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Abstract

We present Chronos, a framework to build accelerators for

applications with speculative parallelism. These applications

consist of atomic tasks, sometimes with order constraints,

and need speculative execution to extract parallelism. Prior

work extended conventional multicores to support specu-

lative parallelism, but these prior architectures are a poor

match for accelerators because they rely on cache coherence

and add non-trivial hardware to detect conflicts among tasks.

Chronos instead relies on a novel execution model, Spa-

tially Located Ordered Tasks (SLOT), that uses order as the

only synchronization mechanism and limits task accesses

to a single read-write object. This simplification avoids the

need for cache coherence and makes speculative execution

cheap and distributed. Chronos abstracts the complexities of

speculative parallelism, making accelerator design easy.

We develop an FPGA implementation of Chronos and use it

to build accelerators for four challenging applications. When

run on commodity AWS FPGA instances, these accelerators

outperform state-of-the-art software versions running on a

higher-priced multicore instance by 3.5× to 15.3×.

CCS Concepts · Computer systems organization →

Multicore architectures.
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1 Introduction

The impending end of Moore’s Law is forcing architectures

to rely on application- or domain-specific accelerators to

improve performance. Accelerators require large amounts of

parallelism. Consequently, prior accelerators have focused

on domains where parallelism is easy to exploit, such as deep

learning [12, 13, 37], and rely on conventional parallelization

techniques, such as data-parallel or dataflow execution [48].

However,many applications do not have such easy-to-extract

parallelism, and have remained off-limits to accelerators.

In this paper, we focus on building accelerators for appli-

cations that need speculative execution to extract parallelism.

These applications consist of tasks that are created dynami-

cally and operate on shared data, and where operations on

shared data must happen in a certain order for execution to

be correct. Order constraints may arise from the need to pre-

serve atomicity (e.g., operations across tasks must be ordered

to not interleave with each other), or from the need to order

tasks due to application semantics (e.g., tasks dequeued from

a priority queue). Enforcing these order constraints a priori,

before running each task, is often too costly and/or limits

parallelism. Thus, it is preferable to run tasks speculatively

and check that they followed a correct order a posteriori.

For instance, consider discrete event simulation, which has

wide applicability in simulating digital circuits, networked

systems, and physical processes. Discrete event simulation

consists of dynamically created tasks that may operate on the

same simulated object and must run in the correct simulated

time order. Running these tasks non-speculatively requires

excessive synchronization and limits parallelism [10, 28].

Running tasks speculatively is far more profitable [32, 34].

To make speculation efficient, prior work has proposed

hardware support for speculation, including Thread-Level

Speculation [21, 34, 53, 55, 57], and Hardware Transactional

Memory [1, 6, 9, 20, 26, 29, 30, 46]. Unfortunately, prior spec-

ulative architectures are hard to apply to accelerators, be-

cause they all rely on coherent cache hierarchies to perform

speculative execution, modifying the coherence protocol to

detect conflicts among tasks. This is a natural match for mul-

ticores, which already have a coherence protocol. But such

a solution would be onerous and complex for an acceler-

ator: it would require implementing coherent caches and

speculation-tracking structures that, while a minor overhead

for general-purpose cores, are too expensive for small, spe-

cialized ones.
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To address this challenge, in this paper we present a hard-

ware system that implements speculative execution without

using coherence. Instead, this system follows a data-centric ap-

proach, where shared data is mapped across the system; work

is divided into small tasks that access at most one shared

object each; and tasks are always sent to run at the place

where their data is mapped. To enforce atomicity across task

groups, or other order constraints, tasks are ordered through

timestamps (these are program-specified logical timestamps

completely decoupled from physical time).

We formalize these semantics through the Spatially Located

Ordered Tasks (SLOT) execution model. In SLOT, all work

happens through tasks that are ordered using timestamps. A

task may create children tasks ordered after them, and parent

tasks communicate input values to children directly. Each

task must operate on a single read-write object, which must

be declared when the task is created (besides this restriction,

tasks may access an arbitrary amount of read-only data).

We leverage SLOT to implement Chronos, a novel acceler-

ation framework for speculative algorithms. Each Chronos

instance consists of spatially distributed tiles. Each tile has

multiple processing elements (PEs) that execute tasks, and a

local cache. Each tile also implements hardware to queue

tasks, dispatch them to PEs, track their speculative state, and

abort or commit them in timestamp order. Chronos maps

read-write objects across tiles, and sends each newly created

task to the tile where its read-write object is mapped. This

enables completely distributed operation without a cache

coherence protocol.

Chronos provides a common framework to accelerate spec-

ulative algorithms, abstracting away the complexities of task

management and speculative execution. Developers need

only express their application as SLOT tasks coded against a

high-level API. To achieve high performance, Chronos sup-

ports two types of customization. First, applications can cus-

tomize the PEs, which can be specified in RTL or described

using High-Level Synthesis (HLS). PEs can also be general-

purpose cores, so developers can start with a software im-

plementation and specialize tasks as needed to achieve high

performance. Second, Chronos lets applications turn off un-

needed features. For example, if the algorithm is naturally

resilient to out-of-orderwrites (e.g., if updates aremonotonic),

applications can disable rollback on misspeculation.

We evaluate Chronos by implementing it on an FPGA and

use it to implement accelerators for several graph analytics

and simulation applications. We use four hard-to-parallelize

applications with speculative parallelism. We deploy these ac-

celerators on commodity AWS FPGA instances. We compare

these accelerators with state-of-the-art software implemen-

tations of these applications running on a higher-priced 40-

thread multicore instance. Chronos achieves speedups of up

to 15.3× and gmean 5.4× over the software versions. Chronos

outperforms the multicore baseline despite running at a 19×

slower frequency, because it exploits orders of magnitude

PrioQueue <Time, GateInput > eventQueue;

void simToggle(Time time, GateInput input) {
Gate gate = input.gate;
bool outToggled = gate.simulateToggle(input);
if (outToggled) {
// Toggle all inputs connected to this gate
for (GateInput i : gate.connectedInputs()) {
Time nextTime = time + gate.delay(input, i);
eventQueue.enqueue(nextTime, i);

}}}

... // Enqueue initial events (input waveforms)
// Main loop
while (!eventQueue.empty()) {
(time, input) = eventQueue.dequeue();
simToggle(time, input);
}

Listing 1. Sequential implementation of des.

more parallelism. These results show that FPGAs are a prac-

tical and cost-effective way to accelerate applications with

speculative parallelism.

In summary, this paper contributes:

• SLOT, the first execution model that supports speculative

parallelism without cache coherence (Sec. 3).

• Chronos, a customizable framework that implements the

SLOT execution model and makes it easy to accelerate

applications with speculative parallelism (Sec. 4).

• A detailed evaluation of Chronos using commodity FPGAs

in the cloud that demonstrates significant speedups for sev-

eral challenging applications, analyzes system efficiency,

and quantifies the benefits of customization (Sec. 6).

Our Chronos implementation is open-source and available

at https://chronos-arch.csail.mit.edu.

2 Motivation and Background

In this section we first present a case for speculative paral-

lelism through a simple application, discrete event simulation

(des). We then review the types of parallelism exploited by

prior accelerators, and see thatmost do not exploit speculative

parallelism. Finally,we review prior speculative architectures,

and use des to identify a key simplification that these archi-

tectures have missed: support for task order avoids the need

for coherence-based conflict detection, motivating SLOT.

2.1 A case for speculative parallelism

We illustrate the utility of speculative parallelism through

des, a discrete event simulator for digital circuits [28]. List-

ing 1 shows code for a sequential implementation of des.

Each des task processes a gate input toggling at a particular

time. If this input toggle causes the gate’s output to toggle,

the task enqueues events for all inputs connected to that out-

put at the appropriate times. The sequential implementation

processes one task at a time in simulated time order, and

maintains the set of tasks to process in a priority queue.

Fig. 1a shows a circuit with input waveforms and prop-

agation delays, and Fig. 1b shows the task diagram of an

execution of des on this circuit. Arrows between tasks show
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(a) Example circuit (b) Ordered tasks produced by des

1 ns

3 ns0
1

5 ns
3 ns1 ns

2 ns

1
O1

N2

X3 X6

A5A4

1 2 3 4 5 6

Time (ns)

Figure 1. Example execution of des: (a) Input circuit and (b)

Ordered tasks produced by the execution of des on this cir-

cuit. Tasks O1 and N2 correspond to inputs of the NAND and

OR gates; both tasks toggle their gates’ outputs, producing

tasks X3, X6 and A4, A5.

parent-child dependences (e.g., task O1 creates tasks A4 and

X6). The x-axis shows task order, and the task’s location in

the y-axis represents the gate it operates on.

Parallelism exists despite order constraints because inde-

pendent tasks may run out of order. In our des example, only

tasks that operate on the same gate have a data dependence;

others (e.g., O1 and N2) may run out of order without violat-

ing correctness. But tasks and dependences are not known,

so running tasks out of order is not straightforward.

In des, each task operates on a single object (a gate), and

this object is known in advance. But this is not sufficient to

find which tasks are safe to run, because a task may have a

dependence with another task that comes earlier in program

order but does not yet exist. Suppose that task O1 is executed

first, producing task X6. At this point X6 is the earliest task

in the system that operates on the XOR gate. But executing

X6 would produce incorrect results, because X6 must follow

the earlier data-dependent task X3, which does not yet exist

(as N2 has not been run).

A natural way to parallelize des is to run tasks in paral-

lel, speculating that, for each task, no earlier data-dependent

tasks will exist. If speculation is correct, the task can commit

and the system has successfully elided order constraints; but

on an order violation, the misspeculating task and its descen-

dants need to be aborted and re-executed in the right order.

This execution strategy, known as Time Warp in the case

of des [31], shows that speculation arises from the need to

preserve order constraints, even though the data that each task

accesses is known in advance. As we will see later, advance

knowledge of task data accesses enables a simple implemen-

tation of speculative execution.

2.2 Types of parallelism in prior accelerators

We classify prior accelerators by the type of parallelism they

target. We can establish a taxonomy of parallelism types

based on two key questions. First, are tasks known in advance

or are they created dynamically? Second, if tasks operate

on shared data, how should they synchronize to respect the

algorithm’s data dependences and produce the right result?

Static parallelism: If tasks and their data dependences are

known in advance, scheduling can be done statically and

requires no or very simple runtime mechanisms. Static paral-

lelism arises when operating on regular data structures, such

as dense matrices. Most prior accelerators focus on static

parallelism, e.g., by building deep pipelines and data-parallel

hardware such as in DaDianNao [12] and Google’s TPU [37].

Dynamic parallelism with independent tasks: Some al-

gorithms, such as those that operate on trees or graphs, must

create tasks dynamically, as they find more work to do. In

the simplest case, tasks operate on disjoint data and need no

synchronization for shared data accesses. They fit the fork-

join model pioneered by NESL [5] and Cilk [16]. The Paral-

lelXL [11] and TAPAS [43] accelerators target this dynamic

parallelism. Their key ingredient is hardware support for task

creation and load-balancing, e.g., through work-stealing [16].

Non-speculative synchronization of dependent tasks:

Prior work has demonstrated accelerators where tasks oper-

ate on shared data, but most synchronize by stalling rather

than speculating. Graphicionado [23] and Li et al. [40] are

accelerators for graph algorithms that support atomic oper-

ations through pipelining: they stall a later dependent task

until the earlier task finishes its update.

Speculative synchronization of dependent tasks: Finally,

Ma et al. [42] build an accelerator for graph analytics appli-

cations on FPGA. They support atomic tasks. Each task can

access multiple addresses, and conflict detection is imple-

mented using a globally shared address-tracking structure,

similar to a coherence directory. This approach is thus analo-

gous to coherence-based conflict detection, which we review

next, and suffers from additional overheads (as all accesses,

instead of only cache misses, access the global directory). By

contrast, SLOT avoids the need for coherence by restricting

each task to operate on a single object, and supports ordered

tasks to enable multi-object atomicity.

2.3 Prior speculative architectures rely on cache

coherence

Prior architectures for speculative parallelization, such as

Thread-Level Speculation (TLS) [24, 34, 53, 55, 57, 65] and

Hardware Transactional Memory (HTM) [25, 26, 29, 46, 52],

extend a cache-coherent multicore. These systems reuse exist-

ing mechanisms to implement speculative execution. Specif-

ically, they adapt the cache coherence protocol for conflict

detection.

Coherence-based conflict detection works by leveraging in-

validation and downgrade messages to detect conflicts. Each

task runs in a single core. The core acquires coherence permis-

sions for each read and write as usual, but keeps permissions

for these lines throughout the execution of the task (either

by keeping the task’s data in the private cache [1, 9, 55], or

by tracking these permissions in the shared directory [34, 46,

64]). Thus, the core will receive an invalidation or downgrade

request on every possible conflict (i.e., if another task issues

a read to a line in the task’s write-set, or any access to a line

in the task’s read- or write- set).
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Figure 2. A categorization of the reasons for speculative

execution. Cache coherence is only required if read-write

sets are unknown or unrestricted. We will show that inter-

task order is sufficient for all aplications.

While relying on coherence is reasonable for multicores, it

would be expensive for accelerators. Accelerators in general

and reconfigurable hardware in particular do not have an

coherent cache hierarchy that supports invalidation-based

conflict detection [54]. Implementing coherence would add

complexity, latency, and significant on-chip SRAM to imple-

ment a directory that tracks sharers. Beyond coherence, per-

forming conflict detection on tasks with arbitrary read and

write sets would add further overheads, e.g., several kilobytes

per core worth of Bloom filters [34], which would be too oner-

ous for specialized processing cores.

Indeed, while there have been FPGA implementations of

cache coherence protocols [45, 63] and HTMs [8, 62], these

systems were not designed as accelerators and these features

added significant overheads.

2.4 Reasons for speculative execution

In general, speculation is needed when tasks have either un-

known read- and write- sets or inter-task order constraints.

By relying on coherence, prior speculative systems support

tasks with unknown read- and write-sets. Speculation allows

HTM systems to preserve atomicity among unordered tasks

(transactions), and TLS systems to enforce both atomicity and

order among tasks. But as we saw in Sec. 2.1, des needs spec-

ulation to elide order constraints among tasks even though

each task’s read/write-set is known in advance.

Fig. 2 presents systems according to their reasons for spec-

ulative execution. As we can see, prior architectures all sup-

port tasks with unknown read- and write-sets, which forces

complex conflict detection. In this paper, we focus on the

remaining quadrant: supporting inter-task order only, but

where tasks have known and restricted read- and write-sets.

This simplification is sufficient for des; in the next section,

we will see that inter-task order is in fact sufficient to support

unknown read- and write-sets, because inter-task order allows

breaking work into tasks with known read- and write-sets.

3 The SLOT Execution Model

We now present the Spatially Located Ordered Tasks (SLOT)

execution model. SLOT restricts each task to access a single

void simToggle(Time time, GateInput input) {
Gate gate = input.gate;
bool outToggled = gate.simulateToggle(input);
if (outToggled) {
// Toggle all inputs connected to this gate
for (GateInput i : gate.connectedInputs()) {
Time nextTime = time + gate.delay(input, i);
slot::enqueue( simToggle , // task type

nextTime , // timestamp
i.gate.ID, // object id
i ); // args

}}}

Listing 2. SLOT implementation of des task.

read-write object, which must be known when the task is

created (Sec. 3.1). Though this restriction may seem limiting,

inter-task order enables atomicity among computations that

access multiple objects and where objects are not known in

advance (Sec. 3.2).

3.1 Spatially Located Ordered Tasks

SLOT applications consist of ordered, dynamically created

tasks. Each task can be implemented in software or hard-

ware. We describe the execution model independently of the

implementation, and illustrate it using the software API.

Each task is given two attributes when it is created: a time-

stamp and an object id. Timestamps specify order constraints:

the system guarantees that tasks appear to execute in time-

stamp order. Tasks with equal timestamps may run in any

order, but are atomic (i.e., they do not interleave).

Object ids are integers that specify the data dependences

among tasks: two tasks are treated as data-dependent if and

only if they have the same object id. Object ids restrict each

task to accessing at most one read-write object in shared

memory. Note that this restriction only applies to read-write

data. A task may access any amount of read-only data.

A SLOT task can create children tasks as it finds more

work to do, by specifying the type of the child task, as well

as its timestamp, object id, and any input data values it may

need. Each child task may have any timestamp that is greater

than or equal to its parent’s.

In SLOT, parent-child relations are unidirectional: a parent

task can create and pass values to its children, but parents are

ordered before their children and thus appear to complete

before children execute. Child tasks cannot return values or

communicate with their parents. This is different from fork-

join execution models like Cilk [16], where parents wait for

their children to complete.

API: Listing 2 illustrates the SLOT software API by showing

the implementation of a des task. In software, each task is

implemented by a function. The implementation is almost the

same as the sequential one in Listing 1: each task simulates an

input toggle at a particular gate. Instead of enqueuing tasks

to a priority queue, this code creates new tasks by calling

slot::enqueue, which specifies the child task’s type (its

function pointer since it’s a software task), timestamp, object

id, and any additional arguments (the gate input in this case).
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Figure 3. Example showing how to leverage order to imple-

ment atomic accesses to multiple read-write objects. Each

transaction is broken down to multiple tasks that access one

object each. Atomicity is maintained by assigning a disjoint

timestamp range to each transaction.

SLOT enables coherence-free conflict detection: By re-

stricting each task to access at most one read-write object,

implementations of SLOT can perform distributed conflict

detection without complex tracking structures. If the imple-

mentation maps object ids across cores or tiles, and sends

each task to where its object id is mapped, then finding con-

flicts becomes a local operation.

For example, if Fig. 1 was run on a four-core system, the

NAND, OR, XOR, and AND gates could be mapped to cores

1ś4. Then, if task X3 arrives in core 3 after X6 has already

run, core 3 can determine X3’s conflicts (tasks for the same

gate and a higher timestamp, {X6} in this case) locally, by

comparing X3’s object id with those of still-speculative tasks.

3.2 Mapping multi-object computations to SLOT

While SLOT’s single-object restriction is natural for appli-

cations like des, many applications must perform atomic

accesses to multiple read-write objects, and may not know

all these objects in advance.

Nonetheless, SLOT’s support for order enables a trivial, sys-

tematic mapping of these computations to SLOT. Specifically,

multi-object transactions can be expressed as SLOT tasks by

breaking each transaction into multiple single-object tasks,

each accessing a single object, and giving each transaction a

disjoint range of timestamps. This way, tasks within a trans-

action do not overlap with those in other transactions.

For example, consider a banking application where trans-

actions transfer money between accounts. Each transaction

must atomically decrement the source account’s balance and

increment the destination account’s balance. To scale, each ac-

count should be a different object; but since account balances

are read-write data, a single task cannot access two accounts.

Fig. 3 shows how task order makes this possible. We im-

plement each transaction using two SLOT tasks, each of

which manipulates a single account: the first decrements

the source’s balance and creates a second task to increase the

destination’s balance. Each transaction has a disjoint range

of timestamps, so tasks from different transactions do not

interleave.

This technique generalizes to arbitrary combinations of

read-write operations. For example, our implementation of

maxflow (Sec. 5) uses it to perform complex atomic opera-

tions on the neighborhood of a graph vertex.

While breaking each transaction into many small tasks

could add significant overheads to a software runtime, small

tasks are a natural match for an accelerator, as hardware

performs task management and small tasks need simple pro-

cessing elements.

3.3 Discussion

Benefits of SLOT’s fine-grained tasks: SLOT’s key advan-

tage over prior work is to enable coherence-free conflict de-

tection. In addition, prior work [33, 59] has shown that, even

in systems that support tasks with arbitrary read/write-sets,

this division is often desirable, for three key reasons:

1. Increased parallelism: Breaking a long serial transaction

into short tasks allows these tasks to run in parallel.

2. Reduced impact of aborts: On misspeculation, only the

tasks that conflict are aborted, rather than the entire

transaction.

3. Increased data reuse: Rather than bringing shared data

across the systemwhere the transaction is running, tasks

are sent to run close to their data, avoiding cache line

ping-ponging. Since each task message is much smaller

than a cache line, this reduces traffic; and tasks are sent

and executed asynchronously, so their latency is easier

to hide than that of synchronous memory accesses.

SLOT limitations:While breaking programs into short sin-

gle-object tasks is generally beneficial, there is one casewhere

coherence-based conflict detection would outperform SLOT:

if the application is dominated by rarely modified read-write

data that has substantial reuse, coherence-based conflict de-

tection would allow caching this data across the system, mak-

ing reads between the sporadic writes local, whereas SLOT

needs to isolate each access to these data in a separate task

and send them to a single place.

We do not find this behavior in the applications we target,

so we have not optimized SLOT for this case. A simple exten-

sion of SLOT could address this by letting tasks write into

addresses not covered by its object id. The system could then

treat rarely modified data as read-only and allow them to be

cached privately. Upon a write, which should be rare, a sim-

ple implementation could flush all caches and abort all future

tasks; more complex implementations may perform more

precise flushes and conflict detection. We leave a detailed

study of these implementation choices to future work.

Relationshipwith priorwork: Spatial hints [33] andEspres-

so [35] also propose to tag tasks with an identifier similar to

an object id, but with different goals. Spatial hints are used to

distribute speculative tasks so that tasks likely to access the

same data run at the same place. But spatial hints are optional

and advisory, and the system must still use coherence-based

speculation. Espresso uses locales to additionally provide

mutual exclusion among non-speculative tasks. By contrast,
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SLOT requires all tasks to specify correct object ids, i.e., to

identify the read-write object they will access. This enables

using object ids to implement conflict detection among spec-

ulative tasks.

4 Chronos System

Chronos is an architectural framework that makes it easy to

design accelerators for applications with ordered parallelism.

Chronos achieves this by providing an architecture template

that implements the SLOT execution model efficiently. Ac-

celerators can then specialize this template by defining their

own task processing engines or configuring Chronos’s un-

core components. With this division, creating a Chronos ac-

celerator is as simple as specifying the processing engines;

the framework takes care of the intricacies of ordered task

management and speculative execution.

Fig. 4 shows Chronos’s organization. Chronos is a tiled de-

sign with fully distributed task management and speculation

mechanisms. Each tile has several Processing Elements (PEs)

that execute tasks, a local (non-coherent) cache, and a task

unit that queues, dispatches, and commits ordered tasks.

4.1 Design requirements and techniques

Chronos must run short ordered tasks efficiently. This re-

quires achieving high-throughput task management and a

large speculation window:

1. High-throughput taskmanagement: Short tasks place

high throughput demands on the system. For example, if each

task takes 20 cycles to execute, a Chronos system with 200

PEsmust create, dispatch, conflict-check, and commit 10 tasks

per cycle to keep the PEs busy. This forces a design without

centralized components: all task management and speculation

mechanisms must be fully distributed. Chronos’s tiled de-

sign achieves this. Moreover, each tile’s task unit needs to

maintain a high throughput as well.

2. Large speculation window: To prevent order from lim-

iting parallelism, the system must be able to speculate far

ahead of the earliest unfinished task. More specifically, due

to order restrictions, tasks may stay speculative for a long

time before they can commitÐfar longer than the time they

take to execute. Therefore, the system should be able to track

many more speculative tasks than running tasks. For exam-

ple, as we will see in Sec. 6, some applications require about

10 speculative tasks per running task.

These requirements force fully distributed, deep out-of-

order execution. To achieve these requirements, several of

Create Dispatch
Idle Running

Finish
Finished

YN

Parent

aborted?

Commit

Abort

Discard

Figure 5. Task life cycle.

Chronos’s techniques are adapted from Swarm [34]. Specif-

ically, Chronos borrows Swarm’s task management and or-

dered commits techniques. However, Chronos implements

speculative execution differently, by leveraging the SLOT

execution model instead of relying on a coherent cache hier-

archy. We first describe how Chronos performs speculative

execution, then detail its task management structures.

4.2 Distributed ordered speculation

Chronos uses speculative execution to elide order constraints.

Chronos can run any task as soon as it is created, even if its

ancestors are still speculative. Fig. 5 shows the execution flow

of each task. Top horizontal arrows denote correct specula-

tion. When a task is created, it is sent to a tile where it stays

idle, queued until it is ready to dispatch. The tile dispatches

idle tasks to PEs in timestamp order. After a running task

finishes execution, it stays speculative (in the finished state)

until the system determines it is safe to commit.

Fig. 5 shows that tasks may be aborted at any point before

commit. Because tasks may run while their ancestors are still

speculative, aborting a task requires aborting and discarding

all its descendants. These cascading aborts are necessary to

uncover parallelism, and are selective: aborts undo the effects

of the aborting task, its descendants, and any data-dependent

tasks that come later in program order. As shown in Fig. 5,

if a task is aborted because its parent has aborted, then it is

discarded; otherwise, the abort is due to a data dependence,

then the task is requeued for execution.

Fig. 6 shows an example of speculative execution in Chronos.

Tasks are created and run out of order: in Fig. 6a, task 20 has

run and finished even though earlier tasks are still running;

in particular, task 0, 20’s parent, is still running. In Fig. 6b,

task 0 creates a child with timestamp 10, which conflicts with

task 15. This causes 15 to be aborted, along with its child

task 25. Though aborts may affect multiple tasks, they are

selective: independent tasks such as 20 are not aborted.

Task mapping and conflict detection: To perform spec-

ulative execution cheaply, Chronos uses the task mapping

and conflict detection strategy outlined in Sec. 3: Chronos

maps object ids across tiles, then sends each created task to

the tile where its object id is mapped. Our current Chronos

implementation uses a static object-to-tile mapping: the ob-

ject id is simply hashed to produce the tile id. We find this

achieves good load balance in our workloads; Chronos could

also adopt more sophisticated load balancing based on dy-

namic remapping of objects among tiles [33].
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Task dispatch: The task unit dispatches tasks to PEs in time-

stamp order to prioritize earlier tasks. To avoid conflicts, the

task unit serializes the execution of tasks with the same ob-

ject id. Therefore, conflicts among running tasks never arise;

only a task that arrives to a tile out of order can create a

conflict.

Speculative value management: Chronos adopts eager

version management: speculative writes update memory in-

place, and old values are written to a separate undo log. Com-

mits are fast, as the undo log is simply discarded; aborts

require restoring the old values from the undo log.

Eager version management facilitates running chains of

data-dependent tasks without waiting for them to commit: if

task A writes a value that is later read by (same-object) task

B, B will naturally use A’s value even when A has not yet

committed. This process, known as speculative forwarding, is

important for ordered speculation [35], but would be hard to

do with lazy version management.

High-throughput commits: To determine when a task can

commit, Chronos borrows the Global Virtual Time (GVT)

protocol from prior work [32, 34]. Tiles communicate peri-

odically (e.g., every 32 cycles) to find the timestamp of the

earliest unfinished task, then commit all earlier tasks. This

process leverages large commit queues to commit many tasks

at once, achieving commit throughput of multiple tasks per

cycle with little communication.

4.3 Task unit design

Chronos’s task unit consists of two main structures: a task

queue (TQ) holds all tasks in the tile and dispatches idle tasks

to PEs, and a commit queue (CQ) that holds the speculative

state of running or finished tasks, and commits or aborts them

as required. In addition, a small task send buffer (TSB) receives

newly created tasks from PEs and sends them to the right tile.

Fig. 7 details the microarchitecture of each tile and shows

these structures, which, together, are similar to a task-level

reorder buffer.
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Figure 7. Chronos tile microarchitecture.

4.3.1 Task queue

The task queue consists of two main structures: a task array

and an order queue. The task array is a simple memory that

stores the task descriptor of every task in the tile. Each task

descriptor contains all data needed to run the task: its type,

timestamp, object id, and arguments. The order queue holds

idle tasks and dispatches them to PEs in timestamp order.

Tasks allocate entries in the task array and order queue

when they arrive to the tile. They hold their order queue

entry until they are dispatched to a PE, but hold their task

array entry throughout their lifetime (i.e., until they commit

or are discarded). This is so that, if the task is aborted, the

task array has the information needed to reexecute it. When

a task needs to reexecute, it is reinserted into the order queue.

Task spilling: Task queues have limited capacity, but SLOT

programsmay create an unboundednumber of tasks. Chronos

provides the illusion of unbounded task queues by spilling

tasks to main memory when a task queue is nearly full.

4.3.2 Commit queue

The commit queue holds the speculative state of all tasks that

are either running or finished. In Chronos, this speculative

state consists of the task’s undo log, which allows rolling back

the task’s memory writes, and child pointers, which allow

aborting the task’s descendants.

Each child pointer tracks the tile and task array entry id

of a child task. When a child is created, it is sent to the tile

specified by its object id. When the receiving tile queues it,

it replies with the child task’s pointer.

Aborts: Every abort event needs to abort the current task and

its data-dependent tasks, and discard all their descendants.

Chronos handles all data dependences by aborting the task

and all the same-object tasks that come later in program

order. Chronos rolls back this sequence of tasks by applying

their undo logs in reverse execution order and sending abort

notifications to all child tasks, which initiate their own aborts.

Commits: Chronos implements the GVT protocol to per-

form high-throughput commits, as noted above. Periodically

(e.g., every 32 cycles), each tile finds the timestamp of its earli-

est unfinished task, called the local virtual time (this is simply

the minimum of the timestamps in the order queue, PEs, and
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TSB). Tiles send their local virtual times to an arbiter, which

finds the minimum, i.e., the timestamp of the earliest unfin-

ished task in the system, called the global virtual time (GVT).

Finally, the arbiter broadcasts the GVT. The commit queue

in each tile scans its entries in the background, and frees (i.e.,

commits) those whose timestamp is lower than the GVT.

Deadlock avoidance: Chronos prevents deadlock by never

blocking the lowest-timestamp task. By induction, this strat-

egy ensures that all tasks ultimately commit. If the lowest-

timestamp (i.e, earliest) task cannot be dispatched because

the commit queue is full, the commit queue aborts one of

its entries (the highest-timestamp entry) and lets the earliest

task proceed. To prevent the earliest task from being stalled

because the TSB is full, the TSB reserves one of its entries

for the earliest task.

Commit entry implementation: Since SLOT tasks are

short, the commit queue implements a simple storage format

with a fixed number of child pointers and undo log entries.

These values are configurable per application. We find that

having eight child pointers per task (as in prior work [34])

and eight address-value pairs per undo log suffices for all

tasks. Tasks that exceed these limits could be split to use

multiple commit queue entries [58]. Alternatively, more so-

phisticated implementations could support variable entry

sizes, or unbounded sizes by spilling to memory [46].

4.3.3 Task send buffer

The task send buffer (TSB) buffers child tasks created by PEs

and sends them to their destination tiles. Each entry stays in

the buffer until the destination tile acknowledges its receipt.

The TSB decouples PEs from task enqueue latency: it lets PEs

continue execution and even move to other tasks before the

current task’s child enqueues have been acknowledged.

4.3.4 Processing Element interface

PE
Enq Child

Memory Access

Deq Task

Abort Task

Undo log

Figure 8. PE interface.

The PEs within a tile execute the

functionality of each task. If the ap-

plication program consist of more

than one task type, the PEs could

either be homogeneous (any PE can

execute any task) or heterogeneous

(a different PE for each task type).

Chronos admits multiple styles of PE, from programmable

cores to fully specialized engines, and only requires that they

implement a simple interface.

Fig. 8 details the PE interface, which consists of five ports.

All ports use a simple valid/ready handshake mechanism

and support pipelining. The PE signals it can accept new

tasks and receives them through the Deq Task port. It sends

children to the TSB through the Enq Child port, and issues

memory accesses through the Memory Access port. The task

unit may abort a running task through the Abort Task port.

Finally, when the PE finishes or aborts a task, it outputs its

undo log through the Undo Log port.

Enforcing SLOT restrictions: If a SLOT task tries to access

a different read-write object than the task’s object id provided

at task creation time, the expected behavior is undefined. To

ease debugging, Chronos can be configured with a debug aid

that detects all memory accesses whose task has an incorrect

object id, and stops execution on any such violation.

4.4 Chronos customization

Chronos is fully customizable, including the number of tiles,

number and type of PEs, and cache geometry. Moreover,

Chronos can relax its operational features to take advantage

of application characteristics. Some applications can be made

resilient to out-of-order writes (e.g., applications that per-

form directed graph searches, as we will see in Sec. 6). In this

case, Chronos can be configured to not perform rollback on

aborts. This simplification removes the undo log and commit

queue. As we will see in Sec. 6, this saves about 30% of area,

enabling designs with more tiles and thus more parallelism.

Even with no-rollback execution, respecting task order

is still important. The algorithm may be resilient to order

violations, but frequent violations make these algorithms

work-inefficient. Therefore, task queues still dispatch tasks

speculatively in timestamp order.

Finally, Chronos can also be used for non-speculative ap-

plications. In this case, in addition to disabling rollback, the

task queue dispatches tasks in FIFO order, removing the order

queue and further reducing area.

5 Methodology

Chronos FPGA implementation:We implement the Chro-

nos framework in SystemVerilog. We use a pipelined heap [4]

to implement the order queue, and a TCAM adapted from [41]

to find conflicting tasks in the commit queue.

Our FPGA implementation is fully configurable in terms

of number of tiles, number of cores and their types, and task

and commit queue sizes. We use the Amazon AWS FPGA

framework [3], and develop Chronos as a CL (Custom Logic)

module. This CL module interacts with the AWS Shell, which

provides I/O services such as memory and PCI controllers.

We synthesize our CL module using Vivado 2018.1. We

target AWS f1.2xlarge instances, which have the Xilinx Ul-

traScale+ VU9P FPGA. This FPGA is fairly large, featuring

1.2M LUTs, 76Mb of Block RAM, and 270Mb of Ultra RAM.

We use URAM for the caches and BRAM for the task queues.

These resources were sufficient to fit systems of up to 16 tiles

while meeting a target frequency of 125MHz. Table 1 details

the Chronos configurations used, and Fig. 9 shows the layout

of a 16-tile Chronos system on FPGA.

Applications: We build Chronos accelerators for four chal-

lenging applications. We compare their performance against

highly optimized software-parallel implementations:

1. des performs gate-level simulation of logic circuits. We

use the CMB implementation in Galois [50] as our baseline.
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Task Queue
4096-entry task-array

8192-entry order queue

Commit Queue 128 entries default; 256 for maxflow

Task Send Buffer 16 entries

Cache

2MB/tile default; 1MB for sssp;

4-way set associative, 64B cache

lines, 5-cycle hit latency from a PE

Data Widths 32-bit timestamp and object id

Clock Frequency 125 MHz

Table 1. Chronos tile configuration parameters used.

Application Baseline Input N. Tasks

des Galois [50] csa32 [50] 3.1M

maxflow Galois[50] rmf-wide[2] 7.8M

sssp Galois[50] USA-roads [15] 58.0M

astar In-house germany-roads [22], 4.1M

color [27] com-youtube [39] 5.8M

Table 2. Applications accelerated using Chronos, their base-

lines, inputs, and total number of tasks executed.

AWS Shell16 Tiles

Figure 9. FPGA layout of the 16-tile Chronos sssp accelerator.

Each Chronos tile is shown in a different color.

We do not compare against the software speculative version

of the algorithm (TimeWarp) since software speculation adds

thousands of cycles per task [7, 28], a huge overhead since

each des task takes tens of cycles.

2. maxflow finds the maximum amount of flow that can

be pushed from a source to a destination node through a

network. We use the Galois [50] implementation of the push-

relabel algorithm as our baseline. In the baseline, each task

operates on a vertex’s neighborhood, involving atomic ac-

cesses to both the vertex and its neighbors. Our Chronos

implementation uses more fine-grained tasks where each

neighbor access is a separate task and the atomicity of the

original task is preserved using order, as described in Sec. 3.2.

3. sssp finds the shortest distance between a given source

node and all other nodes in a directed graph. This benchmark

admits the no-rollback optimization since the Dijkstra’s algo-

rithm can be made resilient to order violations by allowing a

node’s distance to be set to a non-final value. We compare

ssspwith the Galois implementation, which uses Delta Step-

ping [44]. We pre-tune Delta to the graph used to put the

software version in the best possible light.

4. astar performs a heuristic-directed search to find the

least cost path towards a goal node. We evaluate astar using

a road graph, where the distance function is the great-circle

distance between two points given their (latitude, longitude)

coordinates. Like sssp, astar admits the no-rollback op-

timization. We could not find a high-performance parallel

implementation of astar. Therefore, we implement our own,

using Galois and its obim scheduler, and use it as the baseline.

color: We also implement a non-speculative graph coloring

algorithm to show that Chronos can be used with non-spec-

ulative tasks. color assigns a color to all graph nodes such

that no two adjacent nodes share the same color. We use the

Jones-Plassmann [36] algorithm with the largest-degree-first

heuristic. We compare against a baseline implementation

from Hasenplaugh et al. [27]. All color tasks are unordered,

and rely on object ids to serialize tasks for the same node.

Table 2 details the baselines, input sets used, and the num-

ber of tasks executed for these applications.

Baseline system: We run the software baselines on a 20-

core/40-thread m4.10xlarge AWS instance. These instances

use a 2.4 GHz Intel Xeon E5-2676v3 (Haswell) CPU. We chose

this instance specifically because its price is comparable with

the FPGA one ($2/hour vs. $1.6/hour for the FPGA instance),

which we believe is a fair metric when comparing application

performance on different hardware substrates.

5.1 PE implementations

Specialized PEs: We write specialized PEs for each appli-

cation in SystemVerilog. Our PEs are pipelined, with 4-30

pipeline stages per PE. Each stage performs some compu-

tation and may issue a single memory access. Pipelining is

flexible: tasks stalled on a memory access do not block other

tasks, which can overtake them and proceed to later stages.

Each PE has sufficient storage for 32 in-flight tasks. How-

ever, we find that a single PE often saturates task and cache

bandwidth with fewer in-flight tasks.

PEs can also be generated from a C-like description us-

ing High-Level Synthesis (HLS). Specifically, astar, which

has trigonometric computations that are tedious to write in

SystemVerilog, uses HLS to generate most of the pipeline.

RISC-V cores: In addition to application-specific cores, we

also built a Chronos version with RISC-V cores. We use the

Spinal HDL RISC-V core generator [56] to generate a 32-bit

core that has a performance of 1.2 DMIPS/MHz. We extend

these cores to implement Chronos enqueue and dequeue

operations, and use the interrupt logic to abort running tasks.

We write SLOT C implementations of des, maxflow, sssp

and color, compile them to the RISC-V ISA, and run them on

a 48-core Chronos system (4 tiles with 12 cores each). We later

compare this system with those using application-specific

cores to quantify the benefits of PE specialization.

For all timing measurements, we ignore the benchmark

setup time, including data transfer time between the host CPU
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and FPGA, and only consider the runtime of the algorithm.

This is reasonable since the time spent transferring data can

be amortized over multiple queries on the same graph. We

instrument the FPGA design to count cycles, profile efficiency,

and measure detailed component utilization.

6 Evaluation

Wefirst compare the performance and scalability of the Chronos

FPGA accelerators with application-specific PEs against the

software-parallel versions on the Xeon CPU.

Fig. 10 shows the speedup of each of the four applications

as the number of threads or tiles grows until they fill each sys-

tem. Because each design has different numbers of tiles, the

x-axis is percentage of system utilization. For the software-

parallel versions, we sweep the number of threads from 1 to

40. For FPGA versions, 100% system utilization corresponds

for the maximum system size we can fit on the FPGA (6-16

tiles, depending on the application). Table 3 reports this max-

imum size. To obtain results at lower utilization, we first dis-

able tiles, and then disable the number of concurrent tasks on

a single-tiled system. sssp and astar admits the no-rollback

optimization. Table 3 also summarizes the performance of the

FPGA and baseline implementations at the best-performing

system sizes.

For all four ordered applications, Chronos performs better

than the best CPU baseline, achieving a gmean speedup of

5.4×. Chronos is 15.3× faster than the CPU version on des.

Table 3 also shows the progression of speedups relative to

a serial CPU implementation as the FPGA system is scaled

from a single concurrent task, a single tile, and the full system.

Note that the FPGA runs at a 19× slower frequency than

the CPU. Hence, except in des, the FPGA version with a

single concurrent task is substantially slower than the serial

CPU version. This slowdown is typically 1.7ś9×, better than

the 19× difference in frequencies, because the FPGA PEs are

customized to each application.

Nonetheless, Chronos more than makes up for this handi-

cap by scaling to many concurrent tasks: Chronos accelerators

all scale well, sometimes beyond 100×, because they exploit

abundant parallelism that is not available to CPU versions.

6.1 Application analysis

We now look at each application in detail.

des: Even when running a single task at a time on one PE,

Chronos is actually 2.45× faster than the baseline (left column

of Table 3). This happens even though Chronos is running at

a 19× lower frequency. This is primarily because the baseline

maintains a priority queue in software, whereas the Chronos

framework provides a much higher throughput implemen-

tation in hardware. As the number of concurrent tasks in-

creases, the Chronos implementation scales to a self-relative

speedup of 44.9× at 8 tiles, corresponding to a 15.3× speedup

over the best CPU implementation.
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Figure 10. Scalability of Baseline CPU and Chronos imple-

mentations of the ordered algorithms. For CPU, 40 threads =

100% system. For Chronos, 100% corresponds to the number

of tiles in Table 3. Speedups are normalized to the serial CPU

version.

App Tiles
FPGA vs serial CPU CPU

scaling

Overall

speedup1 task1 1 tile all tiles

des 8 2.45× 26.8× 109.9× 7.2× 15.3×

maxflow 8 0.11× 0.7× 4.3× 1.0× 4.3×

sssp 16 0.24× 3.8× 48.4× 13.3× 3.6×

astar 6 0.58× 16.9× 74.4× 21.2× 3.5×
1A single concurrent task running on a single PE.

Table 3. Performance and scalability of Chronos accelerators

with specialized PEs vs. the best CPU performance.

maxflow: The Chronos instance that runs a single task at

a time is 9× slower than CPU (2.1× faster after accounting

for the frequency difference), mainly because the baseline

maxflow does not use priority queues and hence is not as

hampered as in des. However, in the baseline implementa-

tion, the tasks are large and therefore parallelism is scarce,

achieving a maximum speedup of 3% at 6 threads, before

crashing down to a 3.7× slowdown at 40 threads, due to over-

whelming synchronization costs at higher thread counts.

The Chronos implementation uses more fine grained tasks,

which uncovers huge parallelism, with a self-relative scala-

bility of 39.9×, resulting in an absolute speedup of 4.3×.

maxflow thus shows the benefits of dividing large unord-

ered transactions into small ordered tasks, as Sec. 3.3 outlined.

sssp: Similar to des, baseline sssp also uses a priority queue

to schedule tasks,whichChronos provides in hardware. Hence,

performance with a single concurrent task is 4.5× larger than
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the frequency-adjusted 0.05×. But unlike des, sssp tasks are

resilient to order violations. The baseline uses this insight

to obtain a 13.3× speedup at 40 threads. However, Chronos

scales even further, upto a 202× self-relative speedup, to give

a 3.6× performance advantage over the baseline.

astar: astar follows a similar pattern to sssp. The perfor-

mance with a single concurrent task is 1.7× slower than the

CPU, and both CPU and FPGA versions scale near linearly.

But the FPGA can fit significantly more concurrent tasks than

the CPU, achieving a speedup of 3.5×.

In conclusion, Chronos FPGA accelerators uncover signifi-

cantly more parallelism than their baseline CPU implemen-

tations, enough to consistently outperform the CPU despite

their much lower frequency. Thus, we expect that high-fre-

quency ASIC versions would achieve even higher speedups.

Comparison with Swarm: We do not compare against

Swarm because Swarm was evaluated only in simulation and

no actual hardware exists. However, the self-relative scalabil-

ities reported in Swarm papers [33, 34, 59] are similar to the

ones we report here. Therefore, given a similar sized Swarm

system for each application as in Table 1 and Table 3, we

would expect performance to be similar.

6.2 Chronos on non-speculative algorithms
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Figure 11. Scalability of

unordered color.

Fig. 11 shows the scalability of

non-speculative color. Chronos

achieves a self-relative scalabil-

ity of 45×. But the baseline also

scales to 9.1×. Though Chronos

uncovers more parallelism, it is

not sufficient to make up for

the 19× penalty in frequency, so

the FPGA version is 2.9× slower

than the CPU overall. This result

shows that Chronos is not neces-

sarily profitable when the software version has easy paral-

lelism (i.e., simple synchronization and sufficient scalability).

6.3 Analysis of system efficiency

To analyze the efficiency of speculative execution, we look

at how each PE spends its cycles for the four speculative

applications. Fig. 12 breaks down PE cycles into those spent

running (i) tasks that are ultimately committed or (ii) tasks

that later aborted or, for the no-rollback applications, tasks

that performed useless work; and cycles where the PE was

stalled due to (iii) a full commit queue or (iv) the task queue

not having any task to dispatch.

Fig. 12 reveals two insights. First Chronos spends most

cycles on tasks that ultimately commit. Only 11% of cycles

are spent on aborted or useless work overall. Second, the

commit queue size, i.e., the number of tasks that can be spec-

ulated ahead, moderately limits performance on applications

without the no-rollback optimization.

Impact of the no-rollback optimization: We have also

generated Chronos accelerators for sssp and astarwithout

the no-rollback optimization. Due to the higher area require-

ment of enforcing rollback (Sec. 4.4), we were only able to fit

8 tiles for sssp (compared to 16). As a result, the performance

of with-rollback versions are 2.3× slower for sssp and 4.1×

slower for astar. The slowdown for astar is because astar

with rollback suffers from large commit queue stalls.

Queue utilization: Fig. 13 shows the average number of

task and commit queue entries used across the system by

each speculative application. Each tile has a 4K-entry task

queue, with the number of tiles specified in Table 3. Large

task queues are important for sssp and astar, which use

more than 4K entries on average.

Fig. 13 also shows the commit queue utilization. Since

sssp and astar no-rollback versions do not use the com-

mit queue, this graph shows the results for versions with

rollback. All applications use 700ś1500 commit queue slots

across all tiles on average, showing that applications need a

large window of speculation to uncover enough parallelism.

Benefits of specialization: Fig. 14 quantifies the benefits

of using application-specific PEs over general-purpose RISC-

V soft-cores. Overall, these results show that application-

specific PEs have a 4ś11× performance advantage.

Estimated ASIC performance: Finally, we use our FPGA

prototype to evaluate the benefits of an ASIC Chronos im-

plementation. We estimate that an ASIC RISC-V Chronos

implementation could run at 2 GHz, a 16× higher frequency

than the FPGA prototype’s 125MHz. To emulate this higher
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LUTs (K) 895 17 12 0.5 12 7 11 4 10 7

FFs (K) 1790 6 8 0.3 12 7 6 4 10 8

BRAM 1680 38 5 - 72 - - - - -

URAM 800 - - - 64 - - - - -

Table 4. Per-tile FPGA resource consumption for each of the

framework components and application-specific PEs

frequency, we throttle DDR memory bandwidth by 1/16th,

since off-chip bandwidth would not change with frequency.

We find all applications except color are not bandwidth-

bound and the 2 GHz ASIC achieves a 16× performance im-

provement over the 125MHz FPGA (the FPGA prototype has

a memory bandwidth of about 50GB/s). For color, the im-

provement is limited to 13.7×. Thus, compared to the CPU

baseline, an ASIC RISC-V Chronos would achieve speedups

ranging from 4.7× (color) to 244.8× (des). Compared to

having specialized PEs on an FPGA, speedups would range

from 1.5× (sssp) to 3.7× (color).

6.4 Analysis of implementation costs

Lines of code: Chronos makes it simple to design custom

accelerators to extract speculative parallelism. The Chronos

framework components take over 20000 lines of SystemVer-

ilog. By contrast, each application is much simpler: sssp

takes just 100 lines, des, maxflow, and color around 300

lines, and astar is around 600 lines.

FPGA utilization: Table 4 shows the FPGA resource con-

sumption of each framework component and PE. Overall,

we observe that, while the framework components consume

substantial resources, they are comparable to those of PEs,

which are very simple.

7 Additional Related Work

Transactional memory on accelerators: Prior work has

demonstrated HTM systems on FPGAs [8, 47]. However, they

do not target application acceleration using FPGAs, and in-

stead focus on implementing a prototypewith soft coreswhere

conflict detection is achieved by augmenting a coherence pro-

tocol. Unfortunately, for high-throughput FPGA accelerators,

the overheads of a coherence protocol are not desirable.

Ma et al. [42] is the only system that targets FPGA ac-

celeration using TM. However, they do not use an on-chip

cache, and hence suffers from reduced performance. Further,

while they use priority scheduling to reduce useless work,

they do not support strict order constraints among tasks, only

unordered transactions.

Kilo TM [18, 19] proposes to implement HTM on GPUs

without using cache coherence. Instead, it uses value-based

conflict detection, relying on a post-completion validation

phase where read values are re-read to detect conflicts. This

technique is expensive (e.g., requiring logging of read val-

ues) and is restricted to lazy version management, which

makes it hard to support speculative forwarding, a key fea-

ture for Chronos.

Accelerators for graph algorithms:Numerous otherwork

have also proposed accelerators for graph algorithms, both

for FPGA [14, 40] and ASIC [23, 49]. However, none of them

support strict task ordering, and as a result resort to less

work-efficient algorithms like Bellman-Ford for sssp.

Simulation accelerators: Prior work in parallel discrete

event simulation has proposed accelerators for different as-

pects of the Time Warp protocol. The Rollback chip [17] ac-

celerates the speculative versioning and rollback process, but

leaves other aspects such as conflict detection to software.

Rahman et al. [51] implement a discrete event simulation

accelerator on an FPGA. This uses a centralized design that

shows why Chronos’s distributed, high-throughput approach

is crucial: its single event queue saturates around 0.15 events

per cycle, a 50× lower task throughput than a 16-tile Chronos

system. Moreover, Rahman et al. evaluated their design using

a microbenchmark with long tasks and do not explore how

to accelerate actual applications. Hence, they do not consider

subtle issues that arise when doing so, such as dealing with

limited on-chip queue capacity.

FPGAs have also been used to accelerate architectural sim-

ulation. RAMP [60, 61] simulates multicore systems, and

FireSim [38] simulates large, scale-out clusters. These sys-

tems use non-speculative CMB-style simulation, which may

limit parallelism,and could benefit fromChronos’s techniques.

8 Conclusion

We have presented Chronos, the first framework to build

accelerators for applications with ordered speculative par-

allelism. Chronos makes speculative execution cheap by re-

lying on SLOT, a new execution model that limits tasks to

access a single read-write object, avoiding the need for cache

coherence.

We implement Chronos on an FPGA and use it to acceler-

ate several challenging applications in graph analytics and

simulation. We deploy these accelerators on commodity AWS

FPGAs, where we demonstrate 5.4× gmean speedup for the

same applications over their software-parallel versions.
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A Artifact Appendix

A.1 Abstract

Our artifact consists of the source code for the Chronos FPGA

acceleration framework; pre-compiled FPGA images for our

evaluated configurations (to facilitate a quick evaluation);

and scripts to set up the development environment, compile

the images from source code, run the experiments in the

paper, and regenerate the graphs.

This appendix describes how to use Chronos to reproduce

the paper’s results, and explains how to set up and run other

Chronos configurations and experiments. All experiments

are run on the Amazon AWS f1.2xlarge instance, configured

using the Amazon-provided FPGA Developer AMI.

A.2 Artifact check-list (meta-information)

• Compilation: Xilinx Vivado, GNU RISC-V embedded GCC com-

piler.

• Run-time environment: Amazon AWS FPGA instance.

• Hardware: Xilinx UltraScale VU9P.

• How much disk space required (approximately)?: 2GB.

• How much time is needed to prepare workflow (approxi-

mately)?: Approx. 1 hour.

• How much time is needed to complete experiments (ap-

proximately)?: 2weeks to reproduce the full results from scratch,

or 2 hours if using the precompiled images. The tutorials (Sec. A.7)

take about 2 days each, or 2 hours if using precompiled images.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: GPL v2.

• Archived (provide DOI)?: 10.5281/zenodo.3558760

A.3 Description

A.3.1 How delivered

Our artifact can be downloaded from https://doi.org/10.5281/

zenodo.3558760 as a .zip file.

A.3.2 Hardware dependencies

Chronos is designed to run on an Amazon AWS f1.2xlarge

instance configured with the Amazon FPGA Developer AMI.

A.3.3 Software dependencies

The main dependence is Xilinx Vivado 2018.2, which comes

with the FPGA Developer AMI. The RISC-V Chronos variant

relies on the GNU RISC-V embedded GCC compiler.

A.3.4 Data sets

For small, testing runs, we include scripts to generate syn-

thetic datasets. The experiments in the paper use large, pub-

licly available datasets from other projects. Since datasets are

large and publicly available, they are not included directly

in the artifact code. Instead, the artifact includes scripts to

download these datasets. These datasets are also archived,

with the DOI 10.5281/zenodo.3563178.

A.4 Installation

1. Launch an AWS f1.2xlarge instance using the Amazon

FPGA Developer AMI. Log into the instance.

2. Extract the Chronos artifact .zip file, and navigate to its

base directory.

3. Run source install.sh. This will clone the Amazon

FPGA SDK repository and install the necessary drivers.

4. Run aws configure to set up the instance with your

AWS credentials.

5. (Optional) Install the GNU RISC-V embedded GCC com-

piler within the instance (https://xpack.github.io/riscv-

none-embed-gcc/). This step is optional because the dis-

tribution already includes pre-compiled RISC-V binaries

necessary for the workflow.

A.5 Experiment workflow

We provide an automated workflow to validate the main re-

sults in the paper from scratch. Note that this process involves

synthesizing multiple Chronos instances for each application,

a process that takes about two weeks to complete.

To facilitate a quick evaluation, we also provide precom-

piled FPGA images of the Chronos instances; when using

these images, reproducing the results takes about two hours.

The cl_chronos/validation/scripts/ directory contains

the necessary scripts to validate the results from the paper.

The full process is explained in comments in the master script

run_validation.py.

To run all experiments from scratch, run:

python run_validation.py

To run all experiments with precompiled images, run:

python run_validation.py --precompiled

This will download a list of precompiled image IDs from a

shared S3 bucket and run the rest of the workflow.

Sec. A.7 includes two smaller tutorials using Chronos,

which can be completed in about 2 hours.

A.6 Evaluation and expected result

Running run_validation.py would generate all evaluation

plots (Figures 10-14).

A.7 Experiment customization

This section provides two smaller tutorials on using Chronos.

First, we illustrate the SLOT programming model using a

sample application running on a Chronos instance with RISC-

V soft cores. Second, we describe how to generate Chronos

instances with specialized cores.

Before starting either tutorial, run source aws_setup.sh to

configure the necessary environment variables and to define

the $CL_DIR environment variable to point to the cl_chronos

subdirectory. Please see README.txt here for more detailed

information, including topics not covered in this workflow,

such as how to simulate Chronos RTL and how to debug

Chronos.
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A.7.1 Tutorial 1: Chronos using RISC-V soft cores

Step 1: Generate a test graph.

The graph_gen tool can be used to generate test graphs to

test our implementation of sssp.

cd $CL_DIR/tools/graph_gen

make

./graph_gen sssp grid 20

This generates a 20x20 grid graph with random weights.

Step 2: Synthesize a Chronos image with RISC-V soft cores.

The output of this step is an Amazon FPGA Image ID

(AGFI-ID) that can loaded into the FPGA. This step will take

about 8 hours to complete. If you’d like to skip this step, you

can instead use the pre-synthesized FPGA image with the

AGFI-ID (agfi-02159d0614fb731a9).

1. Configure Chronos to use RISC-V cores.

cd $CL_DIR/design/

./scripts/gen_cores.py riscv

2. Run synthesis

cd $CL_DIR/build/scripts

./aws_build_dcp_from_cl.sh

This script launches a Vivado synthesis/place-and-route

job. The output of this process is a placed-and-routed

design, produced at:

$CL_DIR/build/checkpoints/to_aws/

<timestamp>.Developer_CL.tar

3. Create an FPGA image. (The commands below follow

the standard instructions on how to generate a runnable

FPGA image from the placed-and-routed design, at https:

//github.com/aws/aws-fpga/blob/master/hdk/README.

md#step3.)

First, copy the design file to a location in Amazon S3:

aws s3 cp $CL_DIR/build/checkpoints/to_aws/

<timestamp>.Developer_CL.tar <s3_location>.tar

Then, create the FPGA image

aws ec2 create-fpga-image --name <name>

--input-storage-location Bucket=<s3_bucket>,

Key=<location_in_s3> --logs-storage-location

Bucket=<s3_bucket_name>, Key=<location_in_s3>

Running this command generates an AGFI-ID that can

be used to load the image into the FPGA.

Step 3: Compile sssp RISC-V code.

This step requires the RISC-V embedded GCC compiler.

You can skip this step by using the precompiled binaries from

$CL_DIR/riscv-code/binaries in the next step.

To build sssp from source, run:

cd $CL_DIR/riscv-code/sssp

make

Step 4: Run sssp on the FPGA.

First load the generated image into the FPGA (This com-

mand may have to be run twice the first time it is loaded).

sudo fpga-load-local-image -S 0 -I <agfi-id>

Next, compile and run the test_chronos program that

transfers the input graph to the FPGA, collects results, and

analyzes performance.

cd $CL_DIR/software/runtime

make

./test_chronos --n_tiles=1 sssp <sssp_input_file>

<sssp_riscv_binary>

A.7.2 Tutorial 2: Chronos with specialized cores

The RTL code for specialized applications can be found in

$CL_DIR/design/apps/. For this example, we will again use

sssp; other applications are similar.

To generate a Chronos instance with these cores, run:

./scripts/gen_cores.py sssp

The rest of the steps are same as in Tutorial 1, except that

the test_chronos script does not take a <sssp_riscv_binary>

argument.

A precompiled sssp Chronos instance is also available

with the AGFI-ID = agfi-0d3750b6360762108.

A.7.3 Customized configurations and applications

CustomizingChronos parameters:The file config.sv con-

tains the configuration parameters of Chronos. These include

the number of tiles, the sizes for various queues and cache

parameters.

Porting new applications: The first step in porting a new

application is to break the application down into SLOT tasks

(single-object tasks ordered using timestamps). Initially, these

tasks can be expressed as software functions and run on a

Chronos instance with RISC-V cores.

Once the SLOT implementation is verified, a specialized

core can be designed for each task. Please refer to the script

$CL_DIR/design/scripts/gen_cores.py on how to integrate

new specialized cores into the Chronos workflow.
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