Safecracker: Leaking Secrets through Compressed Caches

Po-An Tsai, Andres Sanchez,
Christopher Fletcher, and Daniel Sanchez

ASPLOS 2020

I HEEl Massachusetts
I Institute of A ﬂg I ILLINOIS
Technology AC SAIL

Executive Summary

First security analysis of cache compression

Executive Summary

First security analysis of cache compression

Compressibility of a cache line reveals info about its data

Executive Summary

First security analysis of cache compression
Compressibility of a cache line reveals info about its data

Attacker can exploit data colocation to leak secrets

Executive Summary

First security analysis of cache compression
Compressibility of a cache line reveals info about its data

Attacker can exploit data colocation to leak secrets

Attacker Victim

3 ¢ o0
- -

Executive Summary

First security analysis of cache compression
Compressibility of a cache line reveals info about its data

Attacker can exploit data colocation to leak secrets

Attacker encrypt IECEM Victim
> F ﬁ ./‘.
= O Attacker sends encryption

request to victim

Executive Summary

First security analysis of cache compression
Compressibility of a cache line reveals info about its data

Attacker can exploit data colocation to leak secrets

Attacker encrypt IECEM Victim
—— e —) Secret key
A L])
=" () Attacker sends encryption Attacker-controlled input

request to victim

Q Victim stores input next to key

Executive Summary

01 First security analysis of cache compression
1 Compressibility of a cache line reveals info about its data

o1 Attacker can exploit data colocation to leak secrets

Attacker encrypt Victim <
ecret key

°0
' (@ Attacker sends encryption 7 B Attacker-controlled input

request fo victim Q Victim stores input next to ke
0x01
T I

* Cache compresses line

/B cache line

Executive Summary

01 First security analysis of cache compression
1 Compressibility of a cache line reveals info about its data

o1 Attacker can exploit data colocation to leak secrets

Attacker encrypt Victim

' Secret key
N
(@ Attacker sends encryption 7 Attacker-controlled input

request to victim

Q Victim stores input next to ke
@) Attacker measures line’s Lo 2iior 9X01

compressed size, infers * Cache compresses line

Ox01 is in the secret data 7B cache line

Executive Summary

01 First security analysis of cache compression
1 Compressibility of a cache line reveals info about its data

o1 Attacker can exploit data colocation to leak secrets

Attacker encrypt Victim

' Secret key
N
(@ Attacker sends encryption 7 Attacker-controlled input

request to victim

Q Victim stores input next to ke
@) Attacker measures line’s Lo 2iior 9X01

compressed size, infers * Cache compresses line

Ox01 is in the secret data 7B cache line

Compromises secret key in ~10ms

Executive Summary

01 First security analysis of cache compression
1 Compressibility of a cache line reveals info about its data

o1 Attacker can exploit data colocation to leak secrets

Attacker encrypt Victim .
ecret key

°0
' (@ Attacker sends encryption 7 B Attacker-controlled input

request to victim

Q Victim stores input next to ke
@) Attacker measures line’s Lo 2iior 9X91

compressed size, infers * Cache compresses line

Ox01 is in the secret data 7B cache line

Compromises secret key in ~10ms

Leaks large fraction of victim memory
when combined latent memory safety vulnerabilities

Speculation-Based vs. Compressed Cache
Side-Channel Attacks

Side Kiriansky et. al, MICRO’18
— = 1 Attacker’s

: protection
domain e domain

Victims —————————————

protection |

Speculation-Based vs. Compressed Cache
Side-Channel Attacks

Speculation-based cache side channel attacks (e.g., Spectre)

Side Kiriansky et. al, MICRO’18
— = 1 Attacker’s

: protection
domain - kY -k - 3 e — domain

Victims ———————"—"—————

protection |

Speculation-Based vs. Compressed Cache
Side-Channel Attacks

Speculation-based cache side channel attacks (e.g., Spectre)

Presence of a line and its
address (location in cache)

. e Side Kiriansky et. al, MICRO’18
Victim’s —_—————— — — — — — — ——— o 1 Attacker’s

4
. | | channel [|]
protection | |—> |-|_:-> |—> | protection

domain L ——— - _ d —_——— domain

Speculation-Based vs. Compressed Cache
Side-Channel Attacks

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed Presence of a line and its
instructions address (location in cache)

. e Side Kiriansky et. al, MICRO’18
Victims ———————H"——"—"—"————=21 ' = 1—————— R 1 Attacker’s

4
. | | channel [|]
protection | |—> |-|_:-> |—> | protection

domain L ——— - _ d —_——— domain

Speculation-Based vs. Compressed Cache
Side-Channel Attacks

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed Presence of a line and its Timing difference to infer
instructions address (location in cache) a line’s presence
L. Side Kiriansky et. al, MICRO’18
Victim’s -—_———————————— 0 [T == ——— Attacker’s

) I | chcmnelr | .
protection | |—> |-|_:-> |—> | protection

domain L ——— - _ d —_——— e — domain

Speculation-Based vs. Compressed Cache
Side-Channel Attacks

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed Presence of a line and its Timing difference to infer
instructions address (location in cache) a line’s presence
L. Side Kiriansky et. al, MICRO’18
Victim’s -—_———————————— B [—————— L2 1 Attacker’s
) I | channel | .
protection | | | protection
domain - Y- — d —_——— e —— — — — domain

Compressed cache attacks

Speculation-Based vs. Compressed Cache
Side-Channel Attacks 3

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed Presence of a line and its Timing difference to infer
instructions address (location in cache) a line’s presence
L. Side Kiriansky et. al, MICRO’18
Victim’s -—_———————————— B [—————— L2 1 Attacker’s
. | | channel |]
protection | | | protection
domain - - - — —_——— e —— — — — domain

Compressibility of secret
(and data in same line)

Compressed cache attacks

Speculation-Based vs. Compressed Cache
Side-Channel Attacks 3

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed Presence of a line and its Timing difference to infer
instructions address (location in cache) a line’s presence
L. Side Kiriansky et. al, MICRO’18
Victim’s -—_———————————— 0 [T == ——— Attacker’s

. | | channel [|]
protection | |—> |-|_:-> I—P | protection
domain |—7 ————— —_————————__—_—_—_—_——— — domain

[Writing secret data] [Compressibility of secret

(or data in same line) (and data in same line)

Compressed cache attacks

Speculation-Based vs. Compressed Cache
Side-Channel Attacks 3

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed Presence of a line and its Timing difference to infer
instructions address (location in cache) a line’s presence
L. Side Kiriansky et. al, MICRO’18
Victim’s -—_———————————— B [—————— L2 1 Attacker’s
. | | channel |]
protection | | | protection
domain e —— —— domain

[Writing secret data] [Compressibility of secret] [Timing difference to infer

(or data in same line) (and data in same line) a line’s compressibility

Compressed cache attacks

Speculation-Based vs. Compressed Cache
Side-Channel Attacks 3

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed Presence of a line and its Timing difference to infer
instructions address (location in cache) a line’s presence
L. Side Kiriansky et. al, MICRO’18
Victim’s -—_———————————— B [—————— L2 1 Attacker’s
. | | channel |]
protection | | | protection
domain e —— —— domain

[Writing secret data] [Compressibility of secret] [Timing difference to infer

(or data in same line) (and data in same line) a line’s compressibility

Compressed cache attacks

Compressed cache attacks leak data without relying on speculation

Qutline

Background on cache compression
Pack+Probe: Measuring cache line compressibility
Safecracker: Exploiting data colocation to leak secrets

Potential defenses

Cache Compression Tradeoffs

0 Higher effective capacity = Higher hit rate

0 Somewhat higher hit latency

Cache Compression Tradeoffs

0 Higher effective capacity = Higher hit rate

0 Somewhat higher hit latency

o1 Highly beneficial for large caches (e.g., LLC)

Cache Compression Tradeoffs

0 Higher effective capacity = Higher hit rate
0 Somewhat higher hit latency

-1 Highly beneficial for large caches (e.g., LLC)

01 Intense research activity over past 15 years

Cache Compression Tradeoffs

0 Higher effective capacity = Higher hit rate
0 Somewhat higher hit latency

-1 Highly beneficial for large caches (e.g., LLC)

01 Intense research activity over past 15 years

=

A Case for Toggle-Aware Compression for GPU Systems

Gennady Pekhimenko', Evgeny Bolotin*, Nandita Vijaykumar’,
Onur Mutluf, Todd C. Mowry', Stephen W. Keckler*#

fCarnegie Mellon University

ABSTRACT

Data compression can be an effective method to achieve higher
system performance and energy efficiency in modern data-
intensive applications by exploiting redundancy and data simi-
larity. Prior works have studied a variety of data compression
techniques to improve both capacity (e.g., of caches and main
memory) and bandwidth utilization (e.g., of the on-chip and
off-chip interconnects). In this paper, we make a new observa-
tion about the energy-efficiency of communication when com-
pression is applied. While compression reduces the amount of
transferred data, it leads to a substantial increase in the number
of bit toggles (i.e., communication channel switchings from 0
to 1 or from 1 to 0). The increased toggle count increases the
dynamic energy cunsumed by on-chij !p and oﬁ—chip buses due
d disch . O

*NVIDIA

#University of Texas at Austin

bandwidth utilization (e.g., of on-chip and off-chip intercon-
nects [15,5, 64, 58, 51, 60, 69]). Several recent works focus on
bandwidth compression to decrease memory traffic by trans-
mitting data in a compressed form in both CPUs [51, 64, 5]
and GPUs [58, 51, 69], which results in better system perfor-
mance and energy consumption. Bandwidth compression
proves to be particularly effective in GPUs because they are
often bottlenecked by memory bandwidth [47, 32, 31, 72, 69].
GPU applications also exhibit high degrees of data redun-
dancy [58, 51, 69], leading to good compression ratios.
While data compression can dramatically reduce the num-
ber of bit symbols that must be transmitted across a link,
compression also carries two well-known overheads: (1) la-
tency, energy, and area overhead of the compression/decom-
pression hardware [4, 52]; and (2) complexity and cost to

Cache Compression Tradeoffs

0 Higher effective capacity = Higher hit rate
0 Somewhat higher hit latency

-1 Highly beneficial for large caches (e.g., LLC)

01 Intense research activity over past 15 years

A Case for Toggle-Aware Compression for GPU Systems

All focus on performance, not security

ABSTRACT

Data compression can be an effective method to achieve higher
system performance and energy efficiency in modern data-
intensive applications by exploiting redundancy and data simi-
larity. Prior works have studied a variety of data compression
techniques to improve both capacity (e.g., of caches and main
memory) and bandwidth utilization (e.g., of the on-chip and
off-chip interconnects). In this paper, we make a new observa-
tion about the energy-efficiency of communication when com-
pression is applied. While compression reduces the amount of
transferred data, it leads to a substantial increase in the number
of bit toggles (i.e., communication channel switchings from 0
to 1 or from 1 to 0). The increased toggle count increases the
dynamic energy cunsumed by on-chij !p and oﬁ—chip buses due
d disch . O

bandwidth utilization (e.g., of on-chip and off-chip intercon-
nects [15,5, 64, 58, 51, 60, 69]). Several recent works focus on
bandwidth compression to decrease memory traffic by trans-
mitting data in a compressed form in both CPUs [51, 64, 5]
and GPUs [58, 51, 69], which results in better system perfor-
mance and energy consumption. Bandwidth compression
proves to be particularly effective in GPUs because they are
often bottlenecked by memory bandwidth [47, 32, 31, 72, 69].
GPU applications also exhibit high degrees of data redun-
dancy [58, 51, 69], leading to good compression ratios.
While data compression can dramatically reduce the num-
ber of bit symbols that must be transmitted across a link,
compression also carries two well-known overheads: (1) la-
tency, energy, and area overhead of the compression/decom-
pression hardware [4, 52]; and (2) complexity and cost to

Cache Compression Ingredients

Cache Compression Ingredients

Architecture: How to locate and manage variable- q
sized compressed blocks?

Cache Compression Ingredients

Architecture: How to locate and manage variable-
sized compressed blocks?

Algorithm: How to compress each cache block? -E

Cache Compression Ingredients

Architecture: How to locate and manage variable-
sized compressed blocks?

Algorithm: How to compress each cache block?

We focus attacks on a commonly used baseline:
VSC compressed cache architecture

BDI compression algorithm

1 O

Cache Compression Ingredients

Architecture: How to locate and manage variable-
sized compressed blocks?

Algorithm: How to compress each cache block?

We focus attacks on a commonly used baseline:
VSC compressed cache architecture

BDI compression algorithm

Attacks apply to other architectures & algorithms

Leads to different characteristics about leaked data

VSC [Alameldeen and Wood ISCA‘Q4]

2-way set-associative cache
Tag0 Tagl DataO Datal

64 bytes

o1 Conventional caches can only manage
fixed-size blocks

VSC [Alameldeen and Wood ISCA‘Q4]

Tag0 Tagl Data array

128 bytes 8 bytes

1 VSC divides data array into small segments and lets
compressed lines take a variable number of segments

VSC [Alameldeen and Wood ISCA‘Q4]

Tag0 Tagl Data array

-

128 bytes 8 bytes

1 VSC divides data array into small segments and lets
compressed lines take a variable number of segments

VSC [Alameldeen and Wood ISCA‘Q4]

Tag0 Tagl Data array

= Tl

128 bytes 8 bytes

1 VSC divides data array into small segments and lets
compressed lines take a variable number of segments

VSC [Alameldeen and Wood ISCA‘04]

Tag0 Tagl Data array

= g

128 bytes 8 bytes

1 VSC divides data array into small segments and lets
compressed lines take a variable number of segments

7 VSC increases tags relative to uncompressed caches
to track more compressed lines per set

VSC [Alameldeen and Wood ISCA‘04]

Tag0 Tagl Tag2 Tag3 Data array

i

128 bytes 8 bytes

1 VSC divides data array into small segments and lets
compressed lines take a variable number of segments

7 VSC increases tags relative to uncompressed caches
to track more compressed lines per set

VSC [Alameldeen and Wood ISCA‘04]

Tag0 Tagl Tag2 Tag3 Data array

S

128 bytes 8 bytes

1 VSC divides data array into small segments and lets
compressed lines take a variable number of segments

7 VSC increases tags relative to uncompressed caches
to track more compressed lines per set

VSC [Alameldeen and Wood ISCA‘04]

Tag0 Tagl Tag2 Tag3 Data array

—_—
IS
-

128 bytes 8 bytes

1 VSC divides data array into small segments and lets
compressed lines take a variable number of segments

7 VSC increases tags relative to uncompressed caches
to track more compressed lines per set

BDI [Pekhimenko et al. PACT*1 2]

71 Base-Delta-Immediate (BDI) compresses lines with similar values by using o
common base + small deltas

 4bytes | 4bytes | 32-byte Uncompressed Cache Line

0xC04039C0 | 0xC04039C8 0xC04039D0 | 0xC04039D8 0xCO4039E0 O0xCO4039E8 O0xCO4039F0 | O0xCO4039F8

e\

0xC04039C0 | Ox00 0x08 Ox10 0Ox18 | 0x20 | 0x28 0Ox30 | Ox38 Saved Space

g~
-

4 bytes 1 byte 1 byte 20 bytes
12-byte Compressed Cache Line

BDI [Pekhimenko et al. PACT*1 2]

Base-Delta-Immediate (BDI) compresses lines with similar values by using o
common base + small deltas

 4bytes | 4bytes | 32-byte Uncompressed Cache Line

0xC04039C0 | 0xC04039C8 0xC04039D0 | 0xC04039D8 0xCO4039E0 O0xCO4039E8 O0xCO4039F0 | O0xCO4039F8

e\

0xC04039C0 | Ox00 0x08 Ox10 0Ox18 | 0x20 | 0x28 0Ox30 | Ox38 Saved Space

g~
-

4 bytes 1 byte 1 byte 20 bytes
12-byte Compressed Cache Line

BDI supports multiple formats with different base sizes
(2, 4, 8 bytes) and delta sizes (1, 2, 4 bytes)

BDI [Pekhimenko et al. PACT*1 2]

Base-Delta-Immediate (BDI) compresses lines with similar values by using a
common base + small deltas

 4bytes | 4bytes | 32-byte Uncompressed Cache Line

0xC04039C0 | 0xC04039C8 0xC04039D0 | 0xC04039D8 0xCO4039E0 O0xCO4039E8 O0xCO4039F0 | O0xCO4039F8

e\

0xC04039C0 | Ox00 0x08 Ox10 0Ox18 | 0x20 | 0x28 0Ox30 | Ox38 Saved Space

g~
-

4 bytes 1 byte 1 byte 20 bytes
12-byte Compressed Cache Line

BDI supports multiple formats with different base sizes
(2, 4, 8 bytes) and delta sizes (1, 2, 4 bytes)

Reasonable compression ratio, simple implementation

Pack+Probe: Measuring Compressibility

Threat model:

Attacker and victim run in different protection domains
(processes, VMs, etc.)

Attacker and victim share compressed cache

Attacker knows compressed cache architecture &
algorithm used

Attacker knows set of victim’s target line
(can use standard techniques to find it)

10
Main Memory
L2 L2
Core Core
X B o0
v —_

Pack+Probe: Measuring Compressibility

Threat model:

Attacker and victim run in different protection domains
(processes, VMs, etc.)

Attacker and victim share compressed cache

Attacker knows compressed cache architecture &
algorithm used

Attacker knows set of victim’s target line
(can use standard techniques to find it)

Goal: Find compressed size of target line

10
Main Memory
L2 L2
Core Core
X B o0
v —_

Pack+Probe: Measuring Compressibility

Attacker packs target set with lines of known sizes, leaving S free segments and
at least one free tag

11

Pack+Probe: Measuring Compressibility

Attacker packs target set with lines of known sizes, leaving S free segments and

at least one free tag
Tag0 Tagl Tag2 Tag3 Data array

11

Pack+Probe: Measuring Compressibility

Attacker packs target set with lines of known sizes, leaving S free segments and

at least one free tag
Tag0 Tagl Tag2 Tag3 Data array

-

11

Pack+Probe: Measuring Compressibility

Attacker packs target set with lines of known sizes, leaving S free segments and

at least one free tag
Tag0 Tagl Tag2 Tag3 Data array

—_—

— > S=4

After victim accesses target set, attacker probes all lines used to pack target set

All hits = Victim line < S segments
Any miss = Victim line > S segments

11

Pack+Probe: Measuring Compressibility

Attacker packs target set with lines of known sizes, leaving S free segments and

at least one free tag
Tag0 Tagl Tag2 Tag3 Data array

e

After victim accesses target set, attacker probes all lines used to pack target set

All hits = Victim line < S segments
: s .
Any migs 3 Yiclim ljags™ Sasspments Dota array

|| - —
- :

Pack+Probe: Measuring Compressibility

Attacker packs target set with lines of known sizes, leaving S free segments and

at least one free tag
Tag0 Tagl Tag2 Tag3 Data array

e

After victim accesses target set, attacker probes all lines used to pack target set

) ST
All hits = Victim line < S segments Miss = Victim > 4

Any mllsgg? ictim |Jr282> Segments Data array segments

| | - —
- :

11

Pack+Probe: Measuring Compressibility

Attacker packs target set with lines of known sizes, leaving S free segments and at least
one free tag

Tag0 Tagl Tag2 Tag3 Data array
- s &
After victim accesses target set, attacker probes all lines used to pack target set

= All hits 2 Victim line < S segments

= Any miss = Victim line > S segments Miss 2 Victim > 4
Tag0 Tagl Tag2 Tag3 Data array segments

By doing a binary search over S, one can find exact size in
log2(MaxSegmentsPerCacheline) measurements

S=4

11

Safecracker: Exploiting Data Colocation to Leak Secrets

12
Threat model: G J SR
Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe) L2 L2
Attacker can get victim to collocate attacker-controlled data Core Core
near victim’s own secret data e -
~ —_
Goal: Leak victim’s data \h
encrypt
V

Pack+Probe

Safecracker: Exploiting Data Colocation to Leak Secrets

12
Threat model: G J SR
Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe) L2 L2
Attacker can get victim to collocate attacker-controlled data Core Core
near victim’s own secret data S e -
e’ —_
Goal: Leak victim’s data \h
encrypt
Multiple colocation vectors:) S
Pack+Probe

Victim itself colocates (contiguous allocation, stack spills, etc.)

Memory safety violations (buffer overflows, heap spraying, etc.)

Safecracker: Exploiting Data Colocation to Leak Secrets

12
Threat model: Y NCIIETY]
Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe) L2 L2
Attacker can get victim to collocate attacker-controlled data Core Core
near victim’s own secret data S e -
e’ —_
Goal: Leak victim’s data \h
encrypt
Multiple colocation vectors:) S

Pack+Probe
Victim itself colocates (contiguous allocation, stack spills, etc.)

Memory safety violations (buffer overflows, heap spraying, etc.)

Safecracker changes attacker-controlled data to reveal
nearby secret data through changes in compressibility

Search strategy depends on compression algorithm

Safecracker on BDI

Starting from largest delta, sweep high-order bytes until target line
decreases in size

13

Safecracker on BDI
13

o Starting from largest delta, sweep high-order bytes until target line

decreases in size] Attacker-controlled input Compressed
. 4bytes | 4bytes | 32-byte Uncompressed Cache Line || Secret data size
« i 'I
0x00000000 0x00000000 OxOFOOBA20 32B

Safecracker on BDI

o Starting from largest delta, sweep high-order bytes until target line

decreases in size
4 bytes

. Attacker-controlled input
4bytes | 32-byte Uncompressed Cache Line || Secretdata
'I

Compressed
size

0Xx00000000 0x00000000 OxOFOOBA20 32B

Ox-.> 0000 Ox 0000 OxOFGABA20 32B

“ L“

13

Safecracker on BDI

13

o Starting from largest delta, sweep high-order bytes until target line

] Attacker-controlled input Compressed

decreases in size
32-byte Uncompressed Cache Line || Secretdata size

4 bytes 4 bytes |

-;L

“

0x00000000 OXOFBOBA20 32B
32B

0x00000000

Ox 0000 (9) 4 0000 OxOFOOBA20

(9) 4 0000 X BA20

Safecracker on BDI

13

o Starting from largest delta, sweep high-order bytes until target line

decreases in size | B Attacker-controlled input . oo
4 bytes 4bytes | 32-byte Uncompressed Cache Line || Secretdata size

-;L

“

0x00000000 OXOFBOBA20 32B

0x00000000

OX 0000 OX 0000 OXOFOOBA20 328B

(9) 4 0000 X BA20

(5)4 0000

‘ 4B base 2B deltas

(9)4 0000 000 00O VYO VOO 0O VYO 0000 BA20 Ewlel:}

Safecracker on BDI

Continue sweeping lower-order bytes until recovering all bytes

14

Safecracker on BDI

14

11 Continue sweeping lower-order bytes until recovering all bytes

| Abytes | 4bytes | 32-byte Uncompressed Cache Line
I i g
OXxOF000100 OXx0F000100

Compressed
size

20B

- Attacker-controlled input
Secret data

Safecracker on BDI
14

11 Continue sweeping lower-order bytes until recovering all bytes

 4bytes | 4bytes | 32-byte Uncompressed Cache Line Com;?ressed
' . . size

. Attacker-controlled input
OXOF000100 OXOF000100 OxOFOOBA20 20B
. || Secretdata
OXOF00 00 OXOF00 00 OXOF00: 20 12B

Safecracker on BDI
14

11 Continue sweeping lower-order bytes until recovering all bytes

| 4bytes | 4bytess | 32-byte Uncompressed Cache Line Com;? ressed
N i ’l size .
. Attacker-controlled input
0x0F000100 0x0F000100 OxOF0OBA20 20B - S J
ecret data
OXOF00 00 OXOFO0 00 BXOF0Q: 20 12B

OXOFOOBA OXOFOOBA ©OxOFOOBA 8B

Safecracker on BDI
14

11 Continue sweeping lower-order bytes until recovering all bytes

| 4bytes | 4bytess | 32-byte Uncompressed Cache Line Com;? ressed
N i "l size .

. Attacker-controlled input
Ox0F000100 OxOF000100 OxOFAOBA20 20B

- Secret data

OXOF00 00 . OXOF0O 00 OxOF00: 20 12B

Ox0FO0OBA . OXOFQOBA ©OxOF0GOGBA 8B

-1 BDI allows recovering up to 8 bytes this way

Secret Size Compression Format Sequence Attempts
2B NoComp—B2D1—B8DO O(28)
4B NoComp—B4D2—B4D1—B8D0 O(2'%)
8B NoComp—B8D4—B8D2—B8D1—B8D0 O(23%?)

Enhancing Safecracker w/ buffer overflows

1 Buffer overflows let Safecracker control where attacker-

controlled data is located

Makes search more efficient

Can leak data far away from buffer

Attacker-controlled data
[Secretdata [due to buffer overflow [Recovered data

Other data 8B secret data

nitial cache ine - || N
tstround e B
andround - - HHE
ddround I

Enhancing Safecracker w/ buffer overflows
15

1 Buffer overflows let Safecracker control where attacker-
C0n1'l‘0||ed dCITC‘ iS IOCC”'ed] Secretdata [Attacker-controlled data [Recovered data

due to buffer overflow

11 Other d 8B d
Makes search more efficient I .tif.atallllselcria.ta..
Can leak data far away from buffer .
sround -
URT——————
3rdround =

- With BDI, can leak 1/8™ of victim’s memory!

Other compression algorithms (e.g., RLE) allow more leakage

Safecracker Evaluation

Microarchitectural simulation using zsim

Multicore system modeled after Skylake

Main Memory
L2 L2
Core Core
e ° 0

16

8MB VSC with 64-byte lines,
2x tag array, 32 tags/set
BDI compression

Safecracker Evaluation

Microarchitectural simulation using zsim

Main Memory
12 12
Core Core
Multicore system modeled after Skylake .,
ve
e’ —_

Two Proof-of-Concept (PoC) workloads:
Login server that colocates key and attacker data

Server with buffer overflow + key elsewhere in stack

16

8MB VSC with 64-byte lines,
2x tag array, 32 tags/set
BDI compression

Safecracker steals secrets quickly

PoC 1: Fixed colocation
103 5
1 BN victim
102_; wn attacker

10! 3

10° 3

Execution time (ms)

1 2 3 4 5 6 Find set
Size of the secret to recover (Bytes)

Safecracker steals secrets quickly

Execution time (ms)

PoC 1: Fixed colocation

103 5
1 BN victim
102] attacker
101 3
100'§
10°1 3
1072 - —
1 2 3 4 5 6 Find set

Size of the secret to recover (Bytes)

Leaks 4B in under 100ms, 6B in 200ms
(comparable to time spent finding target set)

17

Safecracker steals secrets quickly

Execution time (ms)

PoC 1: Fixed colocation

103 5
1 BN victim
102] attacker
101 3
100'§
10°1 3
1072 - —
1 2 3 4 5 6 Find set

Size of the secret to recover (Bytes)

Leaks 4B in under 100ms, 6B in 200ms
(comparable to time spent finding target set)

8B would take much longer (~20 hours)

17

Safecracker steals secrets quickly

Execution time (ms)

PoC 1: Fixed colocation

103 -

1 BN victim
102_; o attacker

101@
IOOE

10_13

10—2 -

1 2 3 4 5 6 Find set
Size of the secret to recover (Bytes)

Leaks 4B in under 100ms, 6B in 200ms
(comparable to time spent finding target set)

8B would take much longer (~20 hours)

Execution time (ms)

102 5

PoC 2: Buffer overflow

1

aze victim
e attacker

2 3 4 5 6 7 8
Size of the secret to recover (Bytes)

17

Safecracker steals secrets quickly

Execution time (ms)

PoC 1: Fixed colocation

103 -

] B8 victim
I attacker

1023
101@
IOOE

10_13

10—2 -

1 2 3 4 5 6 Find set
Size of the secret to recover (Bytes)

Leaks 4B in under 100ms, 6B in 200ms
(comparable to time spent finding target set)

8B would take much longer (~20 hours)

Execution time (ms)

102 5

PoC 2: Buffer overflow

aze victim
e attacker

1 2 3 4 5 6 7 8
Size of the secret to recover (Bytes)

Leaks 8B in ~10ms

Attack time grows linearly with leaked bytes

17

Generalizing attacks to other compressed caches
18

Most compressed cache architectures allow conflicts among a small set of
lines 2 Pack+Probe still applies

Generalizing attacks to other compressed caches
18

Most compressed cache architectures allow conflicts among a small set of
lines 2 Pack+Probe still applies

See paper for more discussions

Generalizing attacks to other compressed caches
18

Most compressed cache architectures allow conflicts among a small set of
lines 2 Pack+Probe still applies

See paper for more discussions

Compressibility always leaks information about data

More info the better the compression algorithm is

Generalizing attacks to other compressed caches
18

Most compressed cache architectures allow conflicts among a small set of
lines 2 Pack+Probe still applies

See paper for more discussions

Compressibility always leaks information about data
More info the better the compression algorithm is

Adaptive compression algorithms use shared state

Generalizing attacks to other compressed caches
18

Most compressed cache architectures allow conflicts among a small set of
lines 2 Pack+Probe still applies

See paper for more discussions

Compressibility always leaks information about data
More info the better the compression algorithm is
Adaptive compression algorithms use shared state

— additional attack vector

Defense against cache compression attacks

19

Defense against cache compression attacks

Cache partitioning for isolation
Prevents attacks without software changes

Invasive: must partition both tag and data arrays

19

Defense against cache compression attacks

Cache partitioning for isolation

Prevents attacks without software changes

Invasive: must partition both tag and data arrays

19

Performance distribution of 25 mixes of 4 SPEC CPU2006 apps, using no and
static partitioning:

Weighted Speedup

1.15

1.10

-
o
(&)

Baseline ------------- ------------
| Compressed e U
Way-part baseline :
|| = = Way-set-part Comp. [:........... . P A
H _____________ _,___ —
;- | s |
R s ST S AT
T S R — o SR
0 5 10 15 20 25

Defense against cache compression attacks

Cache partitioning for isolation

Prevents attacks without software changes

Invasive: must partition both tag and data arrays

Performance distribution of 25 mixes of 4 SPEC CPU2006 apps, using no and
static partitioning:

1.15

1.10

-
o
(&)

Weighted Speedup
o
o

Baseline ------------- ------------
| Compressed e A
Way-part baseline : 5
|| = = Way-set-part Comp. [:........... . P A
| = = = S _,___ —
;=7 | s |
R s SR AT
T S R — o SR
0 5 10 15 20 25

Partitioning increases fragmentation in
VSC, reduces effective compression ratio

19

See paper for more!
20

Other possible defenses for compressed cache attacks
Examples of vulnerable apps due to colocation with attacker-controlled data
Discussion on generalizing attacks to other compressed caches

Artifact description

Conclusions

Compressed caches introduce new side channel & attacks

21

Conclusions
21

Compressed caches introduce new side channel & attacks

Pack+Probe exploits compressed cache architectures to observe compressibility of
victim’s lines

Conclusions
21

Compressed caches introduce new side channel & attacks

Pack+Probe exploits compressed cache architectures to observe compressibility of
victim’s lines

Safecracker exploits compression algorithms + colocation of attacker-controlled &
secret data to leak data quickly

Can leak a large fraction of program data

Potentially as damaging as speculation-based attacks

Conclusions
21

Compressed caches introduce new side channel & attacks

Pack+Probe exploits compressed cache architectures to observe compressibility of
victim’s lines

Safecracker exploits compression algorithms + colocation of attacker-controlled &
secret data to leak data quickly

Can leak a large fraction of program data

Potentially as damaging as speculation-based attacks

Defenses have drawbacks

Motivates future work on efficient defenses

THANK YOU FOR WATCHING!
SHARE YOUR QUESTIONS /COMMENTS WITH US!

Safecracker: Leaking Secrets through Compressed Caches

Attacker encrypt Victim

' ﬁ D Secret key
" m -
(@ Attacker sends encryption - Attacker-controlled input

request to victim

@ Victim stores input next to ke
©) Attacker measures line’s 0X01

compressed size, infers * Cache compresses line

Ox01 is in the secret data /B cache line EEI:’
=

Compromises secret key in ~10ms

CSAIL

