
Po-An Tsai, Andres Sanchez,

Christopher Fletcher, and Daniel Sanchez

ASPLOS 2020

Safecracker: Leaking Secrets through Compressed Caches



Executive Summary
2

 First security analysis of cache compression



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victim



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

3 Attacker measures line’s

compressed size, infers

0x01 is in the secret data



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

3 Attacker measures line’s

compressed size, infers

0x01 is in the secret data

Compromises secret key in ~10ms



Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

3 Attacker measures line’s

compressed size, infers

0x01 is in the secret data

Compromises secret key in ~10ms

Leaks large fraction of victim memory

when combined latent memory safety vulnerabilities



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Speculation-based cache side channel attacks (e.g., Spectre)

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Speculation-based cache side channel attacks (e.g., Spectre)

Presence of a line and its 

address (location in cache)

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed 

instructions

Presence of a line and its 

address (location in cache)

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed 

instructions

Timing difference to infer 

a line’s presence

Presence of a line and its 

address (location in cache)

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Compressed cache attacks

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed 

instructions

Timing difference to infer 

a line’s presence

Presence of a line and its 

address (location in cache)

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Compressed cache attacks

Compressibility of secret 

(and data in same line) 

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed 

instructions

Timing difference to infer 

a line’s presence

Presence of a line and its 

address (location in cache)

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Compressed cache attacks

Writing secret data

(or data in same line)

Compressibility of secret 

(and data in same line) 

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed 

instructions

Timing difference to infer 

a line’s presence

Presence of a line and its 

address (location in cache)

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Compressed cache attacks

Writing secret data

(or data in same line)

Timing difference to infer 

a line’s compressibility

Compressibility of secret 

(and data in same line) 

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed 

instructions

Timing difference to infer 

a line’s presence

Presence of a line and its 

address (location in cache)

Kiriansky et. al, MICRO’18



Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s 

protection 

domain

Secret Transmitter

Attacker’s 

protection 

domain

SecretReceiver

Side 

channel

Compressed cache attacks

Writing secret data

(or data in same line)

Timing difference to infer 

a line’s compressibility

Compressibility of secret 

(and data in same line) 

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed 

instructions

Timing difference to infer 

a line’s presence

Presence of a line and its 

address (location in cache)

Compressed cache attacks leak data without relying on speculation

Kiriansky et. al, MICRO’18



Outline
4

 Background on cache compression

 Pack+Probe: Measuring cache line compressibility

 Safecracker: Exploiting data colocation to leak secrets

 Potential defenses



Cache Compression Tradeoffs
5

 Higher effective capacity  Higher hit rate

 Somewhat higher hit latency



Cache Compression Tradeoffs
5

 Higher effective capacity  Higher hit rate

 Somewhat higher hit latency

 Highly beneficial for large caches (e.g., LLC)
L3 

Cache



Cache Compression Tradeoffs
5

 Higher effective capacity  Higher hit rate

 Somewhat higher hit latency

 Highly beneficial for large caches (e.g., LLC)

 Intense research activity over past 15 years
L3 

Cache



Cache Compression Tradeoffs
5

 Higher effective capacity  Higher hit rate

 Somewhat higher hit latency

 Highly beneficial for large caches (e.g., LLC)

 Intense research activity over past 15 years
L3 

Cache



Cache Compression Tradeoffs
5

 Higher effective capacity  Higher hit rate

 Somewhat higher hit latency

 Highly beneficial for large caches (e.g., LLC)

 Intense research activity over past 15 years
L3 

Cache

All focus on performance, not security 



Cache Compression Ingredients
6



Cache Compression Ingredients
6

 Architecture: How to locate and manage variable-

sized compressed blocks?



Cache Compression Ingredients
6

 Architecture: How to locate and manage variable-

sized compressed blocks?

 Algorithm: How to compress each cache block?



Cache Compression Ingredients
6

 Architecture: How to locate and manage variable-

sized compressed blocks?

 Algorithm: How to compress each cache block?

 We focus attacks on a commonly used baseline:

 VSC compressed cache architecture

 BDI compression algorithm



Cache Compression Ingredients
6

 Architecture: How to locate and manage variable-

sized compressed blocks?

 Algorithm: How to compress each cache block?

 We focus attacks on a commonly used baseline:

 VSC compressed cache architecture

 BDI compression algorithm

 Attacks apply to other architectures & algorithms

 Leads to different characteristics about leaked data



VSC [Alameldeen and Wood ISCA‘04]
7

 Conventional caches can only manage 
fixed-size blocks

Tag0 Tag1 Data0 Data1
2-way set-associative cache

64 bytes



VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets 

compressed lines take a variable number of segments

Tag0 Tag1 Data array

128 bytes
8 bytes



VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets 

compressed lines take a variable number of segments

Tag0 Tag1 Data array

128 bytes
8 bytes



VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets 

compressed lines take a variable number of segments

Tag0 Tag1 Data array

128 bytes
8 bytes



VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets 

compressed lines take a variable number of segments

 VSC increases tags relative to uncompressed caches

to track more compressed lines per set

Tag0 Tag1 Data array

128 bytes
8 bytes



VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets 

compressed lines take a variable number of segments

 VSC increases tags relative to uncompressed caches

to track more compressed lines per set

Tag0 Tag1 Data array

128 bytes
8 bytes

Tag2 Tag3



VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets 

compressed lines take a variable number of segments

 VSC increases tags relative to uncompressed caches

to track more compressed lines per set

Tag0 Tag1 Data array

128 bytes
8 bytes

Tag2 Tag3



VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets 

compressed lines take a variable number of segments

 VSC increases tags relative to uncompressed caches

to track more compressed lines per set

Tag0 Tag1 Data array

128 bytes
8 bytes

Tag2 Tag3



BDI [Pekhimenko et al. PACT‘12]
9

 Base-Delta-Immediate (BDI) compresses lines with similar values by using a 

common base + small deltas



BDI [Pekhimenko et al. PACT‘12]
9

 Base-Delta-Immediate (BDI) compresses lines with similar values by using a 

common base + small deltas

 BDI supports multiple formats with different base sizes

(2, 4, 8 bytes) and delta sizes (1, 2, 4 bytes)



BDI [Pekhimenko et al. PACT‘12]
9

 Base-Delta-Immediate (BDI) compresses lines with similar values by using a 

common base + small deltas

 BDI supports multiple formats with different base sizes

(2, 4, 8 bytes) and delta sizes (1, 2, 4 bytes)

 Reasonable compression ratio, simple implementation



Pack+Probe: Measuring Compressibility
10

 Threat model:

 Attacker and victim run in different protection domains 

(processes, VMs, etc.)

 Attacker and victim share compressed cache

 Attacker knows compressed cache architecture & 

algorithm used

 Attacker knows set of victim’s target line 

(can use standard techniques to find it)

Core Core

L2 L2

Compressed LLC

Main Memory



Pack+Probe: Measuring Compressibility
10

 Threat model:

 Attacker and victim run in different protection domains 

(processes, VMs, etc.)

 Attacker and victim share compressed cache

 Attacker knows compressed cache architecture & 

algorithm used

 Attacker knows set of victim’s target line 

(can use standard techniques to find it)

 Goal: Find compressed size of target line

Core Core

L2 L2

Compressed LLC

Main Memory



Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and 
at least one free tag



Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and 
at least one free tag

Tag0 Tag1 Data arrayTag2 Tag3



Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and 
at least one free tag

Tag0 Tag1 Data arrayTag2 Tag3

S=4



Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and 
at least one free tag

After victim accesses target set, attacker probes all lines used to pack target set

 All hits  Victim line ≤ S segments

 Any miss  Victim line > S segments

Tag0 Tag1 Data arrayTag2 Tag3

S=4



Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and 
at least one free tag

After victim accesses target set, attacker probes all lines used to pack target set

 All hits  Victim line ≤ S segments

 Any miss  Victim line > S segments

Tag0 Tag1 Data arrayTag2 Tag3

Tag0 Tag1 Data arrayTag2 Tag3

S=4



Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and 
at least one free tag

After victim accesses target set, attacker probes all lines used to pack target set

 All hits  Victim line ≤ S segments

 Any miss  Victim line > S segments

Tag0 Tag1 Data arrayTag2 Tag3

Tag0 Tag1 Data arrayTag2 Tag3

S=4

Miss  Victim > 4

segments



Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and at least 
one free tag

After victim accesses target set, attacker probes all lines used to pack target set

 All hits  Victim line ≤ S segments

 Any miss  Victim line > S segments

By doing a binary search over S, one can find exact size in 

log2(MaxSegmentsPerCacheLine) measurements

Tag0 Tag1 Data arrayTag2 Tag3

Tag0 Tag1 Data arrayTag2 Tag3

S=4

Miss  Victim > 4

segments



Safecracker: Exploiting Data Colocation to Leak Secrets
12

 Threat model:

 Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe)

 Attacker can get victim to collocate attacker-controlled data
near victim’s own secret data

 Goal: Leak victim’s data

Core Core

L2 L2

Compressed LLC

Main Memory

encrypt 0x01…

Pack+Probe



Safecracker: Exploiting Data Colocation to Leak Secrets
12

 Threat model:

 Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe)

 Attacker can get victim to collocate attacker-controlled data
near victim’s own secret data

 Goal: Leak victim’s data

 Multiple colocation vectors:

 Victim itself colocates (contiguous allocation, stack spills, etc.)

 Memory safety violations (buffer overflows, heap spraying, etc.)

Core Core

L2 L2

Compressed LLC

Main Memory

encrypt 0x01…

Pack+Probe



Safecracker: Exploiting Data Colocation to Leak Secrets
12

 Threat model:

 Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe)

 Attacker can get victim to collocate attacker-controlled data
near victim’s own secret data

 Goal: Leak victim’s data

 Multiple colocation vectors:

 Victim itself colocates (contiguous allocation, stack spills, etc.)

 Memory safety violations (buffer overflows, heap spraying, etc.)

 Safecracker changes attacker-controlled data to reveal 

nearby secret data through changes in compressibility

 Search strategy depends on compression algorithm

Core Core

L2 L2

Compressed LLC

Main Memory

encrypt 0x01…

Pack+Probe



Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line 

decreases in size



Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line 

decreases in size

… 0x000000000x00000000 0x0F00BA20 32B

Compressed

sizeSecret data

Attacker-controlled input



Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line 

decreases in size

… 0x000000000x00000000 0x0F00BA20

… 0x000100000x00010000 0x0F00BA20 32B

32B

Compressed

sizeSecret data

Attacker-controlled input



Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line 

decreases in size

… 0x000000000x00000000 0x0F00BA20

… 0x000100000x00010000 0x0F00BA20 32B

…

32B

Compressed

size

… 0x0F0000000x0F000000 0x0F00BA20

Secret data

Attacker-controlled input



Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line 

decreases in size

… 0x000000000x00000000 0x0F00BA20

… 0x000100000x00010000 0x0F00BA20 32B

…

32B

Compressed

size

… 0x0F0000000x0F000000 0x0F00BA20

20B !0x0F000000 0000 0000 0000 0000 0000 0000 0000 BA20

4B base 2B deltas

Secret data

Attacker-controlled input



Safecracker on BDI 
14

 Continue sweeping lower-order bytes until recovering all bytes



Safecracker on BDI 
14

 Continue sweeping lower-order bytes until recovering all bytes

Secret data

Attacker-controlled input
… 0x0F0001000x0F000100 0x0F00BA20 20B

Compressed

size



Safecracker on BDI 
14

 Continue sweeping lower-order bytes until recovering all bytes

Secret data

Attacker-controlled input
… 0x0F0001000x0F000100 0x0F00BA20

… 0x0F00BA000x0F00BA00 0x0F00BA20 12B

20B

Compressed

size

…



Safecracker on BDI 
14

 Continue sweeping lower-order bytes until recovering all bytes

Secret data

Attacker-controlled input
… 0x0F0001000x0F000100 0x0F00BA20

… 0x0F00BA000x0F00BA00 0x0F00BA20 12B

…

20B

Compressed

size

… 0x0F00BA200x0F00BA20 0x0F00BA20 8B

…



Safecracker on BDI 
14

 Continue sweeping lower-order bytes until recovering all bytes

 BDI allows recovering up to 8 bytes this way

Secret data

Attacker-controlled input
… 0x0F0001000x0F000100 0x0F00BA20

… 0x0F00BA000x0F00BA00 0x0F00BA20 12B

…

20B

Compressed

size

… 0x0F00BA200x0F00BA20 0x0F00BA20 8B

…

Secret Size Compression Format Sequence Attempts

2B NoComp→B2D1→B8D0 O(28)

4B NoComp→B4D2→B4D1→B8D0 O(216)

8B NoComp→B8D4→B8D2→B8D1→B8D0 O(232)



 Buffer overflows let Safecracker control where attacker-

controlled data is located

 Makes search more efficient

 Can leak data far away from buffer

Enhancing Safecracker w/ buffer overflows
15



 Buffer overflows let Safecracker control where attacker-

controlled data is located

 Makes search more efficient

 Can leak data far away from buffer

 With BDI, can leak 1/8th of victim’s memory!

 Other compression algorithms (e.g., RLE) allow more leakage

Enhancing Safecracker w/ buffer overflows
15



Safecracker Evaluation
16

 Microarchitectural simulation using zsim

 Multicore system modeled after Skylake
Core Core

L2 L2

Compressed LLC

Main Memory

8MB VSC with 64-byte lines,

2x tag array, 32 tags/set

BDI compression



Safecracker Evaluation
16

 Microarchitectural simulation using zsim

 Multicore system modeled after Skylake

 Two Proof-of-Concept (PoC) workloads:

 Login server that colocates key and attacker data

 Server with buffer overflow + key elsewhere in stack

Core Core

L2 L2

Compressed LLC

Main Memory

8MB VSC with 64-byte lines,

2x tag array, 32 tags/set

BDI compression



Safecracker steals secrets quickly
17

PoC 1: Fixed colocation



Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Leaks 4B in under 100ms, 6B in 200ms

(comparable to time spent finding target set)



Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Leaks 4B in under 100ms, 6B in 200ms

(comparable to time spent finding target set)

8B would take much longer (~90 hours)



Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Leaks 4B in under 100ms, 6B in 200ms

(comparable to time spent finding target set)

8B would take much longer (~90 hours)

PoC 2: Buffer overflow



Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Leaks 4B in under 100ms, 6B in 200ms

(comparable to time spent finding target set)

8B would take much longer (~90 hours)

PoC 2: Buffer overflow

Leaks 8B in ~10ms

Attack time grows linearly with leaked bytes



Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of 

lines  Pack+Probe still applies



Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of 

lines  Pack+Probe still applies

 See paper for more discussions



Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of 

lines  Pack+Probe still applies

 See paper for more discussions

 Compressibility always leaks information about data

 More info the better the compression algorithm is



Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of 

lines  Pack+Probe still applies

 See paper for more discussions

 Compressibility always leaks information about data

 More info the better the compression algorithm is

 Adaptive compression algorithms use shared state



Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of 

lines  Pack+Probe still applies

 See paper for more discussions

 Compressibility always leaks information about data

 More info the better the compression algorithm is

 Adaptive compression algorithms use shared state

 additional attack vector



Defense against cache compression attacks
19



Defense against cache compression attacks
19

 Cache partitioning for isolation

 Prevents attacks without software changes

 Invasive: must partition both tag and data arrays



Defense against cache compression attacks
19

 Cache partitioning for isolation

 Prevents attacks without software changes

 Invasive: must partition both tag and data arrays

 Performance distribution of 25 mixes of 4 SPEC CPU2006 apps, using no and 

static partitioning: 



Defense against cache compression attacks
19

 Cache partitioning for isolation

 Prevents attacks without software changes

 Invasive: must partition both tag and data arrays

 Performance distribution of 25 mixes of 4 SPEC CPU2006 apps, using no and 

static partitioning: 
Partitioning increases fragmentation in 

VSC, reduces effective compression ratio



See paper for more!
20

 Other possible defenses for compressed cache attacks

 Examples of vulnerable apps due to colocation with attacker-controlled data

 Discussion on generalizing attacks to other compressed caches

 Artifact description



Conclusions
21

 Compressed caches introduce new side channel & attacks



Conclusions
21

 Compressed caches introduce new side channel & attacks

 Pack+Probe exploits compressed cache architectures to observe compressibility of 

victim’s lines



Conclusions
21

 Compressed caches introduce new side channel & attacks

 Pack+Probe exploits compressed cache architectures to observe compressibility of 
victim’s lines

 Safecracker exploits compression algorithms + colocation of attacker-controlled & 
secret data to leak data quickly

 Can leak a large fraction of program data

 Potentially as damaging as speculation-based attacks



Conclusions
21

 Compressed caches introduce new side channel & attacks

 Pack+Probe exploits compressed cache architectures to observe compressibility of 
victim’s lines

 Safecracker exploits compression algorithms + colocation of attacker-controlled & 
secret data to leak data quickly

 Can leak a large fraction of program data

 Potentially as damaging as speculation-based attacks

 Defenses have drawbacks

 Motivates future work on efficient defenses



THANK YOU FOR WATCHING!

SHARE YOUR QUESTIONS/COMMENTS WITH US!
22

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

3 Attacker measures line’s

compressed size, infers

0x01 is in the secret data

Compromises secret key in ~10ms

Safecracker: Leaking Secrets through Compressed Caches


