple technique that leverages way-partitioning for profiling.

KPart improves throughput by 24% on average (up to

79%) on a Broadwell-D system, whereas a conventional

per-application partitioning policy improves throughput by

just 1.7%. Moreover, KPart+DynaWay enables low-overhead

online profiling, matching the performance of KPart with

offline profiling while avoiding its drawbacks. KPart is

publicly available at http://kpart.csail.mit.edu.
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