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¨ Sparse algorithms perform push or pull-based indirect accesses
¨ Push mode: Indirect accesses are scatter updates

¨ Pull mode: Indirect accesses are gather reads

¨ Important to support scatter updates efficiently
¤ Push mode performs less work when few vertices are active

¤ Some algorithms do not admit a pull implementation
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¨ Remote memory operations (RMOs) send and perform update 
operations at a fixed location (e.g., shared cache banks)
¤Avoids cache-line ping ponging

¨ COUP [MICRO’15] modifies the coherence protocol to perform 
commutative operations in a distributed fashion

¨ Both RMOs and COUP do not improve locality
¤Bottlenecked by memory traffic with large inputs
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¨ In-cache update buffering and coalescing
¤Exploits temporal locality

¨ Selective update batching
¤Achieves high spatial locality

¨ Hierarchical buffering and coalescing
¤Enables update parallelism
¤Eliminates synchronization overheads

Bandwidth 
efficient

Synchronization
efficient
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¨ PHI adapts to the amount of spatial locality in the evicted line

¨ Cache controller performs update batching selectively
¤Achieves good spatial locality in all cases

¨ Key insight: Update batching is a good tradeoff only when the 
evicted line has poor spatial locality
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batching
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¨ Per-line buffered updates bit
¤0.17% additional storage with 64-byte lines

¨ Reduction unit for each cache bank
¤Supports 64-bit floating-point and integer additions, logical operations
¤0.06% of chip area in a 16-core system (0.09mm2 in 45 nm)
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¨ Event-driven simulation using ZSim
¨ 16-core processor

¤Haswell-like OOO cores
¤32 MB L3 cache
¤4 memory controllers

¨ Graph applications
¤ PageRank, PageRank Delta, 

Connected Components, Radii 
Estimation

¨ Degree Counting (No Pull)

¨ SpMV

¨ Large real world inputs
¤Up to 100 million vertices
¤Up to 1 billion edges
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¨ Pull and UB show mixed results
¨ Push-RMO improves performance by avoiding synchronization costs
¨ PHI consistently outperforms other schemes

Push Pull UB Push-RMO PHI
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¨ Pull incurs higher memory traffic for non-all-active algorithms (CC, RE)
¨ UB increases memory traffic when input has good locality
¨ PHI reduces memory traffic over UB by exploiting temporal locality

Push Pull UB PHI
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Thanks For Your Attention!
Questions Are Welcome!


