
Practical Acceleration of Irregular Applications on
Reconfigurable Architectures

Quan M. Nguyen and Daniel Sanchez
Massachusetts Institute of Technology

MICRO-54
Live session: Session 9A (Graph Processing)

October 21, 2021 at 2:15 PM EDT

Fifer:

Irregular applications are difficult to
accelerate
• Irregular applications’ unpredictable

data reuse & control flow are hard to
accelerate on today’s architectures
• CPUs: poor latency tolerance, high

instruction execution overheads
• Dedicated accelerators: not flexible

• Reconfigurable spatial architectures
offer circuit-level control of distributed
computation, but...
• still cannot extract enough parallelism
• only benefit regularmemory/compute

patterns 2

Switch
Func

SwitchI/O

Switch
Func

SwitchI/O

I/O I/O

Func

Switch

Switch

I/O

I/O

I/O

...Func

...

Switch Switch SwitchI/O I/O

...

...

...

...Func Func

...

Func

Func

Func

...

...

mapcompile

Source

Fifer enables accelerating irregular
applications
• Insight: accelerate irregular applications

by exploiting pipeline parallelism
• Create dynamic temporal pipelines:

time-multiplexing stages of a pipeline on
reconfigurable fabric
• Fifer’s speedups: over gmean 17x over

OOO multicore and 2.8x over
reconfigurable spatial architectures
without time-multiplexing

3
BFS CC PRD Radii SpMM Silo

0.0
1.0
2.0
3.0
4.0

Sp
ee

du
p

Multicore OOO Static pipeline Fifer

Agenda

Intro➜ Background ➜ Fifer ➜ Evaluation

4

(CSR format)

Irregular applications are
difficult to accelerate

5

Current fringe ...

Edge list
offsets (I)

Neighbors (J)

...

...

Distances

Next fringe

...

def bfs(src):

…

for v in current fringe:
start, end = offsets[v], offsets[v+1]

for ngh in neighbors[start:end]:

dist = distances[ngh]

if dist is not set:
set distance; add to next fringe

…

• Characterized by unpredictable reuse:
• Caches, scratchpads capture some locality
• But, irregular applications generally have

poor locality, large data structures

General-purpose cores handle
irregular applications poorly
• Modern cores have expensive latency

tolerance mechanisms:
• Out-of-order execution
• Multithreading

• General-purpose cores are temporal
architectures: they change operations
(instructions) over time
• Unit of work is small;

high fetch/decode overheads

6

to L1 cache

RO
B

Ld/St Bufs

PC

OOO Core

Phys. Reg
File

Functional
U

nits…

Renam
eIssue

Dispatch

Front end

Spatial architectures improve
computational intensity...
• Map operations spatially to

array of functional units (FUs)
• Switches set to pass operands

between FUs
• Input/output ports feed

values to/from fabric
• FUs operate at machine word

width: coarse-grain
reconfigurable array (CGRA)

7

Switch
Func

SwitchI/O

Switch
Func

SwitchI/O

I/O I/O

Func

Switch

Switch

I/O

I/O

I/O

...Func

...

Switch Switch SwitchI/O I/O
...

...

...

...Func Func

...

Func

Func

Func

...

...

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

Last-level Cache

High-bandwidth Memory

Co
nt

ro
l C

or
e

Anatomy of a
CGRA-based system
• Many processing elements (PEs)

with fabric and private cache
• Data flow within a CGRA:

rigid pipelines
• Inter-PE communication:

decoupled
• Control core for system

interactions, setup/teardown

8Baseline system

Switch

Switch

Func
Switch

Switch

Switch

Switch

...

...

...

L1 Cache

Inter-PE
output

channels

Inter-PE
input

channels

Processing element (PE)

... but not flexible enough for
irregularity
• Only transform inner loop
• Some approaches highly

specialized to application
• Irregular applications have

unpredictable latencies and
variable computational
intensity as they execute
• Current spatial architectures

would either stall or suffer
poor utilization (many PEs
idle)

9

>>

>>

>>

>>

XOR

& &

&

&

&

&

DI0

DI0

DM0

DM0

EXIT
PT2

DI1

DI1

DI2

DI2

DO1DO0

DO1DO0EXIT
(a) (b) (c)

(d)

BB1 BB1

BB2 BB2

BB3 BB3

BB4 BB4

BB5
BB5

BB5

BB5

entry entry

PT1

PT0

Figure 5. Compiling for DySER

to DySER . A control-flow graph and path-tree is shown in
Figure 5a,b.

Slicing the Path-Tree A path-tree itself cannot be
mapped to a DySER block because it includes memory
instructions, while DySER provides only computation re-
sources. The path-tree is sliced into a load back-slice – a
sequence of instructions in the path-tree that affect any load
in the path-tree – and a computation slice. The computa-
tion slice of a path-tree is all instructions except the load
back-slice. φ-nodes in the static single assignment form
(SSA) [10] of the computation slice represent control-flow.
Simply mapping these φ-nodes to a functional unit allows
control-flow in DySER. An example computation slice is
shown in Figure 5c which corresponds to the code-snippet
from Table 1. Others have also used slicing for improving
hardware efficiency [40, 21].

Load/Store Ordering: In our execution model, the main
processor executes loads as part of load back-slice. If the
DySER block sends values directly to the memory system,
load/store ordering may be violated, which we solve with
the dyser store instruction. It executes as part of the
load back-slice and is inserted immediately after the nearest
load in the original code. The dyser store instruction
specifies a DySER output port as an input operand, cor-
responding to the value/address for that store. It logically
fetches the address and/or value from DySER output ports
and sends the value and address to the load-store queue or
write-buffer. Since dyser store executes as part of the

load back-slice in the main processor, the memory depen-
dency between loads and stores can be resolved using the
processor’s memory disambiguation mechanisms. This de-
coupling is a key simplification that allows DySER to lever-
age existing memory disambiguation mechanisms and re-
main beneficial in many application domains.

DySER Mapping: Mapping of the computation slice to
DySER occurs in three steps. First, the compiler sets up the
communication between the load back-slice and computa-
tion slice by inserting dyser send, dyser load, and
dyser store instructions in the load back-slice . The
destination targets for these instructions are named DySER
ports. Second, the compiler maps each instruction in the
computation slice to a node in the DySER datapath. Third,
it configures the switches to create physical paths corre-
sponding to data-flow edges. These two steps that are done
by the scheduler are implemented with a greedy heuristic
that considers the nodes in topological sort order. Since
the DySER network is circuit-switched, we must map data-
flow edges to hardware paths making the scheduling prob-
lem fundamentally different from tiled architectures like
TRIPS [5], WaveScalar [36], and RAW [37]. Figures 5d
shows DySER mapping for the code-snippet.

Implementation We have developed extensions to the
GCC toolchain for evaluation of the DySER architecture.
Our framework operates on the SPARC backend and does
path-profiling and DySER mapping. The total configuration
information is 327 bytes for one configuration of a 64-FU
block, with 10-bits per FU and 19-bits per switch.

We conclude with two observations on path-trees: 1)
The number of path-trees in many applications is small
enough to create specialized units for each path-tree. 2) Ap-
plications remain in a few path-trees for many invocations
before entering a different path tree.

5 Evaluation
Benchmarks: We evaluate applications from the SPEC
CPU2006 [33], Parboil [30], and the PARSEC [4] bench-
mark suite to cover traditional workloads, GPU workloads,
and emerging workloads respectively1. We consider several
benchmark suites to demonstrate the architecture’s perfor-
mance across a diverse suite.

Modeling and Simulation: We modified the Multifacet
GEMS [27] OPAL cycle-accurate simulator to support
DySER datapaths. Functional unit delays, path delays (one
cycle per hop), and the input/output interface are modeled
for DySER blocks. We include a 128-entry 2-bit predic-
tor with 4-bits history to predict the next path-tree to hide
configuration delays. We model a configuration delay of 64

1Some of the applications in the PARSEC and SPEC suites do not work
with our compiler passes yet and those are not reported (Fortran-code,
library-issues, and input-file endianness problems).

509

DySER [HPCA ‘11]

P1: Read
SRC Property

Sequential
Vertex Read

P3: Read
Edges for
given SRC

[Optional]
P4 : Read DST

Property

Edge Read

P5: Process
Edge

P7: Read
Temp

DST Property
P8: Reduce

P9: Write
Temp

DST Property

P6: Control
Atomic
Update

Random
Vertex Read

Processing
Phase

Apply
Phase

A1: Read
Vertex

Property

A2: Read
Temp Vertex

Property

A4: Write
Vertex

Property
A3: Apply

Sequential
Vertex Read

SPM
Vertex Read

Custom
Computation

Sequential
Vertex Write

Notify the vertex id of a completed update

Hardware
Unit

No Memory AccessSequential Memory Access
Random Memory Access Random/Sequential Memory Access

Scratchpad Memory AccessHardware
Unit

P5*: Process
Edge

Custom
Computation

P7*: Read
Temp

SRC Property
P8*: Reduce

SPM
Vertex Read

P9*: Write
Temp

SRC Property

Custom
Computation

P6*: Control
Atomic
Update

SPM
Vertex Write

Atomic
Update

Fig. 6: Optimized Graphicionado pipeline. Note that this pipeline includes optimizations (Section IV-B, Section IV-D) that are only applicable for some of the
algorithms.

phase where stage A5 in Fig. 5 is removed and the resulting
optimized pipeline is shown in Fig. 6.

C. Prefetching
With the optimizations described above, most of the off-

chip memory accesses in Graphicionado are now sequential
accesses. Since the addresses of these off-chip memory accesses
are not dependent on any other portions of the pipeline, we can
easily perform next-line prefetches and get the data into the
accelerator before they are needed. We extend the sequential
vertex read and edge read modules (stage P1 and P3 in Fig. 6)
to prefetch and buffer up to N cachelines (N = 4 is used for
our evaluation) and configure them to continue fetching the
next cacheline from memory as long as the buffer is not full.
With this optimization, almost all of the sequential memory
access latencies can be hidden and Graphicionado can operate
at a high throughput.

D. Optimization for symmetric graphs
Most graph processing frameworks (including GraphMat)

work naturally with directed graphs. In such frameworks, an
undirected input graph is effectively treated as a symmetric
graph. That is, for each edge (srcid, dstid, weight) there
exists an edge (dstid, srcid, weight). While this approach
works, it incurs unnecessary memory accesses for complete
edge access algorithms such as Collaborative Filtering. For ex-
ample, in order to process an edge (u, v, weight), the source
vertex property VProperty[u], the destination vertex property
VProperty[v], and the edge data e = (u, v, weight) are
read and VProperty[v] updated at the end of the processing
phase. The exact same set of data will be read again later
when processing the symmetric edge (v, u, weight) and
VProperty[u] is updated this time. To reduce bandwidth
consumption, Graphicionado extends its pipeline so that it can
update both the source and the destination vertex properties
when processing an edge from a symmetric graph without
having to read the same data twice. This is reflected in the
optimized pipeline shown in Fig. 6 stages P5–P9 where this
portion of the pipeline is replicated.

E. Large vertex property support
The current Graphicionado pipeline is designed to support

processing up to 32 bytes of vertex property data per cycle.
When a large vertex property is desired, for example, Collabo-
rative Filtering implements vertex properties of 128 bytes each,

the large vertex property is simply treated as a packet involving
multiple flits where each flit contains 32 bytes. For most of
the pipeline stages in Graphicionado, each flit is processed
without waiting for an entire packet worth of data to arrive
(in a manner similar to wormhole switching). For the custom
computation stages, we wait for the entirety of the packet data
to arrive using a simple buffering scheme before computations
are performed (as in store-and-forward switching) to maintain
functionality. With proper buffering (4 flits in the case for CF),
the throughput of the pipeline is not significantly impacted.

V. GRAPHICIONADO PARALLELIZATION

With optimizations described in Section IV, Graphicionado
can process graph analytics workloads with reasonable effi-
ciency. However, thus far it is a single pipeline with theoretical
maximum throughput limited to one edge per cycle in the
Processing phase and one vertex per cycle in the Apply
phase. This section discusses further improving Graphicionado
pipeline throughput, by exploiting the inherent parallelism in
graph workloads.

A. Extension to multiple streams
A naïve way to provide parallelism in the Graphicionado

pipeline is to replicate the whole pipeline and let each of the
replicated pipelines, or pipeline stream, to process a portion
of the active vertices. In fact, this is the most common
approach in software graph processing frameworks when
increasing parallelism. Unfortunately this approach introduces
some significant drawbacks in the hardware pipeline. When
multiple replicated streams try to read and write the same
on-chip scratchpad location, these operations are serialized
and performance degrades. To avoid these access conflicts,
Graphicionado divides the Processing phase into two portions,
a source-oriented portion and a destination-oriented portion,
corresponding to stages P1–P3 and stages P4–P9 in Fig. 5.
The two portions are then replicated separately and connected
using a crossbar switch as shown in Fig. 7. Each parallel
stream in the source-oriented portion of the pipeline is
responsible for executing a subset of the source vertices and
each parallel stream in the destination-oriented portion of the
pipeline is responsible for executing a subset of the destination
vertices. The crossbar switch routes edge data by matching the
destination vertex id of the edge. To maximize the throughput
of the switch, standard techniques such as virtual output
queues [47] are implemented.

Graphicionado [MICRO ‘16]

>>

>>

>>

>>

XOR

& &

&

&

&

&

DI0

DI0

DM0

DM0

EXIT
PT2

DI1

DI1

DI2

DI2

DO1DO0

DO1DO0EXIT
(a) (b) (c)

(d)

BB1 BB1

BB2 BB2

BB3 BB3

BB4 BB4

BB5
BB5

BB5

BB5

entry entry

PT1

PT0

Figure 5. Compiling for DySER

to DySER . A control-flow graph and path-tree is shown in
Figure 5a,b.

Slicing the Path-Tree A path-tree itself cannot be
mapped to a DySER block because it includes memory
instructions, while DySER provides only computation re-
sources. The path-tree is sliced into a load back-slice – a
sequence of instructions in the path-tree that affect any load
in the path-tree – and a computation slice. The computa-
tion slice of a path-tree is all instructions except the load
back-slice. φ-nodes in the static single assignment form
(SSA) [10] of the computation slice represent control-flow.
Simply mapping these φ-nodes to a functional unit allows
control-flow in DySER. An example computation slice is
shown in Figure 5c which corresponds to the code-snippet
from Table 1. Others have also used slicing for improving
hardware efficiency [40, 21].

Load/Store Ordering: In our execution model, the main
processor executes loads as part of load back-slice. If the
DySER block sends values directly to the memory system,
load/store ordering may be violated, which we solve with
the dyser store instruction. It executes as part of the
load back-slice and is inserted immediately after the nearest
load in the original code. The dyser store instruction
specifies a DySER output port as an input operand, cor-
responding to the value/address for that store. It logically
fetches the address and/or value from DySER output ports
and sends the value and address to the load-store queue or
write-buffer. Since dyser store executes as part of the

load back-slice in the main processor, the memory depen-
dency between loads and stores can be resolved using the
processor’s memory disambiguation mechanisms. This de-
coupling is a key simplification that allows DySER to lever-
age existing memory disambiguation mechanisms and re-
main beneficial in many application domains.

DySER Mapping: Mapping of the computation slice to
DySER occurs in three steps. First, the compiler sets up the
communication between the load back-slice and computa-
tion slice by inserting dyser send, dyser load, and
dyser store instructions in the load back-slice . The
destination targets for these instructions are named DySER
ports. Second, the compiler maps each instruction in the
computation slice to a node in the DySER datapath. Third,
it configures the switches to create physical paths corre-
sponding to data-flow edges. These two steps that are done
by the scheduler are implemented with a greedy heuristic
that considers the nodes in topological sort order. Since
the DySER network is circuit-switched, we must map data-
flow edges to hardware paths making the scheduling prob-
lem fundamentally different from tiled architectures like
TRIPS [5], WaveScalar [36], and RAW [37]. Figures 5d
shows DySER mapping for the code-snippet.

Implementation We have developed extensions to the
GCC toolchain for evaluation of the DySER architecture.
Our framework operates on the SPARC backend and does
path-profiling and DySER mapping. The total configuration
information is 327 bytes for one configuration of a 64-FU
block, with 10-bits per FU and 19-bits per switch.

We conclude with two observations on path-trees: 1)
The number of path-trees in many applications is small
enough to create specialized units for each path-tree. 2) Ap-
plications remain in a few path-trees for many invocations
before entering a different path tree.

5 Evaluation
Benchmarks: We evaluate applications from the SPEC
CPU2006 [33], Parboil [30], and the PARSEC [4] bench-
mark suite to cover traditional workloads, GPU workloads,
and emerging workloads respectively1. We consider several
benchmark suites to demonstrate the architecture’s perfor-
mance across a diverse suite.

Modeling and Simulation: We modified the Multifacet
GEMS [27] OPAL cycle-accurate simulator to support
DySER datapaths. Functional unit delays, path delays (one
cycle per hop), and the input/output interface are modeled
for DySER blocks. We include a 128-entry 2-bit predic-
tor with 4-bits history to predict the next path-tree to hide
configuration delays. We model a configuration delay of 64

1Some of the applications in the PARSEC and SPEC suites do not work
with our compiler passes yet and those are not reported (Fortran-code,
library-issues, and input-file endianness problems).

509

Time-multiplexing on CGRAs:
Triggered Instructions [ISCA’13]
• Triggered Instructions PEs can

choose among many instructions
• Limited number of instructions (16)
• Complex scheduling to keep PEs

active
• Fifer’s approach:

coarse-grain reconfiguration on
coarse-grain sets of operations

10

Irregular applications can be decoupled
and mapped to spatial architectures

11

Process current
fringe

Enumerate
neighbors

Visit neighbors

Update data,
next fringe

def bfs(src):

…

for v in current fringe:

start, end = offsets[v], offsets[v+1]

for ngh in neighbors[start:end]:

dist = distances[ngh]

if dist is not set:

set distance; add to next fringe

…

Insight: Create dynamic temporal pipelines on
reconfigurable spatial architectures

12

Process current
fringe

Enumerate
neighbors

Visit neighbors

Update data,
next fringe

Insight: Create dynamic temporal pipelines on
reconfigurable spatial architectures

12

Process current
fringe

Enumerate
neighbors Visit neighbors Update data,

next fringe

Insight: Create dynamic temporal pipelines on
reconfigurable spatial architectures

13

Process
current fringe

Enumerate
neighbors

Fetch
distances

Update data,
next fringe

Insight: Create dynamic temporal pipelines on
reconfigurable spatial architectures

13

Processing
Element

Functional
Unit

Inter-PE
Channels

Static pipeline

Insight: Create dynamic temporal pipelines on
reconfigurable spatial architectures

13

Queues

Insight: Create dynamic temporal pipelines on
reconfigurable spatial architectures

13

Queues

Insight: Create dynamic temporal pipelines on
reconfigurable spatial architectures

13

Dynamic temporal
pipeline

Queues

Insight: Create dynamic temporal pipelines on
reconfigurable spatial architectures

13

Fifer

Dynamic temporal
pipeline

Queues

Agenda

Intro➜ Background➜ Fifer ➜ Evaluation

14

Fifer is flexible yet performant

• Coarse-grain
reconfigurable array
(CGRA) increases
compute density over
general-purpose cores
• Buffering between PEs

and within PEs provides
latency tolerance
• Time-multiplexed

fabric keeps throughput
and utilization high

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache Switch

Switch

Func
Switch

Switch

Switch

Switch

...

...

...

L1 Cache

DRMsQueue memory

Inter-PE
output

channels

To
Cache

Scheduler

Inter-PE
input

channels

Reconfigurable
spatial architecture

Processing element (PE)

15

FiferIntra-PE
input

channels

Mapping applications to Fifer
*.c

Annotated
Per-Stage

Source

Dataflow
graph

analysis &
extraction

*.ll

LLVM
IR

C / C++
Compiler

Dataflow graph (DFG) *.bin

Fabric
Config.

Bitstream

Bitstream
generation

Serial code:
for e in range(start, end):

ngh = neighbors[e]

mov %r_neighbors, ...;
deq %r_e, $q_start;
deq %r_end, $q_end;

loop:
lea %r_addr, (%r_neighbors,%r_e,2);
ld %r_ngh, (%r_addr);
enq $q_ngh, %r_ngh;
addi %r_e, %r_e, 1;
blt %r_e, %r_end, loop

done:
...

Pseudo-assembly: Mapping:

start

end

neighbors

e

end < ?

LEA

1

LD

CacheControl

address of
neighbors[e]

ngh

16

Fifer needs reconfigurations to be...

Rare
• Amortize reconfiguration cost

over hundreds of cycles
• Round-robin scheduling

switches too often
• Fifer’s scheduler in each PE

keeps a stage scheduled until
queues become full or empty
• Prioritize stages with most

work in input queues.

Fast
• Quickly tolerate variations in the

amount of work between stages
• Prior techniques (e.g., scan

chains) reconfigure in
~ microseconds; we need cycles
• Fifer’s double-buffered

configuration cells make
reconfiguration fast at low
hardware cost

17

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Time

Config.
Slot A

Config.
Slot B

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Time

Config.
Slot A

Config.
Slot B

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Time

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Time

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Time

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Time

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Activate Config B

Time

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Activate Config B

Time

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Activate Config B

Time

Orange
steady-state

execution

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Activate Config B

Time

Orange
steady-state

execution

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Activate Config B

Time

Orange
steady-state

execution

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Drain in-flight
operations

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Activate Config B

Time

Orange
steady-state

execution

Activate Config A

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Drain in-flight
operations

Fast reconfiguration with
double-buffering

18

A B const

ALU

Co
nf

ig
. C

el
l

Configuration
signals

Connections
from switches

To switches

Config. Slot A Config. Slot B
Double-buffered

Configuration Cell
Current
Config.

Config. data
from L1 cache

Config. load &
select signalsFunctional Unit

Green
steady-state

execution

Load & buffer
new config.

Activate Config B

Time

Orange
steady-state

execution

Activate Config A

Blue
steady-state

execution

Config.
Slot A

Config.
Slot B

Scheduler decides to switch

Drain in-flight
operations

Exploiting pipeline and data parallelism
together

19

Process current
fringe Visit neighbors

Update data,
next fringe

Enumerate
neighbors

Exploiting pipeline and data parallelism
together

19

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.

Upd. data,
next fringePE
 0

Exploiting pipeline and data parallelism
together

19

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.

Upd. data,
next fringePE
 0

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.PE

 1 Upd. data,
next fringe

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.PE

 2 Upd. data,
next fringe

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.PE

 3 Upd. data,
next fringe

• Replicate pipelines using many PEs
• Careful partitioning avoids

synchronization through shared
memory

• Increase PE utilization & parallelism
by performing multiple units of
work in one stage (SIMD-style)
• e.g., enumerate multiple

neighbors per cycle

See paper for more

• Accelerating memory accesses with decoupled reference machines
• Evaluating other decoupling strategies
• Handling control flow
• Energy, area estimates for Fifer’s major components

20

Agenda

Intro➜ Background➜ Fifer➜ Evaluation

21

Evaluation

• Baseline system: 16-PE system with
static stage mappings (no intra-PE
queues)
• Other comparison systems: serial

and 4-core OOO cores
• A Fifer PE is 1.34 mm2 at 45 nm;

core count set for roughly iso-area
comparison
• Benchmarks evaluated:

• Graph analytics (BFS, Connected
Components, PageRank-Delta, Radii)

• Sparse linear algebra (SpMM)
• Databases (Silo)

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

Last-level Cache
High-bandwidth Memory

Co
nt

ro
l C

or
e

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

Last-level Cache
High-bandwidth Memory

Co
nt

ro
l C

or
e

Predominant flow of data

Static pipeline
(baseline) (our system)

22

Fifer

Other application pipelines

23

Query
stage

Lookup
stage

Traverse
internal node

Process
leaf node

values

keys
Silo (database)

Stream
cols of B

Merge-
intersect Accumulate

Stream
rows of A

SpMM
(linear algebra)

Graph analytics Process
current fringe

Visit
neighbors

Update data,
next fringe

Enumerate
neighbors

BFS CC PRD Radii SpMM Silo
0.0
1.0
2.0
3.0
4.0

Sp
ee

du
p

Multicore OOO Static pipeline Fifer

Fifer outperforms the baseline

• Fifer achieves consistent speedups over the baseline

24

B)6 CC P5D 5Ddii6S00 6ilR
0.00
0.25
0.50
0.75
1.00

1
Rr

P
Dl

iz
ed

 F
yF

le
s

I

(20)

D

(21)

6

)

I

(8)

D

(9)

6
)

I

(10)

D

(9)

6) I

(6)

D

(6)

6) I

(6)

D

(4)

6) I

(19)

D

(18)

6)

Idle
5eFRQIigurDtiRQ
4ueue Iull/ePSty
6tDlls
Issued

Fifer effectively hides latency

• Fifer reduces waiting on queues, even when reconfiguring

I: Serial D: Data-parallel S: Static pipeline F: Fifer

25

Application BFS CC PRD Radii SpMM Silo Mean

Average
residence time

(cycles)
140 279 927 564 30 1490 448

Average
reconfiguration
period (cycles)

12.5 13.9 20.4 27.7 12.6 60.1 19.7

Fifer achieves infrequent and fast
reconfiguration
• Stages remain resident for hundreds of cycles
• SpMM has very short residence time, necessitating double-buffering

26

Fifer helps accelerate irregular applications
on reconfigurable architectures
• Transform irregular applications into dynamic temporal pipelines

and efficiently execute them on reconfigurable spatial architectures
• Fast reconfiguration is enabled by Fifer’s scheduler and double-

buffered configuration cells
• Fifer makes executing irregular applications on reconfigurable

spatial architectures practical

27

Thank you!

Practical Acceleration of Irregular Applications on
Reconfigurable Architectures

Quan M. Nguyen and Daniel Sanchez
qmn@csail.mit.edu and sanchez@csail.mit.edu

MICRO-54
Live session: Session 9A (Graph Processing)

October 21, 2021 at 2:15 PM EDT

This presentation and recording belong to the authors.
No distribution is allowed without the authors' permission.

Fifer:

