
PHI: ARCHITECTURAL SUPPORT FOR 
SYNCHRONIZATION- AND BANDWIDTH-EFFICIENT 

COMMUTATIVE SCATTER UPDATES

Anurag Mukkara, Nathan Beckmann, Daniel Sanchez

MICRO 2019 



Scatter updates are common but inefficient 2

 

 

 

 

 

 



Scatter updates are common but inefficient 2

¨ Scatter updates are common in sparse algorithms
¤ e.g., in push graph algorithms, vertices scatter updates to 

outgoing neighbors

 

 

 

 



Scatter updates are common but inefficient 2

¨ Scatter updates are common in sparse algorithms
¤ e.g., in push graph algorithms, vertices scatter updates to 

outgoing neighbors

¨ Current memory hierarchies are optimized for reads
¤ Scatter updates suffer from high synchronization and high 

memory bandwidth

 

 



Scatter updates are common but inefficient 2

¨ Scatter updates are common in sparse algorithms
¤ e.g., in push graph algorithms, vertices scatter updates to 

outgoing neighbors

¨ Current memory hierarchies are optimized for reads
¤ Scatter updates suffer from high synchronization and high 

memory bandwidth

 

 

Cache

Core

Memory
Fetch

Fetch

WB

WB



Scatter updates are common but inefficient 2

¨ Scatter updates are common in sparse algorithms
¤ e.g., in push graph algorithms, vertices scatter updates to 

outgoing neighbors

¨ Current memory hierarchies are optimized for reads
¤ Scatter updates suffer from high synchronization and high 

memory bandwidth

¨ Key insight: Many scatter updates are commutative and can 
be reordered for performance

 

Cache

Core

Memory
Fetch

Fetch

WB

WB



Scatter updates are common but inefficient 2

¨ Scatter updates are common in sparse algorithms
¤ e.g., in push graph algorithms, vertices scatter updates to outgoing 

neighbors

¨ Current memory hierarchies are optimized for reads
¤ Scatter updates suffer from high synchronization and high memory 

bandwidth

¨ Key insight: Many scatter updates are commutative and can be 
reordered for performance

¨ PHI extends the cache hierarchy to exploit temporal and spatial 
locality of commutative scatter updates

Cache

Core

Memory
Fetch

Fetch

WB

WB



Scatter updates are common but inefficient 2

¨ Scatter updates are common in sparse algorithms
¤ e.g., in push graph algorithms, vertices scatter updates to outgoing 

neighbors

¨ Current memory hierarchies are optimized for reads
¤ Scatter updates suffer from high synchronization and high memory 

bandwidth

¨ Key insight: Many scatter updates are commutative and can be 
reordered for performance

¨ PHI extends the cache hierarchy to exploit temporal and spatial 
locality of commutative scatter updates

Cache

Core

Memory
Fetch

Fetch

WB

WB

Cache

Core

Memory
Push

Push



Scatter updates are common but inefficient 2

¨ Scatter updates are common in sparse algorithms
¤ e.g., in push graph algorithms, vertices scatter updates to outgoing 

neighbors

¨ Current memory hierarchies are optimized for reads
¤ Scatter updates suffer from high synchronization and high memory 

bandwidth

¨ Key insight: Many scatter updates are commutative and can be 
reordered for performance

¨ PHI extends the cache hierarchy to exploit temporal and spatial 
locality of commutative scatter updates

Cache

Core

Memory
Fetch

Fetch

WB

WB

Cache

Core

Memory
Push

Push
Merge



PHI gives large benefits 3

 

 



PHI gives large benefits 3

¨ PageRank algorithm on UK web graph
¨ 16-core processor with 32MB cache, 4 memory controllers



PHI gives large benefits 3

Push Pull UB PHI
0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

tra
ffi

c

3.5x

Memory traffic

¨ PageRank algorithm on UK web graph
¨ 16-core processor with 32MB cache, 4 memory controllers



PHI gives large benefits 3

Push Pull UB PHI
0
1
2
3
4
5
6
7

Sp
ee

du
p 

ov
er

 P
us

h

Push Pull UB PHI
0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

tra
ffi

c

3.5x

PerformanceMemory traffic

¨ PageRank algorithm on UK web graph
¨ 16-core processor with 32MB cache, 4 memory controllers



Agenda 4

¨ Background

¨ PHI Design

¨ Evaluation



Scatter updates are important 5

 

 

 

 

 

 



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
 

 

 

 

 



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

 

 

 

 



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

 

 

 

 

for src in vertices:
for dst in outNeighbors(src):

vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

 

 

 

 

1

0

2

4

3
for src in vertices:

for dst in outNeighbors(src):
vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

 

 

 

 

1

0

2

4

3
for src in vertices:

for dst in outNeighbors(src):
vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

 

 

 

 

1

0

2

4

3
for src in vertices:

for dst in outNeighbors(src):
vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

¨ Pull mode: Indirect accesses are gather reads

 

 

 

1

0

2

4

3
for src in vertices:

for dst in outNeighbors(src):
vertex(dst) += vertex(src)

for dst in vertices:
for src in inNeighbors(dst):

vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

¨ Pull mode: Indirect accesses are gather reads

 

 

 

1

0

2

4

3

1

0

2

4

3

for src in vertices:
for dst in outNeighbors(src):

vertex(dst) += vertex(src)

for dst in vertices:
for src in inNeighbors(dst):

vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

¨ Pull mode: Indirect accesses are gather reads

 

 

 

1

0

2

4

3

1

0

2

4

3

for src in vertices:
for dst in outNeighbors(src):

vertex(dst) += vertex(src)

for dst in vertices:
for src in inNeighbors(dst):

vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

¨ Pull mode: Indirect accesses are gather reads

 

 

 

1

0

2

4

3

1

0

2

4

3

for src in vertices:
for dst in outNeighbors(src):

vertex(dst) += vertex(src)

for dst in vertices:
for src in inNeighbors(dst):

vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

¨ Pull mode: Indirect accesses are gather reads

 

 

 

1

0

2

4

3

1

0

2

4

3

for src in vertices:
for dst in outNeighbors(src):

vertex(dst) += vertex(src)

for dst in vertices:
for src in inNeighbors(dst):

vertex(dst) += vertex(src)



Scatter updates are important 5

¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

¨ Pull mode: Indirect accesses are gather reads

¨ Important to support scatter updates efficiently
¤ Push mode performs less work when few vertices are active

¤ Some algorithms do not admit a pull implementation

1

0

2

4

3

1

0

2

4

3

for src in vertices:
for dst in outNeighbors(src):

vertex(dst) += vertex(src)

for dst in vertices:
for src in inNeighbors(dst):

vertex(dst) += vertex(src)



Scatter updates are inefficient on conventional hierarchies
6

 

 

 

 



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

 

 



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging

1

0

2

4

3



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging

1

0

2

4

3

Core

Cache

Shared	Cache

Memory

Core

Cache…

…



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging

1

0

2

4

3

Core

Cache

Shared	Cache

Memory

Core

Cache…

…

2



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging

1

0

2

4

3

Core

Cache

Shared	Cache

Memory

Core

Cache…

…

2



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging

1

0

2

4

3

Core

Cache

Shared	Cache

Memory

Core

Cache…

…

2



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging

1

0

2

4

3

Core

Cache

Shared	Cache

Memory

Core

Cache…

…

2



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging

1

0

2

4

3

Push UB PHI
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
em

or
y 

re
qu

es
ts

pe
r e

dg
eUpdates

Destination
Vertex
Source
Vertex
CSR

Updates
Destination
Vertex
Source
Vertex
CSR

Core

Cache

Shared	Cache

Memory

Core

Cache…

…

2

Push PageRank on uk-2005 graph



Scatter updates are inefficient on conventional hierarchies
6

¨ Poor temporal and spatial locality when inputs do not fit in cache
¤Wasteful data transfers from main memory

¨ Multiple threads update the same vertex
¤Cache line ping-ponging

1

0

2

4

3

Push UB PHI
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
em

or
y 

re
qu

es
ts

pe
r e

dg
e

93% of traffic due 
to scatter updates

10x more traffic 
than compulsory

Updates
Destination
Vertex
Source
Vertex
CSR

Updates
Destination
Vertex
Source
Vertex
CSR

Core

Cache

Shared	Cache

Memory

Core

Cache…

…

2

Push PageRank on uk-2005 graph



Prior hardware support for scatter updates 7

 

 

 

 

 



Prior hardware support for scatter updates 7

¨ Remote memory operations (RMOs) send and perform update 
operations at a fixed location (e.g., shared cache banks)
 

 

 

 



Prior hardware support for scatter updates 7

¨ Remote memory operations (RMOs) send and perform update 
operations at a fixed location (e.g., shared cache banks)
¤Avoids cache-line ping ponging

 

 

 



Prior hardware support for scatter updates 7

¨ Remote memory operations (RMOs) send and perform update 
operations at a fixed location (e.g., shared cache banks)
¤Avoids cache-line ping ponging

¨ COUP [MICRO’15] modifies the coherence protocol to perform 
commutative operations in a distributed fashion

 

 



Prior hardware support for scatter updates 7

¨ Remote memory operations (RMOs) send and perform update 
operations at a fixed location (e.g., shared cache banks)
¤Avoids cache-line ping ponging

¨ COUP [MICRO’15] modifies the coherence protocol to perform 
commutative operations in a distributed fashion

¨ Both RMOs and COUP do not improve locality
 



Prior hardware support for scatter updates 7

¨ Remote memory operations (RMOs) send and perform update 
operations at a fixed location (e.g., shared cache banks)
¤Avoids cache-line ping ponging

¨ COUP [MICRO’15] modifies the coherence protocol to perform 
commutative operations in a distributed fashion

¨ Both RMOs and COUP do not improve locality
¤Bottlenecked by memory traffic with large inputs



PHI builds on Update Batching (UB) 8

 

 

 

Propagation Blocking [IPDPS’17], MILK [PACT’16]



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
 

 

Propagation Blocking [IPDPS’17], MILK [PACT’16]



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
 

 

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Propagation Blocking [IPDPS’17], MILK [PACT’16]



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
 

 

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Propagation Blocking [IPDPS’17], MILK [PACT’16]



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
 

 

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Propagation Blocking [IPDPS’17], MILK [PACT’16]

Destination
Ids

0 115

90 7

4 6

83 12



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
¨ Binning phase: Logs updates to memory, dividing them into cache-fitting 

slices (bins) of vertices
 

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

1.	Binning	Phase

Propagation Blocking [IPDPS’17], MILK [PACT’16]

Destination
Ids

0 115

90 7

4 6

83 12



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
¨ Binning phase: Logs updates to memory, dividing them into cache-fitting 

slices (bins) of vertices
 

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Bin	0
A0 B5 A 0 ……. D3

1.	Binning	Phase

Propagation Blocking [IPDPS’17], MILK [PACT’16]

Destination
Ids

0 115

90 7

4 6

83 12



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
¨ Binning phase: Logs updates to memory, dividing them into cache-fitting 

slices (bins) of vertices
 

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Bin	0
A0 B5 A 0 ……. D3

A 9 B B7

Bin	1
11 ……. D12

1.	Binning	Phase

Propagation Blocking [IPDPS’17], MILK [PACT’16]

Destination
Ids

0 115

90 7

4 6

83 12



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
¨ Binning phase: Logs updates to memory, dividing them into cache-fitting 

slices (bins) of vertices
 

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Bin	0
A0 B5 A 0 ……. D3

A 9 B B7

Bin	1
11 ……. D12

1.	Binning	Phase

Main 
memory

Propagation Blocking [IPDPS’17], MILK [PACT’16]

Destination
Ids

0 115

90 7

4 6

83 12



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
¨ Binning phase: Logs updates to memory, dividing them into cache-fitting 

slices (bins) of vertices
¨ Accumulation phase: Reads and applies logged updates bin-by-bin

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Bin	0
A0 B5 A 0 ……. D3

A 9 B B7

Bin	1
11 ……. D12

1.	Binning	Phase 2.	Accumulation	Phase

Main 
memory

Propagation Blocking [IPDPS’17], MILK [PACT’16]

Destination
Ids

0 115

90 7

4 6

83 12



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
¨ Binning phase: Logs updates to memory, dividing them into cache-fitting 

slices (bins) of vertices
¨ Accumulation phase: Reads and applies logged updates bin-by-bin

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Bin	0
A0 B5 A 0 ……. D3

A 9 B B7

Bin	1
11 ……. D12

1.	Binning	Phase 2.	Accumulation	Phase

Main 
memory

Propagation Blocking [IPDPS’17], MILK [PACT’16]

Destination
Ids

0 115

90 7

4 6

83 12



PHI builds on Update Batching (UB) 8

¨ Maximizes spatial locality of memory transfers using two-phase execution
¨ Binning phase: Logs updates to memory, dividing them into cache-fitting 

slices (bins) of vertices
¨ Accumulation phase: Reads and applies logged updates bin-by-bin

Cache	
fitting	
slice

0

8

16

.

.

Destination
Vertices

.

.

Source
Vertices

A

B

.

.

C

D

Bin	0
A0 B5 A 0 ……. D3

A 9 B B7

Bin	1
11 ……. D12

1.	Binning	Phase 2.	Accumulation	Phase

Main 
memory

Propagation Blocking [IPDPS’17], MILK [PACT’16]

Destination
Ids

0 115

90 7

4 6

83 12



Update Batching tradeoffs 9

 

 

 

 



Update Batching tradeoffs 9

¨ Perfect spatial locality for all main memory transfers
¤Compulsory memory traffic for all data structures

 

 



Update Batching tradeoffs 9

¨ Perfect spatial locality for all main memory transfers
¤Compulsory memory traffic for all data structures

¨ Binning phase ignores temporal locality
¤Generates large stream of updates even with structured inputs



Update Batching tradeoffs 9

Push UB PHI
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
em

or
y 

re
qu

es
ts

pe
r e

dg
e

Updates
Destination
Vertex
Source
Vertex
CSR

Unstructured input

¨ Perfect spatial locality for all main memory transfers
¤Compulsory memory traffic for all data structures

¨ Binning phase ignores temporal locality
¤Generates large stream of updates even with structured inputs

Push PageRank on uk-2005 graph



Update Batching tradeoffs 9

Push UB PHI
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
em

or
y 

re
qu

es
ts

pe
r e

dg
e

Updates
Destination
Vertex
Source
Vertex
CSR

Unstructured input

¨ Perfect spatial locality for all main memory transfers
¤Compulsory memory traffic for all data structures

¨ Binning phase ignores temporal locality
¤Generates large stream of updates even with structured inputs

Push PageRank on uk-2005 graph



Update Batching tradeoffs 9

Push UB PHI
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
em

or
y 

re
qu

es
ts

pe
r e

dg
e

Updates
Destination
Vertex
Source
Vertex
CSR

Unstructured input

¨ Perfect spatial locality for all main memory transfers
¤Compulsory memory traffic for all data structures

¨ Binning phase ignores temporal locality
¤Generates large stream of updates even with structured inputs

Push PageRank on uk-2005 graph



Update Batching tradeoffs 9

Push UB PHI
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
em

or
y 

re
qu

es
ts

pe
r e

dg
e

Push UB PHI
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
em

or
y 

re
qu

es
ts

pe
r e

dg
e

Updates
Destination
Vertex
Source
Vertex
CSR

Unstructured input Structured input

¨ Perfect spatial locality for all main memory transfers
¤Compulsory memory traffic for all data structures

¨ Binning phase ignores temporal locality
¤Generates large stream of updates even with structured inputs

Push PageRank on uk-2005 graph



Agenda 10

¨ Background

¨ PHI Design

¨ Evaluation



Key techniques of PHI 11

 

 

 

 

 

 

 



Key techniques of PHI 11

¨ In-cache update buffering and coalescing
¤Exploits temporal locality

 

 

 

 

 



Key techniques of PHI 11

¨ In-cache update buffering and coalescing
¤Exploits temporal locality

¨ Selective update batching
¤Achieves high spatial locality

 

 

 



Key techniques of PHI 11

¨ In-cache update buffering and coalescing
¤Exploits temporal locality

¨ Selective update batching
¤Achieves high spatial locality

 

 

 

Bandwidth 
efficient



Key techniques of PHI 11

¨ In-cache update buffering and coalescing
¤Exploits temporal locality

¨ Selective update batching
¤Achieves high spatial locality

¨ Hierarchical buffering and coalescing
¤Enables update parallelism
¤Eliminates synchronization overheads

Bandwidth 
efficient

Synchronization
efficient



In-cache buffering and coalescing 12

 

 

 



In-cache buffering and coalescing 12

¨ Buffer updates in cache without ever 
accessing main memory

 

 



In-cache buffering and coalescing 12

¨ Buffer updates in cache without ever 
accessing main memory

¨ Treat cache as a large coalescing 
buffer for updates

 



In-cache buffering and coalescing 12

¨ Buffer updates in cache without ever 
accessing main memory

¨ Treat cache as a large coalescing 
buffer for updates

¨ Reduction ALU in cache bank performs 
coalescing



In-cache buffering and coalescing 12

Cache

¨ Buffer updates in cache without ever 
accessing main memory

¨ Treat cache as a large coalescing 
buffer for updates

¨ Reduction ALU in cache bank performs 
coalescing

Core

Memory
0xFOO 10



In-cache buffering and coalescing 12

UPDATE	
0xFOO, +4

Cache

¨ Buffer updates in cache without ever 
accessing main memory

¨ Treat cache as a large coalescing 
buffer for updates

¨ Reduction ALU in cache bank performs 
coalescing

Core

Memory
0xFOO 10



In-cache buffering and coalescing 12

UPDATE	
0xFOO, +4

Cache

¨ Buffer updates in cache without ever 
accessing main memory

¨ Treat cache as a large coalescing 
buffer for updates

¨ Reduction ALU in cache bank performs 
coalescing

Core

Memory

40xFOO

0xFOO 10



In-cache buffering and coalescing 12

Cache

¨ Buffer updates in cache without ever 
accessing main memory

¨ Treat cache as a large coalescing 
buffer for updates

¨ Reduction ALU in cache bank performs 
coalescing

Core

Memory

40xFOO

0xFOO 10



In-cache buffering and coalescing 12

Cache

¨ Buffer updates in cache without ever 
accessing main memory

¨ Treat cache as a large coalescing 
buffer for updates

¨ Reduction ALU in cache bank performs 
coalescing

Core

Memory

4

UPDATE	
0xFOO, +2

0xFOO

0xFOO 10



In-cache buffering and coalescing 12

Cache

¨ Buffer updates in cache without ever 
accessing main memory

¨ Treat cache as a large coalescing 
buffer for updates

¨ Reduction ALU in cache bank performs 
coalescing

Core

Memory

4

UPDATE	
0xFOO, +2

60xFOO

0xFOO 10



Handling cache evictions 13

 

 

 

 



Handling cache evictions 13

¨ PHI adapts to the amount of spatial locality in the evicted line

 

 

 



Handling cache evictions 13

¨ PHI adapts to the amount of spatial locality in the evicted line

¨ Cache controller performs update batching selectively
¤Achieves good spatial locality in all cases

 



Handling cache evictions 13

¨ PHI adapts to the amount of spatial locality in the evicted line

¨ Cache controller performs update batching selectively
¤Achieves good spatial locality in all cases

¨ Key insight: Update batching is a good tradeoff only when the 
evicted line has poor spatial locality



Case 1: Evicted line has few updates 14

 

 



Case 1: Evicted line has few updates 14

¨ Log updates to temporary buffers (stored in cache)
 



Case 1: Evicted line has few updates 14

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full



Case 1: Evicted line has few updates 14

Cache

Memory

0 0 7 00xA4:

0 3 0 00xF8:

F00 40x10:

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates



Case 1: Evicted line has few updates 14

Evict	0xA4

Cache

Memory

0 0 7 00xA4:

0 3 0 00xF8:

F00 40x10:

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates



Case 1: Evicted line has few updates 14

Evict	0xA4

Cache

Memory

0 3 0 00xF8:

F00 40x10:

INV

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates



Case 1: Evicted line has few updates 14

Evict	0xA4

Cache

Memory

0 3 0 00xF8:

F00 4 A48 70x10:

INV

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates



Case 1: Evicted line has few updates 14

Cache

Memory

0 3 0 00xF8:

F00 4 A48 70x10:

INV

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates



Case 1: Evicted line has few updates 14

Cache

Memory

0 3 0 00xF8:

F00 4 A48 70x10:

INV
Evict	0xF8

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates



Case 1: Evicted line has few updates 14

Cache

Memory

0 3 0 00xF8:

F00 4 A48 70x10:

INV
Evict	0xF8

Evict	0x10

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates



Case 1: Evicted line has few updates 14

Cache

Memory

0 3 0 00xF8:

F00 4 A48 70x10:

INV
Evict	0xF8

Evict	0x10

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates



Case 1: Evicted line has few updates 14

Cache

Memory

0 3 0 00xF8:

F00 4 A48 70x10:

INV
Evict	0xF8

Evict	0x10

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates

F00 4 A48 70x10:



Case 1: Evicted line has few updates 14

Cache

Memory

0 3 0 00xF8:

INV
Evict	0xF8

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates

INV

F00 4 A48 70x10:



Case 1: Evicted line has few updates 14

Cache

Memory

INV

INV

¨ Log updates to temporary buffers (stored in cache)
¨ These buffers are later evicted to memory when full

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

F00 4 A48 70x10:

Line	with
batched	updates

F84 30x11:

F00 4 A48 70x10:



Case 1: Evicted line has many valid updates 15

 

___



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

___



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

Cache

Memory

4 6 3 00xF0:
___

5 6 1 80xBC:
0 7 9 20xDF:

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

1 2 1 70xF0:



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

Cache

Memory

4 6 3 00xF0:Evict	0xF0
___

5 6 1 80xBC:
0 7 9 20xDF:

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

1 2 1 70xF0:



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

Cache

Memory

4 6 3 00xF0:Evict	0xF0
___

5 6 1 80xBC:
0 7 9 20xDF:

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

1 2 1 70xF0:



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

Cache

Memory

4 6 3 00xF0:Evict	0xF0
___

5 6 1 80xBC:
0 7 9 20xDF:

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

1 2 1 70xF0:



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

Cache

Memory

4 6 3 00xF0:Evict	0xF0
___

5 6 1 80xBC:
0 7 9 20xDF:

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

1 2 1 70xF0:

MERGE



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

Cache

Memory

4 6 3 00xF0:Evict	0xF0
___

5 6 1 80xBC:
0 7 9 20xDF:

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

1 2 1 70xF0:

MERGE



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

Cache

Memory

4 6 3 00xF0:Evict	0xF0
___

5 6 1 80xBC:
0 7 9 20xDF:

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

5 8 4 70xF0:

MERGE



Case 1: Evicted line has many valid updates 15

¨ Fetch line from main memory and merge updates

Cache

Memory

Evict	0xF0
___

INV

5 6 1 80xBC:
0 7 9 20xDF:

INV

0 4 0 00xF0:

Invalid	line

Buffered-updates	line

5 8 4 70xF0:

MERGE



PHI avoids synchronization costs 16

 

 

 

 



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

Update	0xF04,	+4

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0:

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0:

Update	0xF08,	+3

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0: 0 0 3 00xF0:

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0: 0 0 3 00xF0:

Update	0xB5C,	+2

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0: 0 0 3 00xF0:

Evict	0xF0

Update	0xB5C,	+2

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0: 0 0 3 00xF0:

0 0 3 00xF0:

Evict	0xF0

Update	0xB5C,	+2

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0:

0 0 3 00xF0:

Update	0xB5C,	+2

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0:

0 0 3 00xF0:

0 0 0 20xB5:

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0:

0 0 3 00xF0:

0 0 0 20xB5:

Update	0xA00,	+1

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0:

0 0 3 00xF0:

0 0 0 20xB5:

Update	0xA00,	+1

Evict	0xF0

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 0 00xF0:

0 4 3 00xF0:

0 0 0 20xB5:

Update	0xA00,	+1

Evict	0xF0

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

0 4 3 00xF0:

0 0 0 20xB5:

Update	0xA00,	+1

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

 

 

Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

1 0 0 00xA0:

0 4 3 00xF0:

0 0 0 20xB5:

Memory



PHI avoids synchronization costs 16

¨ Private caches buffer and coalesce 
updates locally, push them to shared 
cache on evictions
¤No need for a coherence protocol

¨ Private caches do not perform update 
batching
¤Simply evict buffered-update lines to 

shared cache
Core	1

Private	Cache	0

Shared	Cache

Core	0

Private	Cache	1

1 0 0 00xA0:

0 4 3 00xF0:

0 0 0 20xB5:

Memory



PHI has minimal hardware costs 17

 

 

 

 

 



PHI has minimal hardware costs 17

¨ Per-line buffered updates bit
¤0.17% additional storage with 64-byte lines

 

 

 



PHI has minimal hardware costs 17

¨ Per-line buffered updates bit
¤0.17% additional storage with 64-byte lines

¨ Reduction unit for each cache bank
¤Supports 64-bit floating-point and integer additions, logical operations
¤0.06% of chip area in a 16-core system (0.09mm2 in 45 nm)



Agenda 18

¨ Background

¨ PHI Design

¨ Evaluation



Evaluation methodology 19

 

 

 

 

 

 

 

 

 

 

 

 



Evaluation methodology 19

¨ Event-driven simulation using ZSim
 

 

 

 

 

 

 

 

 

 

 



Evaluation methodology 19

¨ Event-driven simulation using ZSim
¨ 16-core processor

¤Haswell-like OOO cores
¤32 MB L3 cache
¤4 memory controllers

 

 

 

 

 

 

 

……
Core0

Private
Cache	0

Memory

Shared	Cache

Core15

Private
Cache	15



Evaluation methodology 19

¨ Event-driven simulation using ZSim
¨ 16-core processor

¤Haswell-like OOO cores
¤32 MB L3 cache
¤4 memory controllers

¨ Graph applications
¤ PageRank, PageRank Delta, 

Connected Components, Radii 
Estimation

¨ Degree Counting (No Pull)

¨ SpMV

 

 

 

……
Core0

Private
Cache	0

Memory

Shared	Cache

Core15

Private
Cache	15



Evaluation methodology 19

¨ Event-driven simulation using ZSim
¨ 16-core processor

¤Haswell-like OOO cores
¤32 MB L3 cache
¤4 memory controllers

¨ Graph applications
¤ PageRank, PageRank Delta, 

Connected Components, Radii 
Estimation

¨ Degree Counting (No Pull)

¨ SpMV

¨ Large real world inputs
¤Up to 100 million vertices
¤Up to 1 billion edges

……
Core0

Private
Cache	0

Memory

Shared	Cache

Core15

Private
Cache	15



PHI improves performance significantly 20

 

 

 



PHI improves performance significantly 20

 

 

 

Push Pull UB Push-RMO PHI



PHI improves performance significantly 20

 

 

 

Push Pull UB Push-RMO PHI



PHI improves performance significantly 20

¨ Pull and UB show mixed results
 

 

Push Pull UB Push-RMO PHI



PHI improves performance significantly 20

¨ Pull and UB show mixed results
¨ Push-RMO improves performance by avoiding synchronization costs
 

Push Pull UB Push-RMO PHI



PHI improves performance significantly 20

¨ Pull and UB show mixed results
¨ Push-RMO improves performance by avoiding synchronization costs
¨ PHI consistently outperforms other schemes

Push Pull UB Push-RMO PHI



PHI reduces memory traffic 21

 

 

 



PHI reduces memory traffic 21

 

 

 

Push Pull UB PHI



PHI reduces memory traffic 21

 

 

 

Push Pull UB PHI



PHI reduces memory traffic 21

¨ Pull incurs higher memory traffic for non-all-active algorithms (CC, RE)
 

 

Push Pull UB PHI



PHI reduces memory traffic 21

¨ Pull incurs higher memory traffic for non-all-active algorithms (CC, RE)
¨ UB increases memory traffic when input has good locality
 

Push Pull UB PHI



PHI reduces memory traffic 21

¨ Pull incurs higher memory traffic for non-all-active algorithms (CC, RE)
¨ UB increases memory traffic when input has good locality
¨ PHI reduces memory traffic over UB by exploiting temporal locality

Push Pull UB PHI



Conclusion 22

 

 

 

 



Conclusion 22

¨ Scatter updates are inefficient on conventional hierarchies

 

 

 



Conclusion 22

¨ Scatter updates are inefficient on conventional hierarchies

¨ PHI extends the cache hierarchy to make commutative scatter updates 
efficient

 

 



Conclusion 22

¨ Scatter updates are inefficient on conventional hierarchies

¨ PHI extends the cache hierarchy to make commutative scatter updates 
efficient

¨ Exploits both temporal and spatial locality

 



Conclusion 22

¨ Scatter updates are inefficient on conventional hierarchies

¨ PHI extends the cache hierarchy to make commutative scatter updates 
efficient

¨ Exploits both temporal and spatial locality

¨ Incurs low memory traffic and minimal synchronization



Conclusion 22

¨ Scatter updates are inefficient on conventional hierarchies

¨ PHI extends the cache hierarchy to make commutative scatter updates 
efficient

¨ Exploits both temporal and spatial locality

¨ Incurs low memory traffic and minimal synchronization

Thanks For Your Attention!
Questions Are Welcome!


