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Irregular applications are difficult to 
accelerate
• Irregular applications’ unpredictable 

data reuse & control flow are hard to 
accelerate on today’s architectures
• CPUs: poor latency tolerance, high 

instruction execution overheads
• Dedicated accelerators: not flexible

• Reconfigurable spatial architectures
offer circuit-level control of distributed 
computation, but...
• still cannot extract enough parallelism
• only benefit regularmemory/compute 
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Fifer enables accelerating irregular 
applications
• Insight: accelerate irregular applications 

by exploiting pipeline parallelism
• Create dynamic temporal pipelines: 

time-multiplexing stages of a pipeline on 
reconfigurable fabric
• Fifer’s speedups: over gmean 17x over 

OOO multicore and 2.8x over 
reconfigurable spatial architectures 
without time-multiplexing
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Agenda

Intro➜ Background ➜ Fifer ➜ Evaluation
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(CSR format)

Irregular applications are 
difficult to accelerate
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Current fringe ...

Edge list 
offsets (I)

Neighbors (J)

...

...

Distances

Next fringe

...

def bfs(src): 

…

for v in current fringe:
start, end = offsets[v], offsets[v+1]

for ngh in neighbors[start:end]:

dist = distances[ngh]

if dist is not set:
set distance; add to next fringe

…

• Characterized by unpredictable reuse:
• Caches, scratchpads capture some locality
• But, irregular applications generally have 

poor locality, large data structures



General-purpose cores handle 
irregular applications poorly
• Modern cores have expensive latency 

tolerance mechanisms:
• Out-of-order execution
• Multithreading

• General-purpose cores are temporal 
architectures: they change operations 
(instructions) over time
• Unit of work is small;

high fetch/decode overheads
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Spatial architectures improve 
computational intensity...
• Map operations spatially to 

array of functional units (FUs)
• Switches set to pass operands 

between FUs
• Input/output ports feed 

values to/from fabric
• FUs operate at machine word 

width: coarse-grain 
reconfigurable array (CGRA)
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Anatomy of a 
CGRA-based system
• Many processing elements (PEs) 

with fabric and private cache
• Data flow within a CGRA: 

rigid pipelines
• Inter-PE communication: 

decoupled
• Control core for system 

interactions, setup/teardown
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... but not flexible enough for 
irregularity
• Only transform inner loop
• Some approaches highly 

specialized to application
• Irregular applications have 

unpredictable latencies and 
variable computational 
intensity as they execute
• Current spatial architectures 

would either stall or suffer 
poor utilization (many PEs 
idle)
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Figure 5. Compiling for DySER

to DySER . A control-flow graph and path-tree is shown in
Figure 5a,b.

Slicing the Path-Tree A path-tree itself cannot be
mapped to a DySER block because it includes memory
instructions, while DySER provides only computation re-
sources. The path-tree is sliced into a load back-slice – a
sequence of instructions in the path-tree that affect any load
in the path-tree – and a computation slice. The computa-
tion slice of a path-tree is all instructions except the load
back-slice. φ-nodes in the static single assignment form
(SSA) [10] of the computation slice represent control-flow.
Simply mapping these φ-nodes to a functional unit allows
control-flow in DySER. An example computation slice is
shown in Figure 5c which corresponds to the code-snippet
from Table 1. Others have also used slicing for improving
hardware efficiency [40, 21].

Load/Store Ordering: In our execution model, the main
processor executes loads as part of load back-slice. If the
DySER block sends values directly to the memory system,
load/store ordering may be violated, which we solve with
the dyser store instruction. It executes as part of the
load back-slice and is inserted immediately after the nearest
load in the original code. The dyser store instruction
specifies a DySER output port as an input operand, cor-
responding to the value/address for that store. It logically
fetches the address and/or value from DySER output ports
and sends the value and address to the load-store queue or
write-buffer. Since dyser store executes as part of the

load back-slice in the main processor, the memory depen-
dency between loads and stores can be resolved using the
processor’s memory disambiguation mechanisms. This de-
coupling is a key simplification that allows DySER to lever-
age existing memory disambiguation mechanisms and re-
main beneficial in many application domains.

DySER Mapping: Mapping of the computation slice to
DySER occurs in three steps. First, the compiler sets up the
communication between the load back-slice and computa-
tion slice by inserting dyser send, dyser load, and
dyser store instructions in the load back-slice . The
destination targets for these instructions are named DySER
ports. Second, the compiler maps each instruction in the
computation slice to a node in the DySER datapath. Third,
it configures the switches to create physical paths corre-
sponding to data-flow edges. These two steps that are done
by the scheduler are implemented with a greedy heuristic
that considers the nodes in topological sort order. Since
the DySER network is circuit-switched, we must map data-
flow edges to hardware paths making the scheduling prob-
lem fundamentally different from tiled architectures like
TRIPS [5], WaveScalar [36], and RAW [37]. Figures 5d
shows DySER mapping for the code-snippet.

Implementation We have developed extensions to the
GCC toolchain for evaluation of the DySER architecture.
Our framework operates on the SPARC backend and does
path-profiling and DySER mapping. The total configuration
information is 327 bytes for one configuration of a 64-FU
block, with 10-bits per FU and 19-bits per switch.

We conclude with two observations on path-trees: 1)
The number of path-trees in many applications is small
enough to create specialized units for each path-tree. 2) Ap-
plications remain in a few path-trees for many invocations
before entering a different path tree.

5 Evaluation
Benchmarks: We evaluate applications from the SPEC
CPU2006 [33], Parboil [30], and the PARSEC [4] bench-
mark suite to cover traditional workloads, GPU workloads,
and emerging workloads respectively1. We consider several
benchmark suites to demonstrate the architecture’s perfor-
mance across a diverse suite.

Modeling and Simulation: We modified the Multifacet
GEMS [27] OPAL cycle-accurate simulator to support
DySER datapaths. Functional unit delays, path delays (one
cycle per hop), and the input/output interface are modeled
for DySER blocks. We include a 128-entry 2-bit predic-
tor with 4-bits history to predict the next path-tree to hide
configuration delays. We model a configuration delay of 64

1Some of the applications in the PARSEC and SPEC suites do not work
with our compiler passes yet and those are not reported (Fortran-code,
library-issues, and input-file endianness problems).
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Fig. 6: Optimized Graphicionado pipeline. Note that this pipeline includes optimizations (Section IV-B, Section IV-D) that are only applicable for some of the
algorithms.

phase where stage A5 in Fig. 5 is removed and the resulting
optimized pipeline is shown in Fig. 6.

C. Prefetching
With the optimizations described above, most of the off-

chip memory accesses in Graphicionado are now sequential
accesses. Since the addresses of these off-chip memory accesses
are not dependent on any other portions of the pipeline, we can
easily perform next-line prefetches and get the data into the
accelerator before they are needed. We extend the sequential
vertex read and edge read modules (stage P1 and P3 in Fig. 6)
to prefetch and buffer up to N cachelines (N = 4 is used for
our evaluation) and configure them to continue fetching the
next cacheline from memory as long as the buffer is not full.
With this optimization, almost all of the sequential memory
access latencies can be hidden and Graphicionado can operate
at a high throughput.

D. Optimization for symmetric graphs
Most graph processing frameworks (including GraphMat)

work naturally with directed graphs. In such frameworks, an
undirected input graph is effectively treated as a symmetric
graph. That is, for each edge (srcid, dstid, weight) there
exists an edge (dstid, srcid, weight). While this approach
works, it incurs unnecessary memory accesses for complete
edge access algorithms such as Collaborative Filtering. For ex-
ample, in order to process an edge (u, v, weight), the source
vertex property VProperty[u], the destination vertex property
VProperty[v], and the edge data e = (u, v, weight) are
read and VProperty[v] updated at the end of the processing
phase. The exact same set of data will be read again later
when processing the symmetric edge (v, u, weight) and
VProperty[u] is updated this time. To reduce bandwidth
consumption, Graphicionado extends its pipeline so that it can
update both the source and the destination vertex properties
when processing an edge from a symmetric graph without
having to read the same data twice. This is reflected in the
optimized pipeline shown in Fig. 6 stages P5–P9 where this
portion of the pipeline is replicated.

E. Large vertex property support
The current Graphicionado pipeline is designed to support

processing up to 32 bytes of vertex property data per cycle.
When a large vertex property is desired, for example, Collabo-
rative Filtering implements vertex properties of 128 bytes each,

the large vertex property is simply treated as a packet involving
multiple flits where each flit contains 32 bytes. For most of
the pipeline stages in Graphicionado, each flit is processed
without waiting for an entire packet worth of data to arrive
(in a manner similar to wormhole switching). For the custom
computation stages, we wait for the entirety of the packet data
to arrive using a simple buffering scheme before computations
are performed (as in store-and-forward switching) to maintain
functionality. With proper buffering (4 flits in the case for CF),
the throughput of the pipeline is not significantly impacted.

V. GRAPHICIONADO PARALLELIZATION

With optimizations described in Section IV, Graphicionado
can process graph analytics workloads with reasonable effi-
ciency. However, thus far it is a single pipeline with theoretical
maximum throughput limited to one edge per cycle in the
Processing phase and one vertex per cycle in the Apply
phase. This section discusses further improving Graphicionado
pipeline throughput, by exploiting the inherent parallelism in
graph workloads.

A. Extension to multiple streams
A naïve way to provide parallelism in the Graphicionado

pipeline is to replicate the whole pipeline and let each of the
replicated pipelines, or pipeline stream, to process a portion
of the active vertices. In fact, this is the most common
approach in software graph processing frameworks when
increasing parallelism. Unfortunately this approach introduces
some significant drawbacks in the hardware pipeline. When
multiple replicated streams try to read and write the same
on-chip scratchpad location, these operations are serialized
and performance degrades. To avoid these access conflicts,
Graphicionado divides the Processing phase into two portions,
a source-oriented portion and a destination-oriented portion,
corresponding to stages P1–P3 and stages P4–P9 in Fig. 5.
The two portions are then replicated separately and connected
using a crossbar switch as shown in Fig. 7. Each parallel
stream in the source-oriented portion of the pipeline is
responsible for executing a subset of the source vertices and
each parallel stream in the destination-oriented portion of the
pipeline is responsible for executing a subset of the destination
vertices. The crossbar switch routes edge data by matching the
destination vertex id of the edge. To maximize the throughput
of the switch, standard techniques such as virtual output
queues [47] are implemented.

Graphicionado [MICRO ‘16]
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to DySER . A control-flow graph and path-tree is shown in
Figure 5a,b.

Slicing the Path-Tree A path-tree itself cannot be
mapped to a DySER block because it includes memory
instructions, while DySER provides only computation re-
sources. The path-tree is sliced into a load back-slice – a
sequence of instructions in the path-tree that affect any load
in the path-tree – and a computation slice. The computa-
tion slice of a path-tree is all instructions except the load
back-slice. φ-nodes in the static single assignment form
(SSA) [10] of the computation slice represent control-flow.
Simply mapping these φ-nodes to a functional unit allows
control-flow in DySER. An example computation slice is
shown in Figure 5c which corresponds to the code-snippet
from Table 1. Others have also used slicing for improving
hardware efficiency [40, 21].

Load/Store Ordering: In our execution model, the main
processor executes loads as part of load back-slice. If the
DySER block sends values directly to the memory system,
load/store ordering may be violated, which we solve with
the dyser store instruction. It executes as part of the
load back-slice and is inserted immediately after the nearest
load in the original code. The dyser store instruction
specifies a DySER output port as an input operand, cor-
responding to the value/address for that store. It logically
fetches the address and/or value from DySER output ports
and sends the value and address to the load-store queue or
write-buffer. Since dyser store executes as part of the

load back-slice in the main processor, the memory depen-
dency between loads and stores can be resolved using the
processor’s memory disambiguation mechanisms. This de-
coupling is a key simplification that allows DySER to lever-
age existing memory disambiguation mechanisms and re-
main beneficial in many application domains.

DySER Mapping: Mapping of the computation slice to
DySER occurs in three steps. First, the compiler sets up the
communication between the load back-slice and computa-
tion slice by inserting dyser send, dyser load, and
dyser store instructions in the load back-slice . The
destination targets for these instructions are named DySER
ports. Second, the compiler maps each instruction in the
computation slice to a node in the DySER datapath. Third,
it configures the switches to create physical paths corre-
sponding to data-flow edges. These two steps that are done
by the scheduler are implemented with a greedy heuristic
that considers the nodes in topological sort order. Since
the DySER network is circuit-switched, we must map data-
flow edges to hardware paths making the scheduling prob-
lem fundamentally different from tiled architectures like
TRIPS [5], WaveScalar [36], and RAW [37]. Figures 5d
shows DySER mapping for the code-snippet.

Implementation We have developed extensions to the
GCC toolchain for evaluation of the DySER architecture.
Our framework operates on the SPARC backend and does
path-profiling and DySER mapping. The total configuration
information is 327 bytes for one configuration of a 64-FU
block, with 10-bits per FU and 19-bits per switch.

We conclude with two observations on path-trees: 1)
The number of path-trees in many applications is small
enough to create specialized units for each path-tree. 2) Ap-
plications remain in a few path-trees for many invocations
before entering a different path tree.

5 Evaluation
Benchmarks: We evaluate applications from the SPEC
CPU2006 [33], Parboil [30], and the PARSEC [4] bench-
mark suite to cover traditional workloads, GPU workloads,
and emerging workloads respectively1. We consider several
benchmark suites to demonstrate the architecture’s perfor-
mance across a diverse suite.

Modeling and Simulation: We modified the Multifacet
GEMS [27] OPAL cycle-accurate simulator to support
DySER datapaths. Functional unit delays, path delays (one
cycle per hop), and the input/output interface are modeled
for DySER blocks. We include a 128-entry 2-bit predic-
tor with 4-bits history to predict the next path-tree to hide
configuration delays. We model a configuration delay of 64

1Some of the applications in the PARSEC and SPEC suites do not work
with our compiler passes yet and those are not reported (Fortran-code,
library-issues, and input-file endianness problems).
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Time-multiplexing on CGRAs:
Triggered Instructions [ISCA’13]
• Triggered Instructions PEs can 

choose among many instructions
• Limited number of instructions (16)
• Complex scheduling to keep PEs 

active
• Fifer’s approach:

coarse-grain reconfiguration on
coarse-grain sets of operations
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Irregular applications can be decoupled 
and mapped to spatial architectures
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def bfs(src): 

…

for v in current fringe:

start, end = offsets[v], offsets[v+1]

for ngh in neighbors[start:end]:

dist = distances[ngh]

if dist is not set:

set distance; add to next fringe

…



Insight: Create dynamic temporal pipelines on 
reconfigurable spatial architectures
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Insight: Create dynamic temporal pipelines on 
reconfigurable spatial architectures
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Insight: Create dynamic temporal pipelines on 
reconfigurable spatial architectures
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Insight: Create dynamic temporal pipelines on 
reconfigurable spatial architectures
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Insight: Create dynamic temporal pipelines on 
reconfigurable spatial architectures
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Insight: Create dynamic temporal pipelines on 
reconfigurable spatial architectures
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Insight: Create dynamic temporal pipelines on 
reconfigurable spatial architectures
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Insight: Create dynamic temporal pipelines on 
reconfigurable spatial architectures
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Fifer is flexible yet performant

• Coarse-grain 
reconfigurable array 
(CGRA) increases 
compute density over 
general-purpose cores
• Buffering between PEs 

and within PEs provides 
latency tolerance
• Time-multiplexed 

fabric keeps throughput 
and utilization high
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Mapping applications to Fifer
*.c

Annotated
Per-Stage

Source

Dataflow
graph

analysis &
extraction

*.ll

LLVM
IR

C / C++
Compiler

Dataflow graph (DFG) *.bin

Fabric
Config.

Bitstream

Bitstream
generation

Serial code:
for e in range(start, end):

ngh = neighbors[e]

mov %r_neighbors, ...;
deq %r_e,   $q_start;
deq %r_end, $q_end;

loop:
lea   %r_addr, (%r_neighbors,%r_e,2);
ld %r_ngh, (%r_addr);
enq $q_ngh, %r_ngh;
addi %r_e, %r_e, 1;
blt %r_e, %r_end, loop

done:
...

Pseudo-assembly: Mapping:

start

end

neighbors

e

end < ?

LEA

1

LD

CacheControl

address of
neighbors[e]

ngh
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Fifer needs reconfigurations to be...

Rare
• Amortize reconfiguration cost 

over hundreds of cycles
• Round-robin scheduling 

switches too often
• Fifer’s scheduler in each PE 

keeps a stage scheduled until 
queues become full or empty
• Prioritize stages with most 

work in input queues.

Fast
• Quickly tolerate variations in the 

amount of work between stages
• Prior techniques (e.g., scan 

chains) reconfigure in 
~ microseconds; we need cycles
• Fifer’s double-buffered 

configuration cells make 
reconfiguration fast at low 
hardware cost
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Fast reconfiguration with
double-buffering
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Proc. cur.
fringe

Fetch 
dists.PE

 3 Upd. data, 
next fringe

• Replicate pipelines using many PEs
• Careful partitioning avoids 

synchronization through shared 
memory

• Increase PE utilization & parallelism 
by performing multiple units of 
work in one stage (SIMD-style)
• e.g., enumerate multiple 

neighbors per cycle



See paper for more

• Accelerating memory accesses with decoupled reference machines
• Evaluating other decoupling strategies
• Handling control flow
• Energy, area estimates for Fifer’s major components
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Agenda

Intro➜ Background➜ Fifer➜ Evaluation
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Evaluation

• Baseline system: 16-PE system with 
static stage mappings (no intra-PE 
queues)
• Other comparison systems: serial 

and 4-core OOO cores
• A Fifer PE is 1.34 mm2 at 45 nm;

core count set for roughly iso-area 
comparison
• Benchmarks evaluated:

• Graph analytics (BFS, Connected 
Components, PageRank-Delta, Radii)

• Sparse linear algebra (SpMM)
• Databases (Silo)
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Static pipeline
(baseline) (our system)
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Other application pipelines
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Multicore OOO Static pipeline Fifer

Fifer outperforms the baseline

• Fifer achieves consistent speedups over the baseline
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Fifer effectively hides latency

• Fifer reduces waiting on queues, even when reconfiguring

I: Serial  D: Data-parallel  S: Static pipeline  F: Fifer
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Application BFS CC PRD Radii SpMM Silo Mean

Average 
residence time

(cycles)
140 279 927 564 30 1490 448

Average 
reconfiguration 
period (cycles)

12.5 13.9 20.4 27.7 12.6 60.1 19.7

Fifer achieves infrequent and fast 
reconfiguration
• Stages remain resident for hundreds of cycles
• SpMM has very short residence time, necessitating double-buffering
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Fifer helps accelerate irregular applications 
on reconfigurable architectures
• Transform irregular applications into dynamic temporal pipelines 

and efficiently execute them on reconfigurable spatial architectures
• Fast reconfiguration is enabled by Fifer’s scheduler and double-

buffered configuration cells
• Fifer makes executing irregular applications on reconfigurable 

spatial architectures practical
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Thank you!
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