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Current hardware accelerators are limited to easy 
parallelism

Current Accelerators

Target easy parallelism

Tasks and dependences known in 
advance
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e.g.: Deep learning, Genomics

Chronos

Targets hard parallelism

Require speculative execution

e.g.: Graph analytics, simulation, 
transactional databases



Problem and Insight
Problem

Prior speculation mechanisms (Transactional 
Memory, Thread Level Speculation) require 
global conflict detection
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Shared memory system →  coherence protocol
Coherence poorly suited for accelerators
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Order 
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Transaction 1 

Insight

Limit the data that each core can access

Divide work into tiny tasks and send them to data

Coordinate tasks through order constraints
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Memory

Core 2
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Y Z

WCore 1

Local conflict detection → No coherence needed



Contributions

SLOT (Spatially Located Ordered Tasks):  A new execution model that does not require 
coherence, but relies on task ordering and spatial task mapping to detect conflicts

Chronos: An implementation of SLOT that provides a common framework for acceleration of 
applications with speculative parallelism
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https://chronos-arch.csail.mit.edu/

https://chronos-arch.csail.mit.edu/


Speculative parallelism with single-object tasks

Discrete Event Simulation (DES) for Digital Circuits
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Prior techniques rely on global conflict detection
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Shared Cache / Directory
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Why? No restriction on where a task can run
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Relies on coherence protocol to find conflicts



Insight 1: Leveraging spatial task mapping for local 
conflict detection
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Shared Cache / Directory
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Insight 2: Leveraging order to ensure atomicity
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Transfer W    Y
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Transfer X    Z
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Transfer Z    W
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Timestamp

Banking application: 
Each transaction decrements the balance of one account and increments another

Assign a disjoint timestamp range for each coarse transaction



Benefits of fine-grained tasks
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✓ Increased data locality

✓ Reduced network traffic

✓ Increased parallelism 

Transaction 2 
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Brings data to compute Sends compute to data

✓ Low probability and impact of 
aborts

✓ Asynchronous communication



SLOT (Spatially Located Ordered Tasks)

10

SLOT programs consist of tasks

Tasks can create children tasks through a simple API: 

slot::enqueue( fn_ptr,  timestamp,  object-id,  arguments…);

Timestamp : Specifies order.  Tasks appear to execute in timestamp order

Object-id : Specifies dependences. Tasks with same object-id are treated as data-dependent

Tasks with different object-ids can only communicate through arguments



SLOT programming example (in software)

11

1 ns

0

5 ns
1 ns

2 ns

1

0

1

// Simulates an event arriving at a gate
void simToggle(Time time, GateInput input) {

gate = input.gate;
toggledOutput = updateState(gate, input);
if (toggledOutput) {

// create events for connected gates
for (GateInput i : gate.connectedInputs()) {

Time nextTime = time + gate.delay(input, i);
slot::enqueue(

simToggle, nextTime, i.gateID, i);

}

}

}
enqueueInitialTasks()
slot::run()

// Simulates an event arriving at a gate

void simToggle(Time time, GateInput input) {
gate = input.gate;

toggledOutput = updateState(gate, input);

if (toggledOutput) {

// create events for connected gates

for (GateInput i : gate.connectedInputs()) {

Time nextTime = time + gate.delay(input, i);

eventQueue.enqueue(nextTime, i);
}

}
}

PriorityQueue<Time, GateInput> eventQueue;

enqueueInitialEvents()

// event loop. Sequentially execute in ts order

while (!eventQueue.empty()){

(time, input) = eventQueue.dequeue();

simToggle(time, input);

}



Chronos: 
An implementation of SLOT



Chronos overview

Chronos provides a framework to build accelerators for applications with 
speculative parallelism
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The developer specifies the tasks and how they are implemented
◦ Either software routines on soft cores, or specialized Processing Elements (PE)

Framework takes care of task management and speculative execution
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Task life cycle
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Mapped to Tile A

Mapped to Tile B

Chronos internal dataflow
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Versioning and commit protocol

Core

Main Memory / Cache

Eager versioning 

Undo Log

Commit Protocol (GVT – Global Virtual Time)

Tile 0

Tile 1

Tile N

GVT 

Arbiter

LVT (Earliest unfinished ts in the tile)

GVT (Earliest unfinished ts in the system)

GVT = 

min{LVT0, .. LVTN}

Key benefits
Makes the common case (commits) fast
Makes speculative data available before commit

Key benefits
Achieves fast and parallel commits 

Updates speculative values in place

Store old values in an undo log
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Chronos FPGA implementation

Developed an FPGA implementation of Chronos – up to 16 tiles

Running at 125 MHz

High task throughput – can enqueue, dequeue, execute and commit 
8 tasks per cycle on a 16-tile system
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AWS Shell16 Tiles



Experimental methodology

Four accelerators built using Chronos framework running on AWS FPGAs
• Discrete Event Simulation (DES)
• Maxflow
• Single Source Shortest Paths (SSSP)
• Astar Search

Custom PEs per application: 32-way multithreaded PE, single PE/tile

Baseline: Highly optimized software parallel implementations 
running on a 40-threaded Xeon AWS instance

18

Platform AWS Instance Price ($/hr)

Baseline CPU M4.10xlarge 2.00

FPGA F1.2xlarge 1.65



Chronos performance vs. 40-threaded Xeon
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App Concurrent
Max. Tasks

FPGA 1t/ 
CPU 1t

Overall 
Speedup

des 256 2.45× 15.3×

maxflow 192 0.11× 4.3×

sssp 512 0.24× 3.6×

astar 192 0.58× 3.5×

3.6x

4.3x

3.5x

15.3x

Runs many more tasks in parallel

Specialization helps to run a single task efficiently
(narrowing the 19× frequency gap with CPU)



Chronos performance analysis
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Breakdown of aggregate PE cycles

Observation:

Most work is ultimately useful 
(only 11% of cycles result in wasted work)



See the paper for more

Non-speculative applications

Non-rollback applications

Chronos with RISC-V cores

Projected performance on ASIC Chronos

Chronos resource utilization
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Conclusion

Prior speculative parallel systems have relied on cache coherence to detect conflicts, 
precluding their use in accelerators

SLOT (Spatially Located Ordered Tasks):  A new execution model that does not require 
coherence, but relies on task ordering and spatial task mapping to detect conflicts

Chronos: An implementation of SLOT that provides a common framework for acceleration 
of applications with speculative parallelism
o Use Chronos to build FPGA accelerators for four challenging applications providing up to 15x speedup 

over a multicore baseline
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https://chronos-arch.csail.mit.edu/

https://chronos-arch.csail.mit.edu/

