
Appears in the Proceedings of the 53rd Annual International Symposium on Microarchitecture (MICRO), 2020

Pipette: Improving Core Utilization on Irregular

Applications through Intra-Core Pipeline Parallelism

Quan M. Nguyen

MIT CSAIL

qmn@csail.mit.edu

Daniel Sanchez

MIT CSAIL

sanchez@csail.mit.edu

Abstract—Applications with irregular memory accesses and
control flow, such as graph algorithms and sparse linear algebra,
use high-performance cores very poorly and suffer from dismal
IPC. Instruction latencies are so large that even SMT cores
running multiple data-parallel threads suffer poor utilization.

We find that irregular applications have abundant pipeline
parallelism that can be used to boost utilization: these applications
can be structured as a pipeline of stages decoupled by queues.
Queues hide latency very effectively when they allow producer
stages to run far ahead of consumers. Prior work has proposed
decoupled architectures, such as DAE and streaming multicores,
that implement queues in hardware to exploit pipeline parallelism.
Unfortunately, prior decoupled architectures are ill-suited to
irregular applications, as they lack the control mechanisms
needed to achieve decoupling, and target decoupling across cores
but suffer from poor utilization within each core due to load
imbalance across stages.

We present Pipette, a technique that enables cheap pipeline
parallelism within each core. Pipette decouples threads within
the core using architecturally visible queues. Pipette’s ISA fea-
tures control mechanisms that allow effective decoupling under
irregular control flow. By time-multiplexing stages on the same
core, Pipette avoids load imbalance and achieves high core IPC.
Pipette’s novel implementation uses the physical register file to im-
plement queues at very low cost, putting otherwise-idle registers
to use. Pipette also adds cheap hardware to accelerate common
access patterns, enabling fine-grain composition of accelerated
accesses and general-purpose computation. As a result, Pipette
outperforms data-parallel implementations of several challenging
irregular applications by gmean 1.9× (and up to 3.9×).

I. Introduction

Irregular workloads such as graph analytics and sparse linear

algebra use high-performance cores poorly: these workloads

suffer from frequent long-latency memory accesses and hard-

to-predict branches that limit instruction-level parallelism and

render out-of-order execution mechanisms ineffective. In this

paper we focus on non-invasive modifications to existing out-of-

order cores to make these challenging workloads run efficiently.

Leveraging multithreaded cores is a common way to improve

core utilization. But structuring irregular applications into

multiple data-parallel threads suffers from three key problems:

(i) latencies are larger than what can be effectively hidden

by a moderately large number of threads per core (e.g., four);

(ii) operating on disjoint parts of the input increases pressure on

the memory hierarchy, limiting performance [14]; and (iii) data-

parallel implementations suffer from overheads because they

need to synchronize through shared memory.

In this work we explore a different and more effective

approach to improve utilization in simultaneous multithreading

(SMT) cores: exploiting pipeline parallelism. A pipeline-

parallel program is structured as a series of feed-forward

pipeline stages, with each stage executing on a separate thread.

Decoupling stages with queues hides latency by allowing

producer stages to run far ahead of consumer stages.

Abundant prior work has proposed decoupled architectures

to exploit pipeline parallelism (Sec. II): decoupled access-

execute (DAE) architectures [11, 15, 37, 38, 41, 44], streaming

multicores [5, 8, 42], and spatial architectures [31, 32, 34, 50]

use queues as latency-insensitive interfaces between cores,

threads, or specialized processing elements. Unfortunately,

these architectures are ineffective for our use case because they

(i) suffer from load imbalance, as they decouple stages across

separate cores or processing elements, (ii) lack control-flow

mechanisms, preventing decoupling of irregular applications,

and/or (iii) fail to target threads within SMT cores, so their

implementations miss opportunities to reuse already-existing

resources to implement decoupling cheaply.

To address these limitations, we present Pipette. Pipette

introduces architectural support for pipeline parallelism within

the threads of a multithreaded core. Pipette’s novel ISA

(Sec. III) allows threads to define inter-thread queues. By

exploiting pipeline parallelism within a multithreaded core,

Pipette hides latencies more effectively than the same number

of data-parallel threads. Pipeline parallelism’s naturally smaller

memory footprint alleviates cache pressure and reduces the

need to synchronize through shared memory.

By using SMT to time-multiplex stages in the same core,

Pipette avoids load imbalance issues that arise when decoupling

stages across separate cores or processing elements. Neverthe-

less, Pipette allows queues to span multiple cores, avoiding

limitations on the number of stages (and thus opportunities

for decoupling). Pipette also adds out-of-band control flow to

keep producer and consumer loops running despite complex

control flow. With these features, Pipette effectively decouples

irregular applications, unlike prior work.

In addition to using SMT for load balancing, Pipette’s

microarchitecture (Sec. IV) features two more novel aspects.

First, the implementation reuses core structures: it uses the

physical register file to implement queues cheaply, avoiding the

storage costs of prior techniques. Second, the implementation

exposes a decoupled interface that cleanly accommodates

reference accelerators, simple hardware units that further

accelerate common memory access patterns like indirections.

1

qmn@csail.mit.edu
sanchez@csail.mit.edu

define bfs(src):

distances[src] = 0

cur_fringe = [src]

cur_dist = 1

while not cur_fringe.empty():

for v in cur_fringe:

start, end = offsets[v], offsets[v+1]

for e in range(start, end):

ngh = neighbors[e]

dist = distances[ngh]

if dist is unset:

distances[ngh] = cur_dist

next_fringe.push(ngh)

cur_fringe = []

swap(cur_fringe, next_fringe)

cur_dist += 1

(a) Pseudocode for serial BFS.

1

2

3

4

0

1

0

1 2

2

(b) An example graph G.

0 1 2 3 4 5

0 2 3 6 7 7

1 2 3 1 3 4 4

0 1 2 3 4

0 1 1 2 2

offsets

neighbors

distances

(c) G’s CSR representation and, at right, the output
(distances) produced by BFS.

Enumerate
neighbors

Process
current fringe

Fetch
distances

Update data,
next fringe

(d) A pipeline-parallel implementation of BFS.

Fig. 1: An implementation of breadth-first search (BFS).

Whereas prior work proposed coarse-grain specialized units

to access complex data structures [17, 19, 26], Pipette enables

composable, fine-grain interleaving of accelerated accesses and

general-purpose computation.

We evaluate Pipette on applications from graph analytics,

sparse linear algebra, and databases (Sec. VI). Pipette substan-

tially outperforms prior work, by gmean 1.9× and up to 3.9×

over SMT with data-parallel threads. Moreover, Pipette is more

efficient because it achieves high core utilization.

In summary, we make the following contributions:

• We identify the architectural support needed to efficiently ex-

press many irregular applications as a pipeline of decoupled

stages.

• We present a novel ISA and control-flow primitives that

enable effective decoupling in these applications.

• We present a novel implementation of this ISA that reuses

existing core machinery to achieve decoupling and load-

balanced execution cheaply, and adds simple, composable

specialized units to accelerate common access patterns.

• We demonstrate the effectiveness of this approach on a wide

range of applications.

II. Background andMotivation

In this section we show that pipeline parallelism is common

in irregular workloads, and yet prior techniques cannot use

it effectively. We show this concretely through a very simple

algorithm: breadth-first search (BFS).

BFS: Fig. 1(a) shows the pseudocode of serial BFS. Given an

input graph, BFS visits all the vertices reachable from a given

source vertex src, and tags them with the shortest distance to

the source, in number of edges.

This algorithm iteratively tags all vertices at a given distance

from the source, cur_dist, before moving onto the next

distance. A fringe tracks the set of all vertices at the previous

distance (cur_dist-1). As BFS visits the neighbors of each

vertex in the fringe, it checks whether the neighbor’s distance

has been set. If not, BFS sets its distance, and adds it to the

next iteration’s fringe (next_fringe). At the end of the current

iteration, BFS processes the vertices of the next fringe, until an

0

1

2

3

4

5

S
p
ee

d
u
p

o
v
er

se
ri

al

Serial

4-thread Data-Parallel

4-thread Pipette

4-core Streaming Multicore

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
st

rs
/

cy
cl

e

Fig. 2: BFS performance and instructions per cycle on serial, data-parallel,
and Pipette versions on a 4-way multithreaded out-of-order core, as well as
on a 4-core streaming multicore.

iteration results in an empty fringe—indicating that all vertices

reachable from the source have been visited.

The BFS implementation in Fig. 1(a) uses a graph in

compressed sparse row (CSR) format, the most commonly

used representation [29, 36, 39]. Fig. 1(b) shows an example

graph and Fig. 1(c) shows its CSR representation. CSR stores

the graph using two arrays, offsets and neighbors. For each

vertex id, the offsets array stores where its neighbors begin in

the neighbors array. Thus, vertex v has edges to neighbors[i]

for i from offsets[v] to offsets[v+1]. The neighbors array

stores the vertex id of each neighbor.

BFS performance: Fig. 2 shows the performance of various

BFS implementations. The serial and data-parallel implemen-

tations are from highly optimized PBFS [21], and we derive

the Pipette implementation from serial PBFS. The simulated

system uses high-performance cores modeled after Skylake.

Each core is 4-thread SMT and features 6-wide out-of-order

(OOO) execution with a deep ROB and large load-store queues

(see Sec. V for methodology). Fig. 2 shows the speedup of

each BFS variant over the serial version, as well as their IPCs.

BFS operates on a large road network graph, so the irregular

accesses to graph data miss on the caches and cause poor IPC:

just 0.43 instructions/cycle for the serial version, despite using

the state-of-the-art 6-wide OOO execution.

SMT alone still achieves poor core utilization: data-parallel

BFS running on four SMT threads is only 30% faster than

serial, and IPC for the whole core is just 0.96. This happens

because four threads are insufficient to hide memory access

2

latencies. Moreover, threads compete for cache capacity and

incur synchronization overheads, further capping speedup.

By contrast, the Pipette BFS version uses pipeline parallelism

to hide long-latency accesses effectively. Pipette BFS is 4.9×

faster than serial, and its IPC is a healthy 2.4. We now discuss

how Pipette achieves this. (Fig. 2 also shows results for a

streaming multicore, which we discuss in Sec. II-A.)

Pipeline parallelism in BFS: Fig. 1(d) shows how Pipette

effectively decouples BFS by partitioning the code into four

stages. Stage colors correspond to colored code regions in

Fig. 1(a). BFS has three levels of indirection per fringe vertex,

to fetch (i) the vertex’s offsets (line 7), (ii) its corresponding

neighbors (line 9), and (iii) each neighbor’s distance (line 10).

(Accesses to the fringes may also miss frequently, but they

are sequential and trivially handled by a stream prefetcher.)

Pipette achieves high performance by splitting the program

across each long-latency indirection, resulting in four stages.

Achieving this effective decoupling requires a combination

of features that prior decoupled architectures do not provide:

• More than two stages. Merging any two stages in BFS

would add a costly indirection and make it the rate-limiting

stage. High performance is achieved only when all frequent

long-latency events are decoupled.

• Independent control flow for each stage. For example,

the update data stage uses conditional execution, and the

enumerate neighbors stage has a variable-length loop.

• Related to the above, accommodating large, fast variations

in work across stages. For example, the amount of work of

the last two stages depends on the degree of each vertex,

and the work in the update data stage depends on how many

neighbors have been visited.

Pipette achieves the first two objectives through its ISA, and

achieves the last objective by load-balancing stages within a

single core. We now review how prior work in this area lacks

some or all of these features.

A. Prior work on decoupled architectures

We now review the key types of decoupled architectures and

discuss why their approach is insufficient for irregular work-

loads like BFS. In general, prior decoupled architectures suffer

from two limitations: (i) their queue-based communication and

control mechanisms target applications with regular control

flow, and impose restrictions on the number of stages or the

types of activities within each stage, so they are insufficient

to decouple stages in irregular programs; and (ii) most of this

prior work places each stage on a different core, which causes

high load imbalance in irregular programs. Table I summarizes

the differences between Pipette and prior work.

Decoupled Access-Execute (DAE) architectures [37] feature

two specialized units: an access core that performs memory

operations and an execute core that performs compute op-

erations. Both cores are decoupled by queues, allowing the

access core to run ahead. Unfortunately, DAE-based archi-

tectures [11, 15, 37, 38, 41, 44] suffer from loss of decoupling

because they allow only two stages, access and execute, and

each stage has a limited set of operations, which causes tight

TABLE I
Feature comparison of related work and Pipette.

Name

Flexible

number of
stages > 2

Independent

control
flow

Dynamic

load
balancing

Reuses

core
structures

DAE [37], DeSC [15] ✘ ✘ ✘ ✘

MT-DCAE [41] ✘ ✘ ✔ ✘

Raw [42], MPPA [8] ✔ ✔ ✘ ✘

Triggered instructions [32] ✔ ✔ ✘ ✘

DSWP [35] ✔ ✘ ✘ ✘

Outrider [5] ✔ ✘ ✔ ✘

Pipette (this work) ✔ ✔ ✔ ✔

two-way dependences between the access and execute cores.

For example, DAE is unable to decouple BFS as described.

Streaming multicores like Raw [42] and Kalray’s MPPA [8]

introduce hardware support for decoupled communication

between cores, which can stream values over the network [6, 7,

18, 43]. Unlike DAE, streaming multicores allow more than two

pipeline stages and let each core execute arbitrary instructions.

However, this cross-core decoupling is inefficient for irregular

workloads due to load imbalance: since the work per stage

varies quickly, cores incur many idle cycles. In fact, these

streaming multicores were only used for regular pipeline-

parallel applications, coded in languages like StreamIt [12] or

StreamC [7]. These systems relied on precise knowledge of the

execution time and communication requirements of all stages,

gathered through static analysis or annotations, to statically

map stages to cores [18, 20, 33].

To see the effect of load imbalance, Fig. 2 shows BFS

performance on a 4-core streaming multicore. This 4-core

pipeline-parallel BFS has similar performance (in fact, 10%

slower) than single-core, 4-thread Pipette: cores stay idle most

of the time, and per-core IPC is a measly 0.55, 4.4× worse than

single-core Pipette. Thus, load imbalance is not a second-order

issue, but a major roadblock to use streaming multicores well.

Though not the focus of this paper, spatial and specialized

architectures such as coarse-grained reconfigurable arrays

(CGRAs) [13, 31, 34, 50] and Triggered Instructions [32] also

use queues as latency-insensitive channels between processing

elements. These systems also cannot load-balance stages across

processing elements dynamically.

Decoupled multithreaded cores introduce support for queue-

based communication among cores. Outrider [5] is the closest

work to Pipette. Outrider introduces hardware queues to

decouple the threads of a single multithreaded core. In principle,

this makes load-balancing across stages easy. However, Outrider

was designed for applications with regular control flow, and

lacks the control-flow mechanisms needed to accelerate irregu-

lar applications. Specifically, Outrider uses a global queue for

control decisions and requires that all control instructions reside

within the first thread to achieve any decoupling. For example,

Outrider would not work for BFS, as three out of the four

stages have control flow. In addition to this lack of flexibility,

Outrider targets simple cores. This makes its implementation

quite different from Pipette’s: Pipette leverages existing OOO

core structures to implement queues, whereas Outrider adds

separate queue storage.

3

In addition to Outrider, Decoupled software pipelining

(DSWP) [35] uses a synchronization array to facilitate com-

munication between cores or the threads of a multithreaded

core. But DSWP focuses on pipelining a single loop across

different threads, which is too limiting for irregular applications.

For example, BFS uses a 3-level nested loop, with stages

across several loop levels (and because inner loops are short,

decoupling within the inner loop is insufficient).

Indirect prefetchers seek to hide the latency of accesses

common in irregular workloads. IMP [51] prefetches accesses

of the form A[B[i]], which is insufficient work for BFS, as

it has several indirections. Ainsworth and Jones propose a

prefetcher tailored to BFS [1] and a more general event-driven

prefetcher [2] that can handle multiple levels of indirection.

However, these prefetchers are complex, taking significant

energy to infer dependent accesses from memory traffic; they

cannot handle all accesses accurately (like fetching the right set

of offsets and neighbors in BFS, which requires iteration [2]);

they can handle a limited set of access patterns; and they

duplicate much of the work done in the cores, hurting efficiency.

Data structure fetchers are similar to prefetchers, but feed

fetched data to cores to avoid duplicating work. HATS [26]

performs graph traversals, Widx [17] accelerates hash indexing,

and SQRL [19] handles vector, hash table, and tree traversals.

Fetchers avoid the inefficiencies of prefetchers, but are limited

to specific data structures and to operations where data structure

traversal and computation are not interleaved.

In summary, prior work lacks the ingredients needed to

achieve high core utilization on irregular workloads. We now

describe how Pipette’s implementation reuses existing core

structures to implement decoupling cheaply.

III. Pipette ISA

Design goals: Pipette’s design is driven by three main goals:

1) Providing inter-thread queues at extremely low overheads,

so that threads can communicate very frequently, potentially

on almost every instruction. This enables a fine-grain slicing

of the program into stages, which is crucial, as we saw in

Sec. II. For example, some stages of BFS have as little as

one dereference per enqueue and dequeue.

2) Providing control flow primitives that avoid instruction

overheads when a serial thread is split into multiple stages.

For example, in BFS, stages must synchronize on distance

changes. If each stage had to check on every dequeue

whether a distance increase was needed, control overheads

would negate the benefits of splitting work into stages.

3) Achieving an efficient implementation that reuses existing

core structures and accelerates common access patterns.

Pipette’s ISA is designed to achieve all these goals. We

first discuss how the Pipette ISA achieves extremely low-

overhead queues (Sec. III-A), enabling the first design goal.

We then present Pipette ISA’s control primitives for efficient

inter-stage coordination (Sec. III-B), enabling the second goal.

Sec. IV presents Pipette’s microarchitecture, which efficiently

implements the Pipette ISA to achieve all design goals. Table II

details the Pipette instruction set.

TABLE II
Pipette instruction set additions. $q is a queue id; %rd, %rs, %rq are
general-purpose registers used as a destination, source, or queue.

Mnemonic Function

map_enq $q, %rq Map writes to architectural register %rq as
enqueues to queue $q.

map_deq $q, %rq Map reads from architectural register %rq as
dequeues from queue $q.

unmap %rq Revert %rq to a non-queue register.

peek %rd, %rq Peek top element from queue %rq, writing %rd

without dequeueing %rq.

enq_ctrl %rq, %rs Enqueue a control value (§ III-B).

skip_to_ctrl %rd, %rq Skip to the next occurrence of a control value
(§ III-B).

A. Enqueue and dequeue operations

Pipette provides a fixed number of FIFO queues per core

(e.g., 16 in our implementation). To minimize overheads, Pipette

does not have explicit enqueue or dequeue instructions. Instead,

each thread can map the input or output of a queue to a

general-purpose register. Each write to a queue input register

implicitly enqueues the written value, and each read of a queue

output register implicitly performs a dequeue. As we will see

in Sec. IV, this register-mapped communication is cheap to

implement through register renaming.

It is sometimes useful to read the value at the head of

the queue without dequeueing it. To accomplish this, Pipette

provides a peek instruction, as shown in Table II.

Pipette queues have a maximum size (e.g., 32 values). To

avoid full/empty checks, queues have blocking semantics:

dequeue or peek operations to an empty queue block until

a value is enqueued, and enqueues to a full queue block until

free space is available. We later describe how producers and

consumers can use control values to coordinate without adding

instruction overheads in the common case.

Fig. 3 shows why register-mapped, implicit enqueues and de-

queues are crucial for performance in the enumerate neighbors

stage of BFS. Fig. 3(b) shows assembly code corresponding

to the excerpt of C code in Fig. 3(a). If a pipeline-parallel

implementation used an enq instruction to enqueue values to

queues, as done in Fig. 3(c), it would expand the inner loop

by one instruction, a 33% increase for this short loop. This

instruction would add pressure to the core frontend (to fetch

and decode it) and backend (to execute and commit a micro-

op that merely copies a value). Instead, Pipette uses implicit

communication, implemented through register renaming, to

avoid all these overheads: the Pipette code in Fig. 3(d) maps

register t1 so that the load instruction directly enqueues q1.

B. Efficient control flow

Producers often need to communicate control flow changes

or exceptional conditions to consumers. Doing this through

normal enqueues and dequeues would be inefficient. Instead,

Pipette provides control values (CVs). Control values are

similar to other values passed through queues except that they

convey changes to control flow instead of application data. To

differentiate them from application data, each CV is enqueued

4

int start = offsets[v];

int end = offsets[v+1];

for (int e = start;

e < end;

e++) {

int ngh = neighbors[e];

// fetch distances[ngh]

// if unset:

// update distance

// add to next fringe

}

(a) C code enumerating neighbors of a
vertex.

; vertex v’s first neighbor

a2 = &(neighbors[offsets[v]])

; vertex v+1’s first neighbor

a3 = &(neighbors[offsets[v+1]])

...

loop:

; ngh = neighbors[offsets[v]]

lw t1, 0(a2)

; fetch distance

; set if unset

addi a2, a2, 4 ; next neigh. addr

blt a2, a3, loop ; more neighs?

(b) Serial assembly code.

loop:

lw t1, 0(a2)

enq q1, t1 ; overhead

addi a2, a2, 4

blt a2, a3, loop

(c) Pipeline-parallel assembly
code using an enq instruction,
which does not exist in Pipette,
to manipulate a queue.

; writes to t1

; enqueue q1

map_enq q1, t1

...

loop:

; q1 enq ngh

lw t1, 0(a2)

addi a2, a2, 4

blt a2, a3, loop

(d) Pipette code tightens the
inner loop by making writes to
t1 enqueue q1.

Fig. 3: Example showing the importance of tight inner loops: adapting the code from Fig. 3(b) to Fig. 3(c) using explicit enqueue instructions adds an
instruction to a tight inner loop. Pipette addresses this in Fig. 3(d) with its implicit queue semantics.

Accumulate

Stream
rows of A

Stream
cols of B

Merge-
intersect

Fig. 4: Sparse matrix-matrix multiplication (SpMM), with one stage receiving
two inputs.

with the enq_ctrl instruction, which sets the control bit for

its queue entry.

CVs let programs avoid checks for infrequent conditions by

using semantics similar to those of exceptions. Before starting

execution, each thread registers a dequeue control handler,

similar to an exception handler. A thread dequeueing from or

peeking at a queue with a control value at its head instead jumps

to the dequeue control handler (this jump happens entirely in

user level and does not involve the OS). The dequeue control

handler receives the control value and the id of the queue

that triggered it. The handler processes the control value, then

jumps back to mainline Pipette code to continue computation.

Going back to the BFS example from Fig. 3(d), it’s easy to

see why control values make execution efficient: the inner loop

in Fig. 3(d) does not check for termination or level switches in

the inner loop. Instead, stages handle these conditions through

control values and dequeue control handlers, leaving the inner

loops to deal with data values only.

For a more sophisticated use of control values, consider the

inner-product sparse matrix-matrix multiply (SpMM) kernel,

shown in Fig. 4. SpMM computes the dot product of a row of

A and a column of B at a time. Both matrices are sparse, so

the leftmost stages (stream rows/cols) stream the non-zero

coordinates of a row and a column at a time. Then, the

merge-intersect stage finds the matching non-zeros, which the

accumulate stage fetches and accumulates.

Control values make SpMM efficient by letting the stream

rows/cols stages delineate each row and column. For example,

the stream rows stage enqueues all non-zeros for a row of A,

followed by a control value denoting the index of the next row,

and then the non-zeros of the next row. The merge-intersect

code need not check for row or column termination, and the

stream rows stage can fetch multiple rows ahead, which is

useful as rows often have few non-zeros.

Consumer-producer coordination: So far, we have seen how

producers can delimit data values with control values to

communicate with consumers. The dual case is also desirable:

consumers may need to communicate with producers. For

1 3 6 9 18 68 …
A row

coordinates

0 2 3
B column

coordinates Need not fetch past 3

Merge-
intersect

Fig. 5: In SpMM, an inner product in which the input row and column differ
greatly in length.

example, a consumer may discover that the work a producer is

enqueueing is no longer useful, and should alter the producer’s

control flow to reduce unnecessary work.

To achieve this, the skip_to_ctrl instruction finds and

dequeues the next control value in a queue, discarding all

earlier data values. If the queue does not have a control value,

skip_to_ctrl blocks waiting for one, and the next time the

producer attempts an enqueue, it jumps to an enqueue control

handler instead. This lets the producer redirect control flow

and enqueue a control value that unblocks the consumer.

SpMM shows why skip_to_ctrl and enqueue control

handlers are useful. Fig. 5 shows an inner product where A’s

row is much longer than B’s column, and the last coordinate in

B’s column is seen very early in A’s row, so no more matched

coordinates are possible. It would be wasteful for stream rows

to stream the full row of A, but only merge-intersect can

detect this condition. To address this, when merge-intersect

sees the end of B’s column (its dequeue control handler fires),

it performs skip_to_ctrl on the rows queue to skip to the

next row. If stream rows is still working on the same row,

the queue has no control value, so on the next enqueue, the

enqueue control handler of stream rows fires and moves to

the next row. If stream rows is already on a later row, then

skip_to_ctrl lets merge-intersect discard the current row

without undue interruptions to stream rows.

In summary, control values and enqueue/dequeue control

handlers enable producers and consumers to coordinate out-of-

band, in a way similar to user-level exceptions. This avoids

frequent checks on inner loops that would add significant

overheads to the pipelined version. Beyond the two instructions

required to enqueue and dequeue control values, this mechanism

requires two control registers per thread to store the PCs of

enqueue and dequeue control handlers.

C. Integrating Pipette into the system

Code transformations to use Pipette: We use a simple,

systematic procedure to split applications into Pipette stages: we

split programs along every long-latency indirect load, starting

5

at the innermost loop and moving outwards. BFS in Sec. II

demonstrated this procedure.

We currently transform applications manually, similar to

prior work in this area [5, 32]. We transform source code rather

than assembly, by using a simple C/C++ API that encapsulates

Pipette functionality (e.g., abstracting the mapping and use

of queue registers). While some prior work targets compiler

transformations [15, 35], we find that irregular applications are

harder to transform automatically due to complex indirections

that may be impacted by aliasing and races.

For example, one such race condition arises in the last

stage of BFS, update data. To decouple this stage from the

previous one, the Pipette BFS implementation fetches distances

in advance. However, this distance may be stale, as the neighbor

may have been recently reached from another fringe vertex.

It would be incorrect to use the distance as-is. Our manually

transformed code uses this distance for an initial check, but

if unset, it re-fetches the distance to ensure it was not set in

the interim (this second access is cheap, as it hits in the L1).

It would be hard for a compiler to infer when such races are

possible, since aliasing information is conservative and whether

races are possible depends on application semantics.

Though general-purpose compiler transformations may be

unattainable, we nonetheless believe programmers need not

directly write Pipette programs. Instead, the compilers of

domain-specific languages such as TACO [16] (sparse linear

algebra) or GraphIt [52] (graph analytics) could easily generate

Pipette code, as they have full information about data structures,

aliasing, and high-level semantics.

Pipette is orthogonal to the memory consistency model, and

programs behave like normal multithreaded programs.

Finally, if a Pipette application is incorrectly synchronized,

it may deadlock. Deadlocks leave user-level threads blocked,

but the OS can use interrupts to break those deadlocks (like

e.g., a blocked monitor/mwait instruction).

Architectural state and context switches: Pipette queues are

architectural state, and must be drained and saved across context

switches. As is done for FPU state, OSs need not save and

restore this state on every system call or interrupt, only when

the process is descheduled. As these context switches occur

infrequently, saving queue contents represents a negligible

fraction of the time spent in OS code.

Draining and refilling queues can be done with normal

Pipette instructions. In addition to the OS, debuggers could

inspect queues by draining and refilling them.

Privileged code and virtualization: Since threads are an OS

abstraction, and threads from multiple processes may share the

same core, some of Pipette’s operations must be privileged.

Specifically, the map and unmap operations and the registration

of control handlers must happen though system calls. Similar

to virtual memory, the OS can provide each process with a set

of virtual queues, which it can then map to physical queue ids

within each core. This allows descheduling and rescheduling

individual threads in any order. Since each queue is shared

between a producer and a consumer thread, the last of the

two threads to be descheduled saves the queue’s state. Threads

L1 connections

Front
End R

O
B

Ld/St Bufs

PC
OOO
Core

Core

L2

L3 Cache

L1I/D

Main Memory

Core

L1I/D

Core

L1I/D

Core

L1I/D

L2 L2 L2
P
h
y
s. R

e
g
 F

ile

F
u
n
ctio

n
a
l

U
n
its

…

R
e
n
a
m

e

Issu
e
 D

isp
a

tch

QRM

RAs

Fig. 6: Pipette implementation overview and modified out-of-order pipeline.
Modifications (QRM and RAs) are shown in purple with dotted borders.

can migrate across cores (using cross-core queues, Sec. IV-C).

A producer/consumer thread can enqueue/dequeue to a queue

while the other thread is descheduled; however, in practice it

will quickly block on a full/empty queue. Thus, the OS should

co-schedule the threads of a Pipette program, e.g., using gang

scheduling [54].

OS-mediated queue mappings prevent accessing queues from

other processes. Side channels are possible just like in normal

SMT cores; to avoid them, Pipette threads should not be co-

scheduled with other processes on the same core.

IV. PipetteMicroarchitecture

Fig. 6 gives an overview of Pipette’s implementation,

focusing on its two distinguishing features. First, our Pipette

implementation uses the physical register file to implement

queues (Sec. IV-A). We observe that physical registers are

underutilized in irregular applications, where deep out-of-order

execution is not efficient. This enables a cheap implementation

that leverages existing OOO structures: physical registers and

register renaming. Second, we introduce reference accelerators

to speed up common access patterns (Sec. IV-B). We also

introduce connectors to enable cross-core queues (Sec. IV-C),

and evaluate Pipette’s implementation costs (Sec. IV-D).

A. Register-based inter-thread queues

Pipette maintains queues within the physical register file,

and adds minor changes to register renaming to implement

FIFO queue semantics. Pipette prevents queues from starving

threads of physical registers by sizing each queue and limiting

the space all queues may collectively occupy. Since queues are

embedded within speculatively managed structures, we first

explain the basic Pipette bookkeeping structure, then how it

interacts with speculative execution.

Basic operation: Fig. 7 shows the Queue Register Map (QRM),

the structure that tracks the state of all queues. The QRM has

as many entries as the maximum capacity of all queues. Each

queue takes a contiguous chunk of entries (shown in different

colors in the figure), and manages it as a circular buffer. The

chunk associated with each queue determines its capacity. This

mapping is configurable by the OS, but cannot change while

queues are active.

Fig. 7 also shows how each queue is managed. Each queue

has both speculative and committed pointers for head and tail.

Enqueues happen to the tail of the queue, and dequeues happen

from the head. We restrict each queue to be point-to-point, so

there is a single enqueuer and dequeuer thread.

6

Queue Register
Map (QRM)

Queue grows

Queue 4

0 147

Dequeues

Phys. register index

Control value bit

committed
speculative

Enqueues
speculative
committed

allocated empty speculative

Fig. 7: The Queue Register Map (QRM) tracks the physical registers of each
Pipette queue. Each queue is managed as a circular buffer.

Each entry between the head and tail pointers tracks the

physical register index that holds the enqueued value. Moreover,

each entry has a control value bit that denotes whether the

entry holds a control value (enqueued with enq_ctrl).

The QRM is designed to require simple changes to register

renaming. Enqueue operations are nearly identical to normal

register writes. On issue, the rename stage acquires a free

register index from the freelist, and uses it to store the enqueued

value. As usual, the reorder buffer (ROB) stores the previous

physical register index. The only difference is that, on commit,

the ROB does not free the previous physical register index.

Instead, the QRM manages it, as it is part of a queue.

Dequeue operations are also very similar to reads. For each

dequeue-mapped queue, the thread’s register map simply holds

the index for the head of the queue. A dequeue simply uses

this value, and additionally modifies the register map to point

to the next register in the queue, supplied by the QRM. On

commit, the QRM returns the register to the freelist. Finally,

peek operations are exactly like normal reads.

Speculative value management: Because registers are written

and read speculatively, there are multiple value management

options. We choose the simplest one: enqueued values cannot

be dequeued until they are non-speculative.

This leads to a simple implementation: QRM’s speculative

head and tail pointers are the only eagerly managed values.

Each enqueue advances the speculative tail pointer on issue,

and the committed tail pointer on commit; similarly, each

dequeue advances the speculative head pointer on issue, and

the committed head pointer on commit. The queue is considered

empty if the speculative head is about to catch up with the

committed tail, and full if the speculative tail is about to catch

up with the committed head. The issue stage stalls the thread

on enqueues to full queues or dequeues from empty queues.

Recovery from misspeculation simply requires rolling back

the speculative head and tail pointers, as well as releasing the

registers from rolled-back enqueues to the freelist.

A key benefit of consuming only committed values is that

misspeculation in a producer thread does not propagate to the

consumer thread. This allows us to implement Pipette with

simple changes to the issue and rename stages.

We also tried a more complex variant of Pipette that allowed

dequeues to consume still-speculative enqueued values. This

version barely improved performance (by about 1% on average),

and occasionally caused minor performance degradations.

Intuitively, this result makes sense because the point of Pipette

is to keep threads decoupled, so while allowing dequeues to

dip into the speculative region of the queue may get some

out-of-order benefits, in well-decoupled programs producers

should already run far ahead of consumers.

Issue logic modifications: Pipette requires minor changes to

the issue logic. First, the per-thread issue logic stalls on a

dequeue from an empty queue or an enqueue from a full queue.

Second, every dequeue of a control value triggers a jump to the

dequeue control handler. For simplicity, we reuse the exception

logic to implement this redirection.

Our current Pipette implementation does not change the

thread prioritization logic. We use the standard ICOUNT

policy [46] to avoid issue queue clog. Further gains might be

achieved by controlling thread priorities to increase decoupling,

e.g., by prioritizing producers over consumers. However, we

find Pipette works well with ICOUNT, and leave exploration

of more advanced issue policies to future work.

B. Accelerating common access patterns

By exposing a queue-based interface, Pipette makes it easy

to add specialized units to accelerate long-latency memory

accesses. Pipette achieves this with reference accelerators

(RAs), simple configurable units that perform indirect loads

and communicate with threads through queues.

Benefits: BFS (in Fig. 1(d)) showcases the two key benefits of

RAs. First, some stages, like fetch distances in BFS, are very

simple, performing indirect or strided accesses. Using a thread

for such simple work is overkill: a simple RA can perform

them much more efficiently. Second, to get decoupling, Pipette

divides the code across each long-latency indirection. While this

lets producers run ahead of consumers, producers still suffer

from long-latency loads. For example, the process current fringe

stage in BFS issues loads to the offsets array. These loads

take a long time to commit and stress the ROB, limiting MLP.

RAs allow offloading these producer long-latency accesses.

This results in producers with short, tight loops that do not

stress OOO resources, improving performance. For example, in

our RA-enhanced BFS, the process current fringe stage passes

v to an RA, which fetches offsets[v] and offsets[v+1]

autonomously and non-speculatively, producing start and end.

Interface: Each RA is a configurable unit with a single input

and output queue. The RA takes in a stream of input elements,

uses them to perform indirect accesses, and places the resulting

data in its output queue. RA accesses are independent from

those of general-purpose threads. Consistency-wise, programs

simply see each RA as a separate thread.

RAs are configured once, by specifying which queues to

use, a starting address A, an element size S, and the access

mode with can be indirect or scan. The RA interprets A as an

array with elements of size S. In indirect mode, the RA takes

a stream of indices at its input, and for each index i, it fetches

A[i]. In scan mode, the RA takes a stream of starting and

ending indices at its input, and for each pair of input values

{start, end}, it fetches elements A[start:end-1].

We find that these simple modes cover most indirection

patterns and benefit all our applications. For instance, in BFS,

7

the indirect mode covers the first and third stages, and the scan

mode covers the second stage.

Implementation: RAs use existing core machinery. RAs

opportunistically use spare rename and register bandwidth,

and manipulate the QRM like ordinary threads on enqueues

and dequeues. When performing memory accesses, RAs use

the load/store unit and use virtual addresses. Each RA has a

small completion buffer to track outstanding loads (Sec. IV-D

presents implementation costs). On a virtual memory exception,

the core interrupts the producer thread associated with the RA.

C. Extending Pipette to cross-core queues

We have so far described how queues work within a core, but

allowing queues to span threads in multiple cores is desirable

for three reasons. First, although Pipette’s main goal is to

improve core utilization, achieving effective decoupling may

require more stages than a core has threads. Second, as we

will see later (Sec. VI-F), Pipette can scale and balance work

across cores in new ways, by using inter-core queues to improve

locality and avoid shared-memory synchronization costs. Third,

as Sec. III-C discussed, it is desirable to let the OS schedule

threads individually, in separate cores if needed.

We achieve this through connectors, simple hardware struc-

tures that stream a queue from a producer to a consumer core.

Producer and consumer threads are both given intra-core queues.

The connector is a simple FSM that sits on the producer’s

core. It has a similar but simpler implementation than RAs:

rather than interacting with the load/store unit, it just sends

values from the producer to the consumer core, using credit-

based flow control to avoid saturating the on-chip network and

strictly limits the receiver queue’s state to its capacity. When

descheduling a consumer thread, the OS must wait for its

connectors to quiesce; this requires a simple teardown protocol

on top of credit-based flow control.

D. Implementation costs
TABLE III

Pipette storage requirements.

Component
Size

(bits)

148 9-bit QRM entries 1,332
64 8-bit QRM pointers 512
8 64-bit handler PCs 512

Pipette total 2,356

212-entry Int. Phy. Reg.
File (for comparison)

13,568

Pipette’s storage and

logic additions impose

minimal overheads.

Table III summarizes

Pipette’s storage require-

ments. In our configura-

tion, Pipette can map up

to 148 physical registers,

and takes 1844 bits (231

bytes). This is only 14%

of the physical register file, showing the benefits of leveraging

physical registers to implement queue storage. Beyond the

QRM, 512 bits (64 bytes) are required for the per-thread

enqueue and dequeue control handler PCs. Overall, only 2356

bits (295 bytes) of additional storage are needed to implement

Pipette, a small overhead for a modern core.

RAs, the other hardware addition, are small. We write

complete RTL for RAs, including configuration registers,

address generation, and a 32-entry completion buffer. We

synthesize RAs using yosys [49] and the 45 nm FreePDK45

TABLE IV
Configuration parameters of the evaluated system.

Cores 1 or 4 cores, 3.5 GHz, x86-64 ISA, Skylake-like: 6-wide out-of-

order issue, 224-entry ROB, 97-entry issue window, 72-entry load

buffer, 56-entry store buffer, 212 integer physical registers, 168 vector

physical registers; 4-thread SMT with ICOUNT issue policy and

dynamically shared ROB, issue window, PRF, and LSQs

Pipette QRM with 148 physical register entries, 16 queues max; 4 RAs;

4 connectors; queues are sized 24 elements deep by default

L1 cache 32 KB/core, 8-way set-associative, 4 cycle latency

L2 cache 256 KB/core, 8-way set-associative, 12 cycle latency

L3 cache 2 MB/core, 16-way set-associative, 40 cycle latency

Main mem 120-cycle minimum latency, 2 controllers, 25 GB/s each

library [28]. Four RAs take 0.0014 mm2 at 45 nm, adding an

estimated 0.007 % to core area, a tiny overhead.

V. ExperimentalMethodology

A. Simulated System

We implement Pipette on a detailed event-driven, cycle-level

simulator based on Pin [23]. Table IV lists the parameters of

our simulated system, whose cores are modeled after Intel’s

Skylake [9], scaled to 4 SMT threads from the usual two.

Core structures are sized as in Skylake; we grow the physical

register file (PRF) from 180 to 212 entries to accommodate

the 32 architectural registers of the two extra threads. Thus,

the PRF entries left for renaming are the same as in Skylake.

We extend cores to faithfully simulate Pipette additions, with

the configuration shown in Table IV. We use McPAT [22] to

model core and uncore energy at 22 nm, and Micron DDR3L

datasheets [25] to model main memory energy.

We evaluate 1- and 4-core systems. Since Pipette’s main

goal is to improve core utilization, we first compare Pipette and

data-parallel programs on a single 4-thread SMT core. Then,

we compare 1-core, 4-thread Pipette with a baseline decoupled

architecture: a 4-core streaming multicore. Finally, we show

that Pipette also scales across cores.

B. Benchmarks

We evaluate Pipette on six applications from graph analytics,

sparse linear algebra, and databases. For each application, we

start from a state-of-the-art implementation that includes serial

and data-parallel versions. We derive the Pipette version of

each benchmark from the serial version. The wide variety of

Pipette applications highlights its generality and the abundance

of pipeline parallelism.

Breadth-first search (BFS), first described in Sec. II, deter-

mines the distance of graph vertices to a source vertex. We

base our implementation on PBFS [21].

Connected components (CC), PageRank-Delta (PRD), and

Radii estimation (Radii) are graph algorithms from the Ligra

framework [36]. CC uses multiple invocations of BFS to

discover graph connectivity. PRD is a PageRank variant that

only visits vertices whose PageRank value changes by more

than a certain amount. Radii launches several breadth-first

searches from random points in the graph to estimate the radii

of its vertices. These algorithms process only a subset of graph

vertices in each iteration, so their memory access patterns are

8

TABLE V
Input graphs, sorted by number of edges.

Domain Graph Vertices Edges

Human collaboration coAuthorsDBLP-symmetric 299K 1.9M
Dynamic simulation hugetrace-00000 4.6M 14M
Circuit simulation Freescale1 3.4M 19M
Internet graph as-Skitter 1.7M 22M
Road network USA-road-d-USA 24M 58M

TABLE VI
Input matrices, sorted by average non-zero elements per row.

Domain Matrix Size (n × n) Avg. nnz/row

Graph as matrix amazon0312 400,727 8.0
Collaboration ca-CondMat 23,133 8.1
Gel electrophoresis cage12 130,228 15.6
Electromagnetics 2cubes_sphere 101,492 16.2
Fluid dynamics rma10 46,835 49.7
Structural pwtk 217,918 52.9

Main
thread

Process
leaf node

Lookup
thread

Traverse
internal node

keys
values

nodes

Fig. 8: Silo, with bounded feedback loops.

very irregular. The pipelines for these algorithms resemble the

pipeline for BFS in Fig. 1(d).

Sparse matrix-matrix multiplication (SpMM), introduced

in Sec. III, is a key component of sparse linear algebra, and its

merge-intersection parallels similar operations on databases.

Silo [45] is an in-memory database. Silo is dominated by

lookups to B+tree indexes. Our Pipette implementation, shown

in Fig. 8, pipelines multiple tree traversals. The lookup thread

performs tree lookups level by level, requeueing the key and

lookup status in its input queue if the lookup needs to go to the

next level by traversing internal nodes. This recursive process

manifests as a cycle in the pipeline diagram (dashed gray line).

Silo shows that Pipette programs can feature cycles in

their application graphs. As in dataflow systems, we avoid

application-level deadlock as long as cycles are bounded—in

this case, each lookup thread re-enqueues at most one element

for each element it processes.

Input sets: Graph applications use five large, real-world graphs

that include road networks, Web connectivity graphs, and

academic collaboration graphs, listed in Table V. SpMM uses

six diverse sparse matrices, listed in Table VI. Silo uses the

YCSB-C workload [4] on a 52 GB dataset.

On some of PRD, Radii, and SpMM’s largest inputs, we

use iteration sampling to keep simulation times reasonable:

we simulate only a subset of iterations, uniformly distributed.

Even with sampling, simulated periods are long (e.g., ∼3 billion

cycles per phase of PRD), so no warmup is needed. For all

other benchmarks, we simulate the full algorithm.

Reference accelerators: We build Pipette benchmark variants

with and without RAs. We apply RAs systematically, offloading

every producer load to an RA as described in Sec. IV-B. All

workloads benefit from RAs. We report results with RAs on

by default; Sec. VI-E studies the impact of RAs.

B
FS

C
C

PR
D

R
adii

SpM
M

Silo

0

1

2

3

S
p

ee
d

u
p

Serial 1-core 1-thread

Data-parallel 1-core 4-thread

Pipette 1-core 4-thread

Streaming 4-core 1-thread

B
FS

C
C

PR
D

R
adii

SpM
M

Silo

0.0
0.5
1.0
1.5
2.0
2.5
3.0

S
p

ee
d

u
p

p
er

co
re

Fig. 9: Performance of Pipette implementations on a single 4-thread core and
a 4-core streaming multicore, as well as performance per core.

BFS
CC PRD

Radii
SpMM

Silo
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 in
st

rs

Serial 1-core 1-thread
Data-parallel 1-core 4-thread

Pipette 1-core 4-thread
Streaming 4-core 1-thread

BFS
CC PRD

Radii
SpMM

Silo
0.0
0.5
1.0
1.5
2.0
2.5

In
st

rs
 /

cy
cl

e

Fig. 10: Instructions executed (lower is better) and average IPC (higher is
better), averaged across program inputs, for 1-core data-parallel and Pipette
as well as 4-core Streaming.

VI. Evaluation

We first analyze Pipette’s single-core performance and

compare Pipette and data-parallel implementations. Then, we

compare Pipette to a 4-core streaming multicore to show the

utilization and efficiency benefits of time-multiplexing stages

among threads. We then report microarchitectural efficiency

metrics, study sensitivity to configuration parameters, and

conclude by studying Pipette on multiple multithreaded cores.

A. Pipette vs. data-parallel implementations

Fig. 9 (left) summarizes the performance of the serial, data-

parallel, and Pipette versions of all benchmarks. These versions

use a single 4-thread SMT core. Performance is reported as

speedup over the data-parallel version (not serial), averaged

(gmean) across inputs. Fig. 9 shows that Pipette substantially

outperforms the data-parallel versions, by 1.9× gmean across

applications; by up to 2.5× for an application (BFS); and by

up to 3.9× on particular inputs (Fig. 13).

B. Pipette vs. cross-core decoupling

Beyond data-parallel implementations, we compare Pipette

against a baseline decoupled architecture, a streaming multicore.

Pipette’s key benefit over prior decoupled architectures is its

ability to time-multiplex stages across the same core to achieve

load balance and high utilization. To focus on evaluating this

effect, we model the streaming multicore simply as multi-core,

single-thread Pipette: the streaming multicore uses 4 single-

threaded cores, and benefits from Pipette’s ISA and features.

This includes reference accelerators, even though they are our

contribution.

Fig. 9 compares the performance of Pipette on a single

multithreaded core to the single-threaded 4-core streaming

9

multicore. To measure how effectively Pipette uses its core

resources, we also show the performance per core.

Fig. 9 shows that, while the streaming multicore outperforms

Pipette, it does so by relatively small margins given that it

uses four times the cores: BFS, CC, Radii, and SpMM perform

similarly, and Streaming is 24% faster on PRD and 59% faster

on Silo. Overall, Streaming is only 22% faster than Pipette.

This happens because load imbalance hampers utilization

of decoupled cores in irregular applications: the right plot

in Fig. 9, which normalizes by the number of cores, shows

that each core in the Streaming baseline contributes similar

performance as Serial. This is because, unlike in regular

applications where stages proceed at matched rates, irregular

applications have highly variable utilization across stages.

C. Pipette is resource-efficient

To further understand these results, Fig. 10 compares the

instructions executed by each benchmark version, relative to

those of the data-parallel implementation (left graph, lower

is better) as well as instructions per cycle (IPC, right graph,

higher is better). Each group of bars shows results for a single

benchmark, averaged across all inputs.

These figures reveal that Pipette consistently uses cores

efficiently, but the reasons are application-dependent:

• In BFS and CC, Pipette’s improvement mainly comes from

its dramatic gain in IPC. Pipette executes nearly the same

instructions as the sequential code, whereas the data-parallel

versions incur some synchronization overheads.

• In PRD and Radii, Pipette’s benefits mainly come from

reducing the number of instructions. Instruction overheads

in these benchmarks stem from synchronization overheads.

(These benchmarks come from Ligra, and unfortunately,

the serial Ligra version also carries these overheads.)

Pipette avoids this and reduces instruction count by up

to 3.2×. Thus, while Pipette’s IPCs are slightly lower, each

instruction does more work.

• In SpMM, Pipette’s benefits stem from both increasing IPC

and reducing the number of executed instructions.

• Pipette improves Silo by increasing IPC, which is slightly

attenuated by a modest increase in executed instructions.

Fig. 11 gives more insight into the factors contributing to IPC

by showing a breakdown of cycles spent by cores, derived using

the CPI stack methodology [10]. Each group of bars reports

breakdowns of each variant across benchmarks (averaged across

inputs), relative to the data-parallel baseline. Each bar within a

group reports cycles for one technique, broken down in cycles

spent (i) issuing micro-ops, and waiting on (ii) backend stalls

(including memory latency), (iii) full or empty queues (for

Pipette and Streaming), or (iv) other stalls (e.g., frontend).

Fig. 11 shows that the serial and data-parallel versions are

limited by backend stalls, which are caused by long memory

accesses. Meanwhile, the streaming multicore is limited by

queue stalls, i.e., load imbalance. By contrast, Pipette incurs

few stalls: proper decoupling dramatically reduces backend

stalls, and time-multiplexing stages in the same core keeps

queue stalls low.

BFS CC PRD Radii SpMM Silo
0.0
0.5
1.0
1.5
2.0
2.5

N
or

m
al

iz
ed

 c
yc

le
s

S
D

P

M
S

D

P

M S

D

P

M S
D

P

M

S D
P

M S

D
P

M

Other
Queue stalls
Backend stalls
Issued

Fig. 11: Breakdown of cycles spent executing each application, normalized to
data-parallel and averaged across inputs. (S: Serial, D: Data-parallel, P: Pipette,
M: streaming Multicore)

BFS CC PRD Radii SpMM Silo
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 e
ne

rg
y

S D
P

M
S D

P

M S
D

P

M

S D

P

M S D
P

M
S

D P

M
Memory
L3
L1/L2
Core
Static

Fig. 12: Breakdown of energy consumed by each application, normalized to
data-parallel and averaged across inputs. (S: Serial, D: Data-parallel, P: Pipette,
M: streaming Multicore).

Finally, Fig. 12 shows the breakdown of energy consumption

of each variant across benchmarks (averaged across inputs),

relative to the data-parallel baseline. Pipette is the most efficient

variant for BFS, CC, PRD, Radii, and SpMM, reducing energy

by up to 2.2× (PRD). Pipette’s savings mainly come from

reducing dynamic core energy (fewer instructions) and reducing

static energy (fewer cycles, as performance is higher). Fig. 12

shows that the streaming multicore is not efficient overall, as

it suffers from high static energy due to poor core utilization.

D. Per-input results

Fig. 13 reports the performance of all variants across each

input. Per-input results reveal some interesting behaviors.

BFS: Pipette widely outperforms the serial and data-parallel

BFS versions, as shown in Fig. 13(a). Pipette outperforms the

data-parallel BFS by gmean 2.5× and by up to 3.9×.

Speedups mainly depend on two factors: graph size and

average degree. Pipette yields more benefits in larger graphs,

where misses are more frequent; and Pipette is more efficient

at enumerating small sets of edges than conventional code,

where hard-to-predict control flow is inefficient. Thus, Pipette

achieves the best speedups in low-degree graphs (Dy and Rd).

CC, PRD, and Radii (Fig. 13(b-d)) show similar trends to

BFS: Pipette consistently outperforms the data-parallel versions,

of gmean speedups of 2.3×, 2.2×, and 1.5×.

Unlike BFS, these algorithms operate on a fraction of the

graph that changes slowly over iterations, so they get better

reuse. However, synchronization is more complex, so the

data-parallel versions suffer from costly overheads that add

substantial extra work. Thus, Pipette’s low instruction counts

contribute substantially to speedups, as explained above.

SpMM (Fig. 13(e)) shows more mixed performance results:

Pipette outperforms data-parallel SpMM by up to 2.1×, but it

is slightly slower than data-parallel SpMM on one input.

The slight slowdown on the Co input results from a

combination of two factors. First, Co has only 8 non-zeros

per row (Table VI), so control values are common and the

merge-intersect stage spends a significant fraction of time in

the dequeue control handler. Second, Co is a small matrix that

10

Hu Dy Ci In Rd
(a) BFS

0
1
2
3
4
5

Sp
ee

du
p

Hu Dy Ci In Rd
(b) CC

0

1

2

3

4

Hu Dy Ci In Rd
(c) PRD

0

1

2

3

4
Serial 1-core 1-thread Data-parallel 1-core 4-thread Pipette 1-core 4-thread Streaming 4-core 1-thread

Hu Dy Ci In Rd
(d) Radii

0.0
0.5
1.0
1.5
2.0
2.5

Gr Co GE EM FD St
(e) SpMM

0.0
0.5
1.0
1.5
2.0
2.5

(f) Silo

0.0
0.5
1.0
1.5
2.0
2.5

Fig. 13: Per-input performance of all evaluated applications.

180
(-15%)

212
(0%)

260
(+23%)

308
(+45%)

PRF size

0
1
2
3

Sp
ee

du
p

Data-parallel Pipette

Fig. 14: Performance of 4-thread
Pipette and data-parallel over PRF
sizes. Gmean speedups are over Se-
rial with default parameters (0%).

Serial
2t 2t+RA

3t 3t+RA
4t 4t+RA

Pipeline scheme

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

Fig. 15: Sensitivity studies measuring
performance of BFS while varying
number of stages and use of RAs.
Higher is better; speedups are geomean
over all inputs.

fits on-chip, so decoupling yields limited benefits. This result

shows that, while Pipette’s control flow mechanisms work well

even under frequent control flow, in some cases data parallelism

(i.e., processing several row-column pairs in parallel) is slightly

better. An adaptive implementation could detect this and switch

between Pipette and data-parallel versions.

Finally, Silo (Fig. 13(f)) yields a modest 24% gain for Pipette.

Silo’s high-radix B+tree is cache-friendly, and the data-parallel

version hides occasional misses reasonably well, but Pipette

achieves further decoupling and hence performs better.

E. Sensitivity studies

Sensitivity to physical register count: Fig. 14 compares

the performance of Pipette and data-parallel variants as the

physical register file (PRF) changes. The graph shows the

gmean speedup over all benchmarks, relative to the serial

version with the default 212-entry PRF. We scale the PRF from

180 to 308 entries. We scale Pipette’s queues proportionally

with PRF size, so larger PRFs result in larger queues and thus

more decoupling.

Fig. 14 shows that implementing queues using physical

registers is a good choice. Pipette maintains a substantial

performance advantage over the full range of PRF sizes.

Moreover, while data-parallel benchmarks are insensitive to

PRF capacity (as they are bound by backend stalls, the issue

queue and ROB limit them), Pipette can modestly benefit from

larger PRFs, which improve decoupling.

Pipette vs. software techniques: Pipette programs feature fine-

grain stages that communicate extremely frequently: as many

as one in six register file reads/writes are enqueues/dequeues

(BFS, SpMM) or as few as one in 27 (Silo). This shows the

need for hardware support: state-of-the-art software queues

take tens of cycles per enqueue/dequeue [53], so using them

instead of Pipette would add very high overheads.

Effect of the number of stages on decoupling: Fig. 15

examines the performance of 2-, 3-, and 4-stage versions of

BFS. This shows that proper decoupling requires more than two

stages: the best-performing implementation is the 4-stage one.

We also measure the effect of RAs these pipelines. Without

RAs, performance peaks in the 3-stage implementation, as

the 4-stage version has higher ROB pressure. The 2-stage

implementation decouples the distance updates, but leaves the

fringe accesses and neighbor enumeration needlessly tightly

coupled. RAs and decoupling go hand-in-hand; the 2t+RA

point demonstrates the pitfalls of adding RAs without first

properly decoupling the application. A distance fetched by an

RA can become stale if that distance is updated later. This

race condition requires an extra check in the second stage,

whose latency cannot be overcome by the limited decoupling.

When RAs offload all long-latency loads, they reduce backend

pressure and enable peak performance with 4 stages—a 1.7×

speedup over the conventional 4-stage pipeline.

Effect of RAs: Fig. 16 shows Pipette’s per-application perfor-

BFS
CC PRD

Radii
SpMM

Silo
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

Data-parallel
Pipette (no RA)

Pipette

Fig. 16: Performance of Pipette without
and with reference accelerators (RAs).

mance without and with

RAs. BFS, CC, and SpMM

benefit substantially from

RAs, whereas PRD, Radii

and Silo see modest gains.

Overall, RAs improve per-

formance by gmean 38%, by

reducing instruction count

and core backend pressure.

F. Multicore Pipette

Finally, we compare the performance of a different Pipette

BFS variant on a 4-core system, showing that data and pipeline

parallelism are complementary, and that Pipette’s techniques

scale outside of the core.

Fig. 17 (right) compares the performance of four different

BFS implementations: Serial (1 core, 1 thread), data-parallel

(with 4 cores and 4 threads/core), streaming single-threaded

(with each BFS stage running on a separate core), and the

Pipette multicore BFS shown in Fig. 17 (left). In this version,

all stages are replicated across cores to achieve load balance,

so each core processes a fraction of the fringe. Furthermore,

instead of using shared-memory synchronization, neighbors

11

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.

C
o
re

 0

C
o
re

 1

C
o
re

 2

C
o
re

 3

Upd. data,
next fringe

Upd. data,
next fringe

Upd. data,
next fringe

Upd. data,
next fringe Hu Dy Ci In Rd gmean

0

2

4

6

8

S
p

ee
d

u
p

Serial 1-core 1-thread

Data-parallel 4-core 4-thread

Pipette 4-core 4-thread

Streaming 4-core 1-thread

Fig. 17: Multicore+multithreaded BFS Pipette implementation, and its perfor-
mance vs. serial, data-parallel, and pipeline-parallel versions.

are partitioned across cores and sent to be processed at their

corresponding core, as shown by the cross-core communication

in Fig. 17 (left) among the last two stages.

Fig. 17 shows that, like in the single-core case, the data-

parallel version leaves performance on the table, with a gmean

speedup of 3.8× vs. serial despite using 16 threads on 4 cores.

The streaming version sometimes outperforms the data-parallel

version, though it is limited by load imbalance as each core runs

a single stage. Finally, the Pipette multicore version performs

best, achieving a gmean speedup of 5.9×.

To analyze scalability, we also evaluate a 16-core system

for a total of 64 threads. At 16 cores, the data-parallel version

is 1.5× faster than the 4-core system, while Pipette is 1.8×

faster (and thus 1.9× faster than 16-core data-parallel). While

Pipette scales better, at 64 threads BFS suffers synchronization

overheads that limit its scalability.

In summary, this result shows that Pipette continues to be

attractive in multicore systems. Multicore Pipette achieves high

core utilization and avoids the synchronization overheads of

the data-parallel implementation by using connectors to join

queues across cores.

VII. Additional RelatedWork

We now discuss prior work not introduced in Sec. II.

Decoupled Access-Execute Architectures: PIPE [11],

ZS-1 [38], ACRI-1 [44], and DeSC [15] are all variants of

decoupled access-execute architectures, which have specialized

access and execute units separated by queues. These systems

extend DAE with facilities for changing control flow or to

reduce the impact of loss-of-decoupling events. Software

techniques for DAE [55] leverage the same insights, but without

the need for specialized hardware. Pipette uses multiple general-

purpose threads for improved decoupling and addresses load

imbalance by time-multiplexing threads.

DeSC [15] also observes that long-latency producer loads

limit performance in OOO cores, and proposes to partially

commit them out of order. Pipette’s RAs achieve the same

effect but with simpler machinery: RAs offload these loads

and run them non-speculatively instead. Supporting multiple

queues and stages per core is key to this simplification: DeSC

has a single supply queue, making RAs harder to adopt.

Streaming Architectures: Stream dataflow [30] provides an

interface to express streaming semantics and uses coarse-

grained reconfigurable arrays (CGRAs) to reduce instruction

count. Another approach, employed on general-purpose graph-

ics processing units (GPGPUs), communicates values between

threads without going through memory [47].

Similar work on stream specialized processors [48] explicitly

informs the processor of application-level memory patterns,

including multiple levels of indirection. While similar to Pipette

in that it adds a decoupled interface to the microarchitecture,

such techniques only source operands from memory. Pipette

specifically targets pipelined communication between the

threads of multithreaded cores. Moreover, prior streaming

abstractions do not effectively handle the unpredictable control

flow in irregular applications.

Helper Threads: Architectures with helper threads [24],

including runahead execution [27], slipstream processing [40],

and “flea-flicker” two-pass pipelining [3], perform redundant

computation so that the main thread benefits from improved

branch prediction and prefetched operands. Pipette instead

creates pipelines of threads whose work is never discarded.

VIII. Conclusion

Applications with irregular access patterns and control flow

have latent pipeline parallelism that can be exploited to improve

core utilization. However, prior decoupled architectures are

insufficient for these irregular applications. We have presented

Pipette, which achieves high utilization by exploiting fine-

grain pipeline parallelism within the threads of a multithreaded

core. This new regime not only allows fast and inexpensive

local communication, but also sidesteps the load balancing

issues that affect prior decoupled architectures and enables

a cheap implementation that reuses otherwise-idle registers

and accelerates common access patterns. As a result, Pipette

achieves significant speedups on several applications over a

wide variety of inputs. Pipette thus offers a high-performance,

practical substrate for pipeline-parallel programs.

Acknowledgments

We thank Maleen Abeydeera, Joel Emer, Axel Feldmann,

Mark Jeffrey, Hyun Ryong (Ryan) Lee, Anurag Mukkara,

Po-An Tsai, Yifan Yang, Victor Ying, Guowei Zhang, and

the anonymous reviewers for their feedback. This work was

supported in part by DARPA SDH under contract HR0011-

18-3-0007. This research was, in part, funded by the U.S.

Government. The views and conclusions contained in this

document are those of the authors and should not be interpreted

as representing the official policies, either expressed or implied,

of the U.S. Government.

References

[1] S. Ainsworth and T. M. Jones, “Graph prefetching using data structure
knowledge,” in Proc. ICS’16, 2016.

[2] S. Ainsworth and T. M. Jones, “An event-triggered programmable
prefetcher for irregular workloads,” in Proc. ASPLOS-XXIII, 2018.

[3] R. D. Barnes, J. W. Sias, E. M. Nystrom, S. J. Patel, N. Navarro, and W. W.
Hwu, “Beating in-order stalls with "flea-flicker" two-pass pipelining,”
IEEE Trans. Computers, vol. 55, no. 1, 2006.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. SoCC’10,
2010.

12

[5] N. C. Crago and S. J. Patel, “OUTRIDER: Efficient memory latency
tolerance with decoupled strands,” in Proc. ISCA-38, 2011.

[6] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju,
M. Erez, N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi, “Merrimac:
Supercomputing with streams,” in Proc. SC03, 2003.

[7] A. Das, W. J. Dally, and P. Mattson, “Compiling for stream processing,”
in Proc. PACT-15, 2006.

[8] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and
T. Strudel, “A clustered manycore processor architecture for embedded
and accelerated applications,” in Proc. HPEC, 2013.

[9] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar, L. Rappoport,
E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation Intel Core:
New microarchitecture code-named Skylake,” IEEE Micro, vol. 37, no. 2,
2017.

[10] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance
counter architecture for computing accurate CPI components,” in Proc.

ASPLOS-XII, 2006.
[11] J. R. Goodman, J. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and

H. C. Young, “PIPE: A VLSI decoupled architecture,” in Proc. ISCA-12,
1985.

[12] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” in Proc. ASPLOS-

XII, 2006.
[13] V. Govindaraju, C. Ho, and K. Sankaralingam, “Dynamically specialized

datapaths for energy efficient computing,” in Proc. HPCA-17, 2011.
[14] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C.

Weiser, “Many-core vs. many-thread machines: Stay away from the
valley,” IEEE CAL, vol. 8, no. 1, 2009.

[15] T. J. Ham, J. L. Aragón, and M. Martonosi, “DeSC: Decoupled supply-
compute communication management for heterogeneous architectures,”
in Proc. MICRO-48, 2015.

[16] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” in Proc. OOPSLA, 2017.

[17] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan,
“Meet the walkers: Accelerating index traversals for in-memory databases,”
in Proc. MICRO-46, 2013.

[18] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream
programs on multicore platforms,” in Proc. PLDI, 2008.

[19] S. Kumar, A. Shriraman, V. Srinivasan, D. Lin, and J. Phillips, “SQRL:
Hardware accelerator for collecting software data structures,” in Proc.

PACT-23, 2014.
[20] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous

data flow programs for digital signal processing,” IEEE TC, vol. 100,
no. 1, 1987.

[21] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in Proc. SPAA, 2010.

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. MICRO-

42, 2009.
[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in Proc. PLDI, 2005.

[24] P. Marcuello, A. Gonzalez, and J. Tubella, “Speculative multithreaded
processors,” in Proc. ICS’98, 1998.

[25] Micron, “1.35V DDR3L power calculator (4Gb x16 chips),” 2013.
[26] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,

“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in Proc. MICRO-51, 2018.

[27] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An
alternative to very large instruction windows for out-of-order processors,”
in Proc. HPCA-9, 2003.

[28] Nangate Inc, “The NanGate 45nm open cell library,” http://www.nangate.
com/?page_id=2325, 2008.

[29] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proc. SOSP-24, 2013.

[31] T. Nowatzki, V. Gangadhar, K. Sankaralingam, and G. Wright, “Pushing
the limits of accelerator efficiency while retaining programmability,” in
Proc. HPCA-22, 2016.

[30] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-
dataflow acceleration,” in Proc. ISCA-44, 2017.

[32] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. C. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. L. Allmon, R. Rayess,
S. Maresh, and J. S. Emer, “Triggered instructions: A control paradigm
for spatially-programmed architectures,” in Proc. ISCA-40, 2013.

[33] J. Park and W. J. Dally, “Buffer-space efficient and deadlock-free
scheduling of stream applications on multi-core architectures,” in Proc.

SPAA-22, 2010.

[34] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. A. Horowitz, “Convolution engine: Balancing efficiency & flexibility
in specialized computing,” in Proc. ISCA-40, 2013.

[35] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August,
“Decoupled software pipelining with the synchronization array,” in Proc.

PACT-13, 2004.

[36] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. PPoPP, 2013.

[37] J. E. Smith, “Decoupled access/execute computer architectures,” in Proc.

ISCA-9, 1982.

[38] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M.
Rozewski, D. L. Fowler, K. R. Scidmore, and J. Laudon, “The ZS-1
central processor,” in Proc. ASPLOS-II, 1987.

[39] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson,
S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat: High performance
graph analytics made productive,” Proc. VLDB, 2015.

[40] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream processors:
Improving both performance and fault tolerance,” in Proc. ASPLOS-IX,
2000.

[41] M. Sung, R. Krashinsky, and K. Asanović, “Multithreading decou-
pled architectures for complexity-effective general purpose computing,”
SIGARCH Comput. Archit. News, 2001.

[42] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The Raw microprocessor: A computational fabric for software circuits
and general-purpose programs,” in Proc. MICRO-35, 2002.

[43] M. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal, “Scalar operand
networks,” IEEE TPDS, vol. 16, no. 2, 2005.

[44] N. P. Topham and K. McDougall, “Performance of the decoupled ACRI-1
architecture: The perfect club,” in Proc. HPCN, 1995.

[45] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proc. SOSP-24, 2013.

[46] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, “Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor,” in Proc. ISCA-23,
1996.

[47] D. Voitsechov, O. Port, and Y. Etsion, “Inter-thread communication in
multithreaded, reconfigurable coarse-grain arrays,” in Proc. MICRO-51,
2018.

[48] Z. Wang and T. Nowatzki, “Stream-based memory access specialization
for general purpose processors,” in Proc. ISCA-46, 2019.

[49] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/, 2014.

[50] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100:
The architecture and design of a database processing unit,” in Proc.

ASPLOS-XIX, 2014.

[51] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect memory
prefetcher,” in Proc. MICRO-48, 2015.

[52] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“GraphIt: A high-performance graph DSL,” in Proc. OOPSLA, 2018.

[53] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati,
“An efficient unbounded lock-free queue for multi-core systems,” in Proc.

EuroPar, 2012.

[54] D. G. Feitelson and L. Rudolph, “Gang scheduling performance benefits
for fine-grain synchronization,” Journal of Parallel and Distributed

Computing, vol. 16, no. 4, 1992.

[55] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer, and
S. Kaxiras, “Fix the code. Don’t tweak the hardware: A new compiler
approach to Voltage-Frequency scaling,” in Proc. CGO, 2014.

13

http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325
http://www.clifford.at/yosys/

	Introduction
	Background and Motivation
	Prior work on decoupled architectures

	Pipette ISA
	Enqueue and dequeue operations
	Efficient control flow
	Integrating Pipette into the system

	Pipette Microarchitecture
	Register-based inter-thread queues
	Accelerating common access patterns
	Extending Pipette to cross-core queues
	Implementation costs

	Experimental Methodology
	Simulated System
	Benchmarks

	Evaluation
	Pipette vs. data-parallel implementations
	Pipette vs. cross-core decoupling
	Pipette is resource-efficient
	Per-input results
	Sensitivity studies
	Multicore Pipette

	Additional Related Work
	Conclusion
	References

