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We offer the first security analysis of cache compression, a promising architectural

technique that is likely to appear in future mainstream processors. We find that

cache compression has novel security implications because the compressibility of a

cache line reveals information about its contents. Compressed caches introduce a

new side channel that is especially insidious, as simply storing data transmits

information about the data. We present two techniques that make attacks on

compressed caches practical. Pack+Probe allows an attacker to learn the

compressibility of victim cache lines, and Safecracker leaks secret data efficiently

by strategically changing the values of nearby data. Our evaluation on a proof-of-

concept application shows that, on a representative compressed cache

architecture, Safecracker lets an attacker compromise an 8-byte secret key in

under 10 ms. Even worse, Safecracker can be combined with latent memory safety

vulnerabilities to leak a large fraction of program memory.

O
ver the past three years, computer architec-

ture has suffered a major security crisis.

Researchers have uncovered critical security

flaws in billions of deployed processors related to specu-

lative execution, starting with Spectre1 and Meltdown,2

generating significant interest and progress in micro-

architectural side and covert channel research.

While microarchitectural side channel attacks have

been around for over a decade, speculative execution

attacks are significantly more dangerous because of

their ability to leak program data directly. In the worst

case, these attacks let the attacker construct a univer-

sal read gadget,3 capable of leaking data at attacker-

specified addresses. For example, the Spectre V1

attack—if (i < N) { B[A[i]]; }—exploits branch mispre-

diction to leak the data at address &A + i given an

attacker-controlled i.

Yet, speculative execution is only one optimization

in modern microprocessors. It is critical to ask: Are

there other microarchitectural optimizations that

enable a similarly large amount of data leakage? In

this work, we provide an answer in the affirmative by

analyzing the security of memory hierarchy compres-

sion, specifically cache compression.

Compression is an attractive technique to improve

memory performance and has received intense devel-

opment from both academia and industry. Some early

adopter processors already feature memory-hierarchy

compression, including IBM’s z15,4 Qualcomm’s Cen-

triq, and NVIDIA’s A100. As data movement becomes

increasingly critical, we expect to see general-purpose

cache compression become widely used. Nonetheless,

despite strong interest from both academia and indus-

try, prior research in this area has focused on perfor-

mance and ignored security.

We present the first security analysis of cache com-

pression. The key insight that our analysis builds on is

that the compressibility of data reveals information

about the data itself. Similar to speculative execution

attacks, we show how this allows an attacker to leak

program data directly and, in the worst case, create a

new universal read gadget that can leak large portions

of program memory. In short, we show that cache com-

pression—without speculative execution—can leak as

much programprivacy as speculative execution.
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CACHE COMPRESSION
INTRODUCES A NEWCHANNEL

Figure 1(a) shows a simple attack on compressed

caches. The attacker seeks to steal the victim’s

encryption key and can submit encryption requests to

the victim. On each request, the victim’s encryption

function stores the key and the attacker’s plaintext

consecutively, so they fall on the same cache line.

THE KEY INSIGHT THAT OUR

ANALYSIS BUILDS ON IS THAT THE

COMPRESSIBILITY OF DATA

REVEALS INFORMATION ABOUT

THE DATA ITSELF.

Colocating secret data and attacker-controlled data

is safe with conventional caches, but it is unsafe with a

compressed cache. Suppose we run this program on a

system with a compressed cache that tries to shrink

each cache line by removing duplicate bytes. If the

attacker can observe the line’s size, it can leak all

individual bytes of the key by trying different cho-

sen plaintexts, as the compressed line’s size

changes when a byte of the key matches a byte of

the plaintext.

The general principle in the abovementioned exam-

ple is that when the attacker is able to colocate its own

data alongside secret data, it can learn the secret data.

Beyond cases where the victim itself facilitates coloca-

tion (e.g., by pushing arguments onto the stack),

we observe that latent security vulnerabilities related

to memory safety, such as buffer overflows, heap

spraying, and uninitialized memory, further enable the

attacker to colocate its data with secret data. Com-

bined with the new side channel in compressed

caches, these can enable a read gadget that leaks a

significant amount of data, as wewill show later.

CACHE COMPRESSION ENABLES
A NEW TYPE OF ACTIVE ATTACK

All compression techniques seek to store data effi-

ciently by using a variable-length code, where the

length of the encoded message approaches the infor-

mation content, or entropy, of the data being encoded.

It trivially follows that the compressibility of a data

chunk, i.e., the compression ratio achieved, reveals

information about the data.

Hence, compressed caches introduce a new, fun-

damentally different type of side channel. As a point

FIGURE 1. Overview of our compressed cache attacks. (a) Simple attack on a compressed cache, where the attacker exploits

colocation with secret data to leak it. (b) Comparison between Spectre and our proposed attacks.
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of comparison, consider conventional cache-based

side channels. Conventional cache channels are

based on the presence or absence of a line in the

cache. Thus, conventional attacks make a strong

assumption, namely that the victim is written in a way

that encodes the secret as a load address.

Compressed cache attacks relax this assumption.

Compressed cache channels are based on data com-

pressibility in the cache. Data can leak regardless of how

the program iswritten, just based onwhat data is written

to memory. In this sense, our attacks on compressed

caches are more similar to Spectre and the recent Ram-

bleed5 attacks than conventional side-channel attacks.

Figure 1(b) compares Spectre and the new attacks in

this article, using an abstract view of a side-channel

attack from prior work.6Attacker and victim reside in dif-

ferent protection domains, so the attacker resorts to a

side channel to extract the secret from the victim. To

exploit the side channel, a transmitter in the victim’s pro-

tection domain encodes the secret into the channel,

which is read and interpreted by a receiver in the attack-

er’s protection domain.

Spectre attacks allow the attacker to create differ-

ent transmitters by arranging various sequences of

mispredicted speculations. Analogously, attacks

based on cache compression allow the attacker to

create different transmitters by writing different data

into the cache. Exploiting the compressed cache side

channel requires a new receiver. In Spectre, the

receiver uses techniques like Prime+Probe to detect

the timing difference due to a line’s presence. In com-

pressed cache attacks, the receiver has to detect the

compressibility information from the channel. To this

end, we present Pack+Probe, a general technique that

leverages the timing difference due to a line’s pres-

ence to also infer its compressibility.

PACK+PROBE: MEASURING
COMPRESSIBILITY

Whereas conventional caches manage fixed-size cache

lines, compressed caches manage variable-sized lines.

Thus, compressed caches divide the data array among

variable-sized blocks and track their tags in a way that 1)

enables fast lookups and insertions; 2) allows high com-

pression ratios; and 3) avoids high tag storage overheads.

While priorwork has proposed various compressed cache

architectures, Pack+Probe is general and applies broadly.

For concreteness, we explain it using a commonly used

organization, Variable-SizedCache (VSC).7

VSC extends a set-associative design to store

compressed, variable-sized cache lines. Figure 2(a)

FIGURE 2. Comparison of VSC and conventional caches and example showing how Pack+Probe measures compressibility on

VSC. (a) Comparison of VSC (right) versus an uncompressed set-associative cache (left). VSC divides each set of the data array

into small segments (8 bytes in this example), stores each variable-sized line as a contiguous run of segments in the data array,

modifies tags to point to the blocks’ data segments, and increases the number of tags per set relative to the uncompressed

cache (by 2� in this example) to allow tracking more, smaller lines per set. (b) Simplified example of the Pack+Probe attack on

VSC. The attacker first packs the target set to leave exactly S segments left. After the victim accesses the secret, the attacker

probes the set to see if the compressed size of the secret is larger than S segments.
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illustrates VSC and compares it with a set-associative

design. VSC divides each set of the data array into small

segments [8 bytes in Figure 2(a)]. It stores each variable-

size line as a contiguous run of segments in the data

array. Each tag includes a pointer to identify the block’s

data segments within the set, and VSC increases the

number of tags per set relative to the uncompressed

cache [e.g., by 2� in Figure 2(a)] to support smaller lines.

Pack+Probe exploits that, in compressed caches, a

victim’s access to a cache line may cause different

evictions of other lines depending on the compress-

ibility (i.e., compressed size) of the victim’s line, in

addition to the replacement policy. Since the com-

pressed cache can store variable-sized lines, whether

a newly installed line evicts other lines is determined

by the unused capacity in the compressed cache.

Figure 2(b) shows a single step of Pack+Probe. Pack

+Probe first packs the compressed cache with

attacker-controlled lines to leave exactly S segments

unused. Once the victim accesses the secret line, if its

compressed size is �S segments, no evictions will hap-

pen, whereas if it is larger than S segments, at least one

of the attacker-controlled lines will be evicted. Finally,

the attacker probes (accesses) the lines it inserted

again, uses timing differences to infer which lines hit or

miss, and thus infers whether the victim’s line fits within

X bytes. Repeating these steps with a simple binary

search over values of X, the attacker can precisely

determine the compressed size of the victim’s line.

Our full paper8 shows Pack+Probe on VSC takes

less than 10 K cycles to determine the compressed

size of the victim’s line. Pack+Probe’s efficiency allows

us to further develop Safecracker, an active attack to

leak secret data.

SAFECRACKER: LEARNING
SECRETS THROUGH COLOCATION

Safecracker is named after the process used to crack

combination locks in (classic) safes, where the attacker

cycles through each digit of the combination and listens

for changes in the lock that signal when the digit is cor-

rect. Similarly, Safecracker provides a guess and learns

indirect outcomes (compressibility) of the guess. The

attacker then uses the outcome to guide the next guess.

In the context of compressed caches, the attacker

firstmakes a guess about the secret data and thenbuilds

a data pattern that, when colocatedwith the secret data,

will cause the cache line to be compressed in a particular

way if the guess is correct [like in Figure 1(a)]. By measur-

ing the line’s compressibility using Pack+Probe, the

attacker knowswhether the guesswas correct.

Depending on the compression algorithm used, Safe-

cracker needs different search strategies. We showcase

and implement the Safecracker attack on the base-

delta-immediate (BDI) compression algorithm,9 a simple

and common baseline algorithm that relies on delta

encoding. The BDI algorithm performs intra-cache-line

compression by storing a common base value and small

deltas. For example, for eight 4-byte integer values rang-

ing from 1,280 to 1,287, BDI will store a 4-byte base of

1,280, and eight 1-byte values from 0 to 7, compressing a

32-byte cache line into a 12-byte compressed line.

Depending on the base value and the ranges of the del-

tas, BDI compresses a cache line into eight different

sizes. For example, a 4-byte base and 16 2-byte values

result in a 20-byte compressed line.

Figure 3 shows how our Safecracker attack exploits

BDI. Assume the attacker wishes to steal a 4-byte secret,

located in a cache line where all other data, 28 bytes in

this example, is attacker controlled [e.g., it is part of a

request buffer like in Figure 1(a)]. Safecracker starts by

targeting a compressed pattern of a 4-byte base and

2-bytes values (a 20-byte line). It brute-forces the first

2 bytes of the victim’s word by changing the first 2 bytes

of attacker-controlled words (i.e., trying patterns

0x00000000,0x00010000,{. . .}0xFFFF0000, at most 216 guesses),

and uses Pack+Probe to see if the cache line compresses

to the size of a 20-byte line. Since the secret in this

FIGURE 3. Example of the Safecracker attack on BDI. The attacker fills the cache line with attacker-controlled data and brute-

forces the first 2 bytes in every 4 bytes until the guess is close to the secret value and incurs compression. The change in the

line size can be observed using Pack+Probe.
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example is 0x0F00BA20, when the attacker guesses

0x0F000000, the line compresses into a 20-byte line, and the

attacker records the 2 bytes it tried as part of the secret.

The attacker targets the next compressed pattern, a 4-

byte base and 1-byte values, and brute-forces the third

byte (taking at most 28 guesses), and then brute-forces

the last byte to learn all 4 bytes of the secret.

Our ASPLOS’20 paper8 details the algorithm to

steal secrets in various sizes on BDI, and we also dis-

cuss how to extend the idea to other cache compres-

sion algorithms. Safecracker on BDI can leak up to

8 bytes of secret data, which can be devastating. For

example, a 128-bit AES key is considered secure, but

leaking 64 bits degrades it to 64-bit protection, which

is insecure in many contexts.

Enhancing Safecracker With Latent

Memory-Safety Violations
The previous example assumes that the attacker-con-

trolled data (OATD) is located right next to the secret

in the same cache line. This limits the attacker to only

leak contents contiguous to attacker-controlled data.

However, if the attacker can find other latent memory-

safety violations in the victim program, then this vul-

nerability can significantly increase the amount of data

leaked and enhance the efficiency of Safecracker.

For example, combining Safecracker with buffer

overflows, the attacker can controlwhere the attacker-

controlled OATD is located. In the worst case, if the

compression algorithm allows leaking up to X bytes per

line, memory-safety violations let the attacker leak X

bytes from every cache line. That is, if the victim has a

memory footprint of M, then Safecracker with a buffer

overflow can leak OðMÞ bytes of memory, where differ-

ent compression algorithms have different constant

factors (e.g., 8=64 ¼ 1=8th of programmemory for BDI).

Moreover, buffer overflows also allow the attacker to

control how many bytes the attacker-controlled data

consists of. Leveraging this, the attacker can leak the

secret much more efficiently by making all partial

guesses at byte granularity. The attacker can allocate a

buffer that leaves only one byte of secret data in the

line. By brute-force, the attacker quickly learns this

remaining byte in the same manner as the previous

example. Once the last byte is known, the attacker

learns the second-to-last byte by allocating a smaller

buffer that does not overwrite it and brute-forcing only

this byte. This requires the victim to restore the data

over multiple invocations, which is the case with local,

stack-allocated variables. By repeating these steps, the

attacker can learn the 8 bytes of secret data even faster.

SAFECRACKER LEAKS SECRETS
EFFICIENTLY

We evaluate the effectiveness of Safecracker using

proof-of-concept workloads (PoC) and architectural sim-

ulation (simulating a compressed cache with VSC+BDI).

The first PoC has two separate processes, victim and

attacker. The victim is a login server with a vulnerability

that lets attacker-controlled input be stored next to a

secret key. The attacker can provide input to the cache

line where the key is located, without modifying the key.

The attacker can also invoke victim accesses to the

secret by issuing encryption requests that use the secret

key. This lets the attacker performPack+Probe.

The attacker first finds the set that holds the secret

cache line using standard Prime+Probe.10 Once the

conflicting set is found, the attacker uses Safecracker

to steal the victim’s secret key.

Table 1 reports the worst-case execution time needed

to steal different numbers of bytes. Safecracker requires

less than a second to crack a 6-byte secret value. Though

Safecracker can steal up to 8 bytes when applied to BDI,

trying to steal more than 6 bytes requires much longer

runtimes (hours for 8 bytes), because the complexity of

Safecracker on BDI grows exponentially. Nonetheless, as

we explained earlier, Safecracker can be combined with

latentmemory violations to enhance its efficiency.

Buffer-Overflow-Based Attack

The second PoC builds on top of the first PoC. How-

ever, this time, the victim has a buffer-overflow vulner-

ability. The vulnerable function is as follows:

void encrypt(char *plaintext) {

char result[LINESIZE];

char data[DATASIZE]; // can be any size

char key[KEYSIZE];

memcpy(key, KEYADDR, KEYSIZE);

strcpy(result, plaintext);

{. . .}

}.

TABLE 1.Worst-case time for Safecracker to leak secrets of different sizes.

Time (ms) to leak secret of size

Attack 1 bytes 2 bytes 3 bytes 4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

Safecracker 0.11 0.30 1.05 54.0 54.4 256 - -

Safecracker+ buffer overflow 0.76 1.53 2.30 3.11 3.91 4.32 5.61 6.46
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The buffer overflow stems from the unsafe call to

strcpy, which causes out-of-bounds writes when the

plaintext input string exceeds LINESIZE bytes. The

attacker exploits this buffer overflow to scribble over

the stack and overwrite some of the bytes of the key.

After encrypt returns, the scribbled-over line remains in

the stack, and the attacker is then able to measure its

compressibility with Pack+Probe and to run Safe-

cracker as described before.

Buffer overflows give Safecracker much higher

bandwidth by allowing it to guess a single byte on

each step. Using a buffer overflow, Safecracker steals

8 bytes of secret data in under 10 ms. Table 1 describes

that attack time with a buffer overflow grows linearly

versus exponentially as it had with the first PoC.

While Safecracker applied to BDI can steal only

8 bytes per line, the above mentioned process can be

repeated for different-sized attacker-controlled buf-

fers to steal data in other lines, e.g., 8 bytes from multi-

ple (potentially all) lines.

GENERALIZATION ANDDEFENSES
Our ASPLOS’20 paper8 also discusses how to generalize

these attacks to other compressed cache architectures

and algorithms, and presents other opportunities to

colocate attacker-controlled data with secret data. We

find that 1) Pack+Probe is applicable to most com-

pressed cache architectures with a decoupled tag store

with extra tags, and a data array divided in fixed-size sets

where variable-sized blocks are laid over; 2) variants of

Safecracker can be constructed case by case for other

compression algorithms, and the better the algorithm

compresses, the more information it can leak; and 3)

there are many more ways to colocate attacker-con-

trolled data near sensitive data, both spatially (e.g., heap

spraying) and temporally (e.g., uninitialized data), and

widely used software, such as the Linux kernel, suffers

from these attack vectors.

Finally, we present multiple ways (e.g., obfuscation)

to defend against Pack+Probe, Safecracker, and other

attacks on compressed caches. We evaluate one of

them, partitioning the compressed cache, to understand

the tradeoff between security and performance. Our

analysis shows that even though it is possible to make

compressed caches secure, the straightforward solution

that partitions both the tag and data array comes at a

cost. How to limit this performance impact while mini-

mizing leakagewould be interesting future work.

LESSONS LEARNED
We have presented the first security analysis of cache

compression and found that cache compression is

insecure because the compressibility of a cache line

reveals information about its contents.

With our proposed attacks, Pack+Probe and Safe-

cracker, we have also shown how cache compression

can potentially leak as much program privacy as spec-

ulative execution. This has significant implications for

architects. It suggests we as a community need to

revisit our vast literature and reexamine other micro-

architectural optimizations through a security lens.

Beyond the above mentioned immediate and long-

term message, our paper makes two other microarchi-

tectural side channel “firsts.”

The first work to show that memory-safety violations

can enhancemicroarchitectural attacks:Memory safety

vulnerabilities, e.g., buffer overflows, and microarchic-

tural attacks are both prominent vulnerability classes in

their own right. Fortunately, however, we have tradition-

ally been able to treat them as orthogonal concerns with

orthogonal sets of attacks and defenses.

In this work, we show thatmemory-safety violations

can enhance microarchitectural attacks. In other

words, memory safety vulnerabilities can be used to

mount (and exacerbate) microarchitectural attacks.

Worse, defenses against a givenmemory-safety vulner-

ability are not sufficient to block its “mirror image” in

the microarchitectural-attack world. Our original paper

illustrates this idea by showing how a “code-reuse

buffer overflow” defense (StackGuard) is insufficient

for preventing a “microarchitectural-attack buffer over-

flow” which, when combined with compressed caches,

can leak (asymptotically) all of the programmemory.

WEHOPEOURWORKCATALYZESA

LINEOFWORK INPROACTIVESECURITY

ANALYSISOFMICROARCHITECTURAL

OPTIMIZATIONS.

The first data-centric, differential microarchitec-

tural attack: There is a rich heritage in the security

community for performing chosen-plaintext attacks.

In this model, the victim program P takes as input sen-

sitive data S and attacker-controlled data C, and pro-

duces an observation O, i.e., O ¼ ViewðPjS;CÞ. The

attacker more-precisely learns S by varying C and

monitoring changes in O. This style is also called a dif-

ferential attack; it is used to perform cryptanalysis and

amplify traditional side-channel, e.g., DPA, attacks.

This article presents the first data-centric differen-

tial attack in the microarchitectural attack setting.

Specifically, C is attacker-controlled data that colo-

cates with S. We show how by modulating C, the

attacker can perform a guided search to recover S by

observing changes in compressibility O. Making
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matters worse, depending on the cache compression

algorithm, this search can be performed in asymptoti-

cally fewer steps than brute-force guessing S.

We hope this work prevents insecure cache

compression techniques from reaching mainstream

processors. More importantly, we hope our work cata-

lyzes a line of work in proactive security analysis of

microarchitectural optimizations.
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