T4: Compiling Sequential Code
for Effective Speculative

Parallelization in Hardware

VICTOR A. YING

MARK C. JEFFREY™* I =
DANIEL SANCHEZ II
*University of Toronto starting Fall 2020 |

CSAIL
ISCA 2020

Parallelization: Gap between programmers and hardware

Multicores are everywhere Programmers still write sequential code

i | CBUS| =CRU
L Benie | il
| IMG EGRU
Hi *Tille ;f'l";ile
HaEPU LERY

o0 oy = I
O O S DR 0 EeEes | 0 e gas ma e a | |

: T|Ie Tille
TGRS =cRU
STiille | Tile
" CRUS=CRU
iille ||~ milck

Intel SkylakeSP (2017): 28 cores per die

Speculative parallelization: new architectures and compilers to paralleliz
sequential code without knowing what is safe to run in parallel

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATELIZATION IN HARDWARE 2

T4: Trees of Tiny Timestamped Tasks

Our T4 compiler exploits recently proposed hardware features:
Timestamps encode order, letting tasks spawnaiibrder

Trees unfold branches in parallel for hifinoughput spawn [m] 355]

Compiler optimizations make task spawn efficient
OFFAOASY (O LI NYEEtSt aLl gy a

» Tiny tasks create opportunities to reduce communication and improve locality swarm.csail.mit.edu
[TLS Compiler T4
: S A

We target hareto-parallelize C/C++ 2wl N W = =
benchmarks from SPEC CPU2006 il B B = B

Modest overheadsgmean31%onlcoreS Nl B B m o

> 0
Speedups up to 49X on 64 cores Ibm libgntm milc soplex astar Geo. Mean

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATELIZATION IN HARDWARE 3

Background

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVGPEARAIATEL IZATION IN HARDWARE 4

ThreadLevel Speculation (TLS).s cws o: o8 prenesesosc o: 0 sopeo

Y NA & Ky I Q1 BUARPetéPHQuyEiaS o | f @ 6Qnns WnHOUX La¢ O6WnooGmotyy w! QntrHdiit vhi{ B yreheWilcyn&m &

Divide program intdasks(e.g., loop iterations or function calls)
Speculatively execute tasks in parallel
Detect dependencies at runtime and recover

Prior TLS systems did not scale many-waald programs beyond a few
cores due to

Expensive aborts
Serial bottlenecks in task spawns or commits

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATELIZATION IN HARDWARE 5

TLS creates chains of tasks

int v=0;v<

for numVertices ; v++

Example: maximal independent s

lterates through vertices in graph
One task per outeloop iteration

Each tasks spawns the next Indirect

Hardware tries to run tasks in parallel & | memory
F accesseg

A\ wr|
Hardware tracks memory accesses ¢ \D\rd/‘ |
to discover data dependences E
F e

Time

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE/EPEARAIATEL IZATION IN HARDWARE 6

Task chains incur costly misspeculation recovery

for int v=0;v< numVertices ; v++

Tasks abort If they violated
data dependence

Tasks that abort must roll
back their effects, including

state[nbr]=EXCLUDED;

successors they spawnedor IS I
forwarded data to s T
C r
g
Unselective aborts waste a lot of Wo}k ‘TLA% B a—
Time

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE/EPEARAIATEL IZATION IN HARDWARE 7

Swarm architecture
OWSTFNBe SO Itad aL/ whQmpX alL/whQmcZ all/

Execution model:
Program comprises timestamped tasks
Tasks spawn children with greater or

equal timestamp 16-Tile, 64-Core CMP Tile Organization
Tasks appear to run sequentially, | L S .
in timestamp order [L -~ ||Router L3 Slice

L2
L1I/D L1I/D L1I/D L1I/D

Core | Core | Core | Core

Detects order violations and
selectively aborts dependent tasks

Distributed task units queue
dispatch, and commit multiple tasks

per cycle L
<2% area overhead
Runs hundreds of tiny speculative tasks

Mem /10

\\ . Task Commit
R Task Unit Queue Queue

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATEL IZATION IN HARDWARE 8

T4 Principles in Action

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVGPEARAIATEL IZATION IN HARDWARE 9

¢cnQa RSO2dzL SR aLl gy Sy

numVertices ; v++

for (int v=0;v<

T4 compiles sequential C/C++ ¢
exploit parallelism on Swarm

Put most work intovorker tasks

at the leaves of the task tree
'aS {4l N¥Qa YSOKI
cheap selective aborts

. Spawners

Task chain Decoupled
spawn

state[nbr]=EXCLUDED;

Viorers\ J

REEXECUTE

ABORT DNj
|

Time

=
o

Speedup
on 64 cores
Wyl

=]

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE/EPEARAIATEL IZATION IN HARDWARE 10

Tiny tasks make aborts cheap

Isolatecontentious memory
accesses into tiny tasks, to limit

the damage when they abort

int v=0;v< numVertices ; v++

for

Tiny tasks (a few instructions
are difficult to spawn effectivel

E/ Parallelize both loops:

Parallelize outer loop only:

wi

/
T Wr |

a I

Task chain Decoupled +Nested tiny
spawn tasks

=
=

Speedup
on 64 cores
Ln

=

T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE/EPEARAIATEL IZATION IN HARDWARE 11

ISCA 2020

¢cnQa olflyOSR GFajl GNBS.
Spawnersecursively divide
the range of iterations

int v=0;v< numVertices ; v++

for

state[nbr] = EXCLUDED

30

~CD<D<D

]
=]

Speedup on 64 cores
= [
o wn

S

Spawners Spawners
I Balancedspawneitrees reduce critical
B path length to O(lod(ipcount))

Task chain Decoupled +Nested tiny +Balanced
spawn tasks task trees

T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE/EPEARAIATEL IZATION IN HARDWARE 12

ISCA 2020

T4: Parallelizing Entire Programs

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVGPEARAIATEL IZATION IN HARDWARE 13

T4. Parallelizing entire reabrld programs

T4 divides the entire program into tasks starting
from the first instruction omain()

BN TLS Compiler T4

T4 automatically generates tasks from o 49 41 37
. . 3 30F——— . @ S
Loop |_terat|ons s ® -,
Function calls R R I I —
Continuations of the above v 12 B B
sl B B om oo
. <
T4 extracts nested parallelism from © 0

the entire program eSpite Ibm libgntm milc soplex astar Geo. Mean
Loops with unknowiripcount
Opague function calls
Datadependent control flow
Arbitrary pointer manipulation

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATEL IZATION IN HARDWARE 14

Progressive expansion of unknetspcount loops

Progressive expansion generates balanseawner

iter(6)

trees for loops with unknowtripcount

iter(7)

| }
: »[10
- loops withbreak statements / _ 4* _
iter(10)
- i iter(11
-while loops 0 3 N9
\ iter(0) it iter(8)
______ LN iter(5) iter(9)
: e 12
Source code: void iter (Timestamp 1) { iter(12)
int 1 =0; If (!done) { iter(13)
while (status[i]){ if (Istatus[1i])done =1,
if (foo(1)) break; elseif (foo(i))done =1,
| ++; }
} }
ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATELIZATION IN HARDWARE 15

Continuationpassing style eliminates the call stack

for (int 1 =0; 1 <N; |++

it (x> 0.0 g(x);

Problem: Independent function spawns serialize on staate
allocation

Solution:
When needed, T4 allocates continuation closures on the heap instead
¢cn 2LWNAYATI I GA2ya SyadaNB Yz2ad Gl ajia
These software techniques could apply to any TLS system

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVGPEARAIATEL IZATION IN HARDWARE 16

Spatialnint generation for locality

Tiny tasks may access only one

Memory controller/ IO

memory location, which is known
when the task Is spawned. 5 I I I _
% I I I %
Hardware uses these spatial hints |§ ; ; — |
to improve locality: S J\Oy%éj- - 2
maps each address to a tile. o —= I — |3
Send tasks for that address to that tile. - - -

Memory controller/ IO

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATEL IZATION IN HARDWARE 17

Manualannotations for task splitting

P ro g rammer m ay ad d tas k Benchmark Lines of code Modified lines

boundaries for tiny tasks 429.mef 1,574 None
433.milc 9,575 +18, -13
444 . namd 3,887 None
450.soplex 28,302 +25, -16
456 . hmmer 20,680 +11, -9

Guaranteed to have 462 .1ibquantum 2,605 None

no effect on program output 464.n2e4aref 36,032 +12, -9
470. 1bm 904 +1, -1
473 .astar 4,285 +29, -144
482 .sphinx3 13,128 +17, -8

O .
Added <0.1% to source code 120972 114 201
ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPBARAIATELIZATION IN HARDWARE 18

T4 implementation in LLVM/Clang

LLVM backend

C/C++
source
code

Clang Optimizations T4 Parallelizatiorl x86_64 code Obiect file
frontend (e.g.,-03) Passes generation J

Intraproceduralpasses: small compile times (linear in code size)
Use all standard LLVM optimizations to generate {yghlity code
More in the paper:

Topological sorting to generate timestamps

Bundling stack allocations to the heap with privatization

Loop task coarsening to reduce false sharing of cache lines

Case studies and sensitivity studies

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATEL IZATION IN HARDWARE 19

Evaluation

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVGPEARAIATEL IZATION IN HARDWARE 20

Methodology
1-, 4-, 16, and 64core systems

16-Tile, 64-Core CMP Tile Organization 4 4x4 mesh networks

- | Me/lo I l—,,/’/ Router L3 Slice _— 4 MB L3 slice per—dore tile

e e 12 _— 1 MB L2 cache perebre tile

E i up wyp uip p—— 32 KB L1 caches

E 3\ 0| (G| (Con| |G 4-wide superscalar oubf-order cores
AL [[reskunit [0l Lave (Haswelllike)

256 entriies 6i4 entries/tile (1024 tasks for &dore chip)
C/C++ benchmarks from SPEC CPU2006
All speedups normalized to serial code compiled wiéimg - O3

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATELIZATION IN HARDWARE 21

T4 scales to tens of cores

[11-core B 4-core I 16-core I 64-core

1349/14 41 11 37 19 20
8|
o
> 6
ks
o 4
Q.
n 2
O

Hot loops have some Hot loops have serializing
independent iterations ~ variables updated every iteration

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATELIZATION IN HARDWARE 22

T4 overheads are moderate

, Serial code;03 Parallelized with T4
I Non-task -Task commlt

1.2
1.0
0.8
0.4
0.2
0.0

S141664S 1416645 141664S141664S 141664S141664S 1 41664S 1 41664S 141664 S 1 41664
Ilom libgntm milc soplex astar sphinx hmmer mcf h264 namd

Execution time
(@)
(@)

1 Taskspawn overheads are geo. mean 31%

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATEL IZATION IN HARDWARE 23

Parallelization redoubles performance

I Non-task M Task-commit [Task-abort EZ2 Stall-for-task

Parallel speedup
G —

Execution time
(@)
(@)

0.0

S141664S 1 41664S 141664 S 141664 S 1 41664 S 141664S 1 41664S 1 41664 S 1 41664 S 1 41664
Ibm libgntm milc soplex astar sphinx hmmer mcf h264 namd

Cores spend most time executing useful work, not abor|ting

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATEL IZATION IN HARDWARE 24

Parallelization redoubles performance

| \ ||

T4 scales many programs to tens of cc}res

Parallel speedup

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATEL IZATION IN HARDWARE 25

