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Parallelization: Gap between programmers and hardware

Multicores are everywhere Programmers still write sequential code
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Intel SkylakeSP (2017): 28 cores per die

Speculative parallelization: new architectures and compilers to paralleliz
sequential code without knowing what is safe to run in parallel

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATELIZATION IN HARDWARE 2




T4: Trees of Tiny Timestamped Tasks

Our T4 compiler exploits recently proposed hardware features:
Timestamps encode order, letting tasks spawnaiibrder

Trees unfold branches in parallel for hifinoughput spawn [m] 355 ]

Compiler optimizations make task spawn efficient
OFFAOASY (O LI NYEEtSt aLl gy a

» Tiny tasks create opportunities to reduce communication and improve locality swarm.csail.mit.edu
[ TLS Compiler T4
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We target hareto-parallelize C/C++ 2wl N W = =
benchmarks from SPEC CPU2006 il B B = B

Modest overheadsgmean31%onlcoreS Nl B B m o

> 0
Speedups up to 49X on 64 cores Ibm libgntm milc soplex astar Geo. Mean
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Background
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ThreadLevel Speculation (TLS).s cws o: o8 prenesesosc o: 0 sopeo
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Divide program intdasks(e.g., loop iterations or function calls)
Speculatively execute tasks in parallel
Detect dependencies at runtime and recover

Prior TLS systems did not scale many-waald programs beyond a few
cores due to

Expensive aborts
Serial bottlenecks in task spawns or commits
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TLS creates chains of tasks

int v=0;v<

for numVertices ; v++

Example: maximal independent s

lterates through vertices in graph
One task per outeloop iteration

Each tasks spawns the next Indirect

Hardware tries to run tasks in parallel & | memory
F accesseg

A\ wr|
Hardware tracks memory accesses ¢ \D\rd/‘ |
to discover data dependences E
F e

Time
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Task chains incur costly misspeculation recovery

for int v=0;v< numVertices ; v++

Tasks abort If they violated
data dependence

Tasks that abort must roll
back their effects, including

state[ nbr]=EXCLUDED;

successors they spawnedor IS I
forwarded data to s T
C r
g
Unselective aborts waste a lot of Wo}k ‘TLA% B a—
Time
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Swarm architecture
OWSTFNBe SO Itad aL/ whQmpX alL/whQmcZ all/

Execution model:
Program comprises timestamped tasks
Tasks spawn children with greater or

equal timestamp 16-Tile, 64-Core CMP Tile Organization
Tasks appear to run sequentially, | L S .
in timestamp order [ L -~ ||Router L3 Slice

L2
L1I/D L1I/D L1I/D L1I/D

Core | Core | Core | Core

Detects order violations and
selectively aborts dependent tasks

Distributed task units queue
dispatch, and commit multiple tasks

per cycle L
<2% area overhead
Runs hundreds of tiny speculative tasks

Mem /10

\\ . Task Commit
R Task Unit Queue Queue
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T4 Principles in Action
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numVertices ; v++

for (int v=0;v<

T4 compiles sequential C/C++ ¢
exploit parallelism on Swarm

Put most work intovorker tasks

at the leaves of the task tree
'aS {4l N¥Qa YSOKI
cheap selective aborts

. Spawners

Task chain  Decoupled
spawn

state[ nbr]=EXCLUDED;

Viorers\ J

REEXECUTE

ABORT DNj
|

Time

=
o

Speedup
on 64 cores
Wyl

=]
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Tiny tasks make aborts cheap

Isolatecontentious memory
accesses into tiny tasks, to limit

the damage when they abort

int v=0;v< numVertices ; v++

for

Tiny tasks (a few instructions
are difficult to spawn effectivel

E/ Parallelize both loops:

Parallelize outer loop only:

wi

/
T Wr |

a I

Task chain  Decoupled +Nested tiny
spawn tasks

=
=

Speedup
on 64 cores
Ln

=
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¢cnQa olflyOSR GFajl GNBS.
Spawnersecursively divide
the range of iterations

int v=0;v< numVertices ; v++

for

state[ nbr] = EXCLUDED

30

~CD<D<D

]
=]

Speedup on 64 cores
= [
o wn

S

Spawners Spawners
I Balancedspawneitrees reduce critical
B path length to O(lod(ipcount))

Task chain Decoupled +Nested tiny +Balanced
spawn tasks task trees
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T4: Parallelizing Entire Programs
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T4. Parallelizing entire reabrld programs

T4 divides the entire program into tasks starting
from the first instruction omain()

BN TLS Compiler T4

T4 automatically generates tasks from o 49 41 37
. . 3 30F——— . @ S
Loop |_terat|ons s ® -,
Function calls R R I I —
Continuations of the above v 12 B B
sl B B om oo
. <
T4 extracts nested parallelism from © 0

the entire program eSpite Ibm libgntm milc soplex astar Geo. Mean
Loops with unknowiripcount
Opague function calls
Datadependent control flow
Arbitrary pointer manipulation
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Progressive expansion of unknetspcount loops

Progressive expansion generates balanseawner

iter(6)

trees for loops with unknowtripcount

iter(7)

| }
: »[ 10
- loops withbreak statements / _ 4* _
iter(10)
- i iter(11
-while loops 0 3 N9
\ iter(0) it iter(8)
______ LN iter(5) iter(9)
: e 12
Source code: void iter (Timestamp 1) { iter(12)
int 1 =0; If (!done) { iter(13)
while (status[ i]){ if (Istatus[ 1i])done =1,
if (foo( 1)) break; elseif  (foo( i))done =1,
| ++; }
} }
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Continuationpassing style eliminates the call stack

for (int 1 =0; 1 <N; |++

it (x> 0.0 g(x);

Problem: Independent function spawns serialize on staate
allocation

Solution:
When needed, T4 allocates continuation closures on the heap instead
¢cn 2LWNAYATI I GA2ya SyadaNB Yz2ad Gl ajia
These software techniques could apply to any TLS system
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Spatialnint generation for locality

Tiny tasks may access only one

Memory controller/ IO

memory location, which is known
when the task Is spawned. 5 I I I _
% I I I %
Hardware uses these spatial hints |§ ; ; — |
to improve locality: S J\Oy%éj- - 2
maps each address to a tile. o —= I — |3
Send tasks for that address to that tile. - - -

Memory controller/ IO
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Manualannotations for task splitting

P ro g rammer m ay ad d tas k Benchmark Lines of code Modified lines

boundaries for tiny tasks 429.mef 1,574 None
433.milc 9,575 +18, -13
444 . namd 3,887 None
450.soplex 28,302 +25, -16
456 . hmmer 20,680 +11, -9

Guaranteed to have 462 .1ibquantum 2,605 None

no effect on program output 464.n2e4aref 36,032 +12, -9
470. 1bm 904 +1, -1
473 .astar 4,285 +29, -144
482 .sphinx3 13,128 +17, -8

O .
Added <0.1% to source code 120972 114 201
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T4 implementation in LLVM/Clang

LLVM backend

C/C++
source
code

Clang Optimizations T4 Parallelizatiorl x86_64 code Obiect file
frontend (e.g.,-03) Passes generation J

Intraproceduralpasses: small compile times (linear in code size)
Use all standard LLVM optimizations to generate {yghlity code
More in the paper:

Topological sorting to generate timestamps

Bundling stack allocations to the heap with privatization

Loop task coarsening to reduce false sharing of cache lines

Case studies and sensitivity studies
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Evaluation
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Methodology
1-, 4-, 16, and 64core systems

16-Tile, 64-Core CMP Tile Organization 4 4x4 mesh networks

- | Me/lo I l—,,/’/ Router L3 Slice _— 4 MB L3 slice per—dore tile

e e 12 _— 1 MB L2 cache perebre tile

E i up wyp uip p—— 32 KB L1 caches

E 3\ 0| (G| (Con| |G 4-wide superscalar oubf-order cores
AL [[reskunit [0l Lave (Haswelllike)

256 entriies 6i4 entries/tile (1024 tasks for &dore chip)
C/C++ benchmarks from SPEC CPU2006
All speedups normalized to serial code compiled wiéimg - O3
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T4 scales to tens of cores

[ 11-core B 4-core I 16-core I 64-core

1349/14 41 11 37 19 20
8|
o
> 6
ks
o 4
Q.
n 2
O

Hot loops have some Hot loops have serializing
independent iterations ~ variables updated every iteration

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVEVEPEARAIATELIZATION IN HARDWARE 22




T4 overheads are moderate

, Serial code;03 Parallelized with T4
I Non-task -Task commlt

1.2
1.0
0.8
0.4
0.2
0.0

S141664S 1416645 141664S141664S 141664S141664S 1 41664S 1 41664S 141664 S 1 41664
Ilom libgntm milc soplex astar sphinx hmmer mcf h264 namd

Execution time
(@)
(@)

1 Taskspawn overheads are geo. mean 31%
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Parallelization redoubles performance

I Non-task M Task-commit [ Task-abort EZ2 Stall-for-task

Parallel speedup
G —

Execution time
(@)
(@)

0.0

S141664S 1 41664S 141664 S 141664 S 1 41664 S 141664S 1 41664S 1 41664 S 1 41664 S 1 41664
Ibm libgntm milc soplex astar sphinx hmmer mcf h264 namd

Cores spend most time executing useful work, not abor|ting
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Parallelization redoubles performance

| \ ||

T4 scales many programs to tens of cc}res

Parallel speedup
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