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Abstract—Irregular applications, such as graph analytics and
sparse linear algebra, exhibit frequent indirect, data-dependent ac-
cesses to single or short sequences of elements that cause high
main memory traffic and limit performance. Data compression
is a promising way to accelerate irregular applications by reduc-
ing memory traffic. However, software compression adds substan-
tial overheads, and prior hardware compression techniques work
poorly on the complex access patterns of irregular applications.

We present SpZip, an architectural approach that makes data
compression practical for irregular algorithms. SpZip acceler-
ates the traversal, decompression, and compression of the data
structures used by irregular applications. In addition, these ac-
tivities run in a decoupled fashion, hiding both memory access
and decompression latencies. To support the wide range of access
patterns in these applications, SpZip is programmable, and uses
a novel Dataflow Configuration Language to specify programs
that traverse and generate compressed data. Our SpZip imple-
mentation leverages dataflow execution and time-multiplexing to
implement programmability cheaply. We evaluate SpZip on a
simulated multicore system running a broad set of graph and
linear algebra algorithms. SpZip outperforms prior state-of-the
art software-only (hardware-accelerated) systems by gmean 3.0×
(1.5×) and reduces memory traffic by 1.7× (1.4×). These benefits
stem from both reducing data movement due to compression, and
offloading expensive traversal and (de)compression operations.

I. INTRODUCTION

Irregular applications, like graph analytics and sparse linear

algebra, are an increasingly important workload domain [66,

80]. These applications are often memory bandwidth-bound, as

they suffer frequent memory accesses with poor locality. For ex-

ample, graph algorithms process sparse graphs whose footprint

far exceeds on-chip storage [26, 60] and take few instructions

to process each vertex and edge, which requires reading or

updating small elements scattered over gigabytes of memory.

Since many irregular algorithms are memory bandwidth-

bound, data compression is an attractive way to accelerate

them. Compressing data reduces main memory traffic by both

reducing transfer sizes and increasing effective on-chip capacity.

However, data compression is hard to apply to irregular ap-

plications. Irregular applications use sparse data structures that

store only meaningful relations, like nonzero elements in a

matrix or neighbors in a graph. Sparse data structures induce

frequent indirect, data-dependent accesses to single or short

sequences of elements. These indirections arise either within a

data structure (e.g., when traversing a sparse matrix) or across

data structures (e.g., when visiting neighboring vertex data in a

graph algorithm). These complex access patterns already limit

performance, and software compression overheads would make

data accesses even more expensive. Practical support for com-

pression thus requires hardware acceleration.

In this work, we propose architectural support to make data

compression practical for irregular algorithms. Our approach

builds on two key insights. First, ideally, we should optimize the

representation and compression algorithm of each data struc-

ture for the data statistics and access patterns generated by

the application. For example, some graph algorithms, like BFS,

only process the neighbors of a subset of vertices each iteration;

in this case, we must support efficient access to the neighbors of

a single vertex, but each neighbor set can itself be compressed.

But other algorithms, like PageRank, traverse the neighbors of

all vertices in sequence, so multiple neighbor sets can be com-

pressed together, increasing efficiency. Second, specialized hard-

ware should handle both the traversal and the decompression

of these data structures, because these operations are naturally

interleaved. For example, BFS as described above first accesses

a frontier data structure to find which vertices to visit, then the

graph data structure to fetch and decompress the neighbors of

each vertex, and finally accesses each neighbor’s data.

Following from these insights, we propose SpZip, specialized

hardware support for traversing and generating compressed data

structures. SpZip combines two desirable characteristics. First,

it is programmable to handle a broad range of complex access

patterns and data structures. Second, it exploits decoupled exe-

cution to hide the latencies of compression/decompression and

memory accesses: cores offload data structure traversals to a

separate unit, which runs them ahead of execution.

Prior work lacks some or all of these ingredients. Compressed

main memory and cache architectures [7, 8, 9, 30, 55, 56, 57]

compress individual cache lines or pages transparently to soft-

ware. Though they support random accesses, they are unaware

of application semantics, so they sacrifice significant opportuni-

ties to compress small, variable-sized chunks of data. Moreover,

they do not exploit decoupled execution, slowing down critical-

path accesses. As we will see in Sec. V-D, these systems achieve

limited benefits on irregular applications. Some processors fea-

ture hardware compression engines, but they support only long

data streams that are accessed sequentially [1, 4, 69]. Prior work

has also proposed specialized fetchers and prefetchers [5, 6, 13,

44, 73] for specific access patterns (e.g., single indirections).

Though these techniques reduce access latency, they are not

programmable, so they are limited to specific access patterns

and data formats, and do not support compression.

SpZip hardware consists of two main components:
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1) The SpZip fetcher accelerates the data traversal and decom-

pression tasks offloaded by the core. Each fetcher is decou-

pled from the core, and runs the traversal ahead of time to

hide memory access and decompression latencies. Internally,

the fetcher uses a novel design that exploits decoupling and

time-multiplexing to implement programmability cheaply.

2) The SpZip compressor is the dual of the fetcher, compressing

newly generated data before it is stored off-chip. This enables

applications to compress read-write data, rather than being

limited to read-only data structures.

To make SpZip programmable, we introduce the Dataflow

Configuration Language (DCL), which allows one to express

programs that traverse or generate compressed data structures.

DCL programs consist of an acyclic graph of simple, compos-

able operators: memory-access operators that fetch/write data

streams, and decompression/compression operators that trans-

form these streams. SpZip adopts the DCL as its hardware-soft-

ware interface, enabling it to support both a wide range of access

patterns, and data representations tailored to these patterns.

To demonstrate SpZip’s effectiveness, we apply it to several

graph applications and sparse linear algebra kernels. We en-

hance a multicore CPU with SpZip, with per-core fetchers and

compressors. We find that SpZip substantially accelerates irreg-

ular applications, due to both offloading costly data structure

traversals and data compression. However, we find that com-

pression has limited benefits on basic (Push or Pull) algorithms,

because memory traffic is dominated by scattered accesses to

single elements, where compression is ineffective. To boost the

benefits of compression, we study three optimized execution

strategies that were proposed to improve locality in irregular ap-

plications: Update Batching (a.k.a. propagation blocking) [15,

36], PHI [46], and preprocessing techniques [10, 21, 70]. These

optimizations reduce or eliminate incompressible accesses, and

in the case of preprocessing, improve value locality (clustering

similar values), so compression often reduces data movement

by over 2×. SpZip significantly benefits all execution strategies,

including those that were the most effective, and compression

sometimes changes which strategy is most effective.

We evaluate SpZip using detailed simulation on a wide range

of irregular algorithms processing large inputs. Over a multicore

without hardware support, SpZip improves performance by

gmean 3.0× and up to 5.2×, and traffic by 1.7×. Over PHI [46],

a state-of-the-art hardware technique to reduce data movement

in irregular applications, SpZip improves performance by gmean

1.5× (1.8× with preprocessing) and up to 1.9×, and traffic

by 1.4× (1.7× with preprocessing). Finally, SpZip is cheap,

adding only 0.2% of area to each core. These results show that,

with the right hardware support, compression is an effective

approach to improve performance on irregular applications.

II. THE SPZIP DCL AND ITS APPLICATIONS

The Dataflow Configuration Language (DCL) is SpZip’s

hardware-software interface. In this section, we first give an

overview of the DCL (Sec. II-A). Then, we present the DCL

by example, showing how it can be used to traverse sparse

data structures (which are common in irregular applications),

optimize their representation (Sec. II-B), and to accelerate more

complex traversals that span multiple data structures (Sec. II-C).

Finally, we introduce prior optimizations for irregular applica-

tions and show that they are synergistic with SpZip, by making

compression more effective (Sec. II-D). For concreteness, we

focus on graph applications, though SpZip also supports other

irregular applications (like sparse linear and tensor algebra).

This section serves a dual purpose: it presents all necessary

background on irregular applications and motivates SpZip and

the DCL by showing its generality and effectiveness. By intro-

ducing the DCL early, we can present this background under

a common framework.

A. SpZip DCL overview

The SpZip DCL allows expressing algorithms that traverse

or create data structures that may be compressed. The DCL en-

codes each algorithm as an acyclic graph of memory-access and

(de)compression operators. Operators communicate through

streams: each operator takes in a single input stream and streams

outputs to one or more consumers.

Memory-access operators can be either indirections or range

fetches. An indirection operator takes a sequence of indices i

as input, and for each i, it fetches and outputs A[i]. A range

fetch operator takes a sequence of index pairs i : j as input, and

for each pair, it fetches and outputs A[i], A[i+1], ..., A[j− 1].
Each operator is configured with some static metadata, like the

address of A and the size of each element.

Decompression/compression operators change the represen-

tation of their input stream, implementing decompression (for

traversals) or compression. Each system may support multi-

ple compression formats (e.g., delta encoding [57], run-length

encoding [67], BPC [35], etc.), each resulting in a different

compression and decompression operator.

Queues implement the input and output streams of operators.

Queues connect operators and also serve as the inputs and out-

puts from/to cores. Queues enable decoupled execution [63],

externally (the traversal runs ahead of the core) and dataflow

execution [25] internally (each operators runs as soon as its in-

puts are available), hiding the latency of memory accesses and

decompression and exposing pipeline parallelism. Because op-

erators fetch and produce variable-sized chunks of data, queues

include markers to denote the start and end of each chunk.

B. Applying the DCL to sparse data structures

Sparse data structures represent collections of mostly zero

elements by representing only nonzero values and their coordi-

nates. They are commonly used in irregular applications where

the traversal of sparse data manifests as multiple levels of in-

direct, data-dependent accesses to single or short sequences of

elements in the memory. Therefore, understanding sparse data

structures helps to uncover the challenging access patterns and

compression opportunities in irregular applications.

Fig. 1 illustrates the Compressed Sparse Row (CSR) format,1

which encodes a sparse matrix row by row. CSR uses two arrays,

1The term compressed here means that zeros are not explicitly stored. To
avoid confusion, in this paper we use the term compression only to refer to
data (entropy) compression, and refer to CSR simply as a sparse data structure.
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Fig. 2. DCL pipeline that traverses CSR matrix from Fig. 1.

offsets and rows. For each row index i, offsets[i] stores

the starting location of the ith row in the rows array. Each

element of the rows array stores the column coordinate of a

nonzero element and its value.

Fig. 2 shows how the DCL encodes the traversal of the sparse

matrix in Fig. 1, using a simple pipeline with two range fetch

operators. The first operator fetches the contents of the offsets

array, and the second operator interprets these offsets as ranges

to the rows array to fetch the contents of each row.

With this implementation, the core specifies ranges of rows

to be fetched by enqueueing them to the input queue, and then

consumes the rows by dequeueing from the output queue. In

the example, the core has enqueued the range 0:5, denoting

a traversal of the whole matrix (traversing smaller ranges is

also useful, e.g., with parallel processing). Note how queues

decouple operation: the first range-fetch operator is currently

fetching the last offset (7), the second operator is fetching the

second element of the second row (2,d), and the core has not yet

consumed anything. Because rows are variable-sized, a marker

denotes the end of each row (R between 2,b and 0,c).
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Fig. 3. DCL pipeline for matrix where each sparse row is entropy-compressed.

Data compression can further reduce the size of sparse data

structures. For example, consider a variant of the CSR format

in Fig. 1 where each row is individually compressed, e.g., with

delta encoding, and the offsets array points to the start of

each compressed row. Ligra+ [62] uses such a format to reduce

bandwidth and graph size. But Ligra+ achieves small speedups

because it decompresses rows in software. SpZip avoids these

overheads by supporting decompression operators in the DCL.

Fig. 3 shows a DCL pipeline to traverse this CSR variant with

data-compressed rows. Compared to Fig. 2, the key change is

the addition of a decompress operator that takes compressed

rows as input and produces uncompressed rows. As before, this

decompress operator is decoupled from the core and other stages

through queues, allowing SpZip to hide decompression latency.

DCL’s generality: Though we have focused on a specific data

format and access pattern, the DCL supports many other access

patterns and data structures. For instance, compressing each

row individually is sensible if we require accesses to random

rows; for programs that access long chunks, we could compress

several rows at once, and offsets could also be compressed.

Fig. 1 shows coordinates and values stored contiguously, but

applications often store them separately; the DCL can handle

them with two parallel range fetch operators. The DCL can

also handle many other sparse formats, which recent work has

systematized as a composition of access primitives that the

DCL supports [19, 37, 67], including matrices in DCSR, COO,

DIA, or ELL; higher-dimensional tensors and tiled variants; and

graphs in adjacency lists and their blocked variants, common

in streaming graph analytics [27, 39]. Moreover, the DCL is

not limited to a single data structure, as we will see next.

C. Applying the DCL to graph algorithms

Irregular applications are characterized by indirect, data-

dependent accesses across or within data structures. So far we

have seen how DCL expresses the traversal of a single sparse

data structure. Since most irregular applications use multiple

data structures, effective acceleration requires handling access

patterns that span data structures, including read-only and read-

write data. To illustrate this, we focus on graph algorithms.

Most graph algorithms proceed in iterations. On each iter-

ation, the data of each vertex is updated based on the data

of neighboring vertices. There are two basic execution styles:

Push (source-stationary) and Pull (destination-stationary). In

Push algorithms, source vertices (i.e., those whose values must

be propagated) are processed one by one, and each vertex prop-

agates (pushes) its update to its outgoing neighbors. In Pull

algorithms, destination vertices are processed one by one, and

each vertex reads (pulls) updates from its incoming neighbors.
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32
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Fig. 4. Adjacency matrix in CSR.

Push and Pull algorithms

use the same main data struc-

tures: the graph adjacency

matrix, usually in CSR for-

mat as shown in Fig. 4, en-

codes the outgoing (Push) or incoming (Pull) edges of each

vertex; and one or more arrays that hold algorithm-specific

per-vertex or per-edge data.

1 def PageRankIter(Graph g, Array scores,
2 Array contribs):
3 for src in range(g.numVertices):
4 for dst in g.neighs[g.offsets[src]:
5 g.offsets[src+1]]:
6 scores[dst] += contribs[src]

Listing 1. Single iteration of Push PageRank.
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contribs

Destination Vertex Data

(Prefetch Only)

Fig. 5. DCL pipeline for Push PageRank.

Listing 1

shows pseu-

docode for

one iteration

of Push

PageRank.

In this code,

vertices push updates (contribs) to their out-neighbors,

adjusting their scores (in a second phase, not shown, the

score and contrib of each vertex are updated for the next

iteration). Accesses to destination scores require two indirec-

tions (offsets→neighbors→scores) that span two data

structures (the adjacency matrix and the scores array).



1 def BFS(Graph g, VertexId root):
2 curDist = 0
3 frontier = [root], nextFrontier = []
4 Array dists(g.numVertices , INFINITY)
5 while !frontier.empty():
6 for src in frontier:
7 for dst in g.neighs[g.offsets[src]:
8 g.offsets[src+1]]:
9 if dists[dst] == INFINITY:

10 dists[dst] = curDist
11 nextFrontier.append(dst)
12 curDist += 1
13 frontier = nextFrontier
14 nextFrontier = []
15 return dists

Listing 2. Push-based BFS.
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Fig. 6. DCL pipeline for non-all-active, Push BFS.

To accelerate PageRank with SpZip, the DCL encodes a pro-

gram that traverses all data structures, and the core is dedicated

to the compute operations (line 6 of Listing 1). Fig. 5 shows

the DCL pipeline that achieves this, divided in three regions.

The blue region traverses the adjacency matrix and fetches

neighbor ids (dst); the green region fetches source vertex data

(contribs); and the orange region prefetches destination ver-

tex data (scores). In this case, destination vertex data are not

passed to the core, because updates to scores must be done with

atomics (as with parallel execution, multiple cores may update

the same destination). This prefetching is accomplished with

an indirection operator (which accesses scores[dst] for each

dst at its input queue) that does not have an output queue. Be-

cause the fetcher is colocated with the core, this prefetch leaves

data nearby (at the core’s L2 cache in our implementation).

All-active and non-all-active algorithms: Some graph algo-

rithms, like PageRank in Listing 1, are all-active: they process

all graph vertices on each iteration. By contrast, non-all-active

algorithms maintain a subset of active vertices, known as the

frontier, and process only the active vertices on each iteration.

Listing 2 shows the code for a non-all-active algorithm, Push

Breadth-First Search (BFS). BFS keeps the active source ver-

tices in the frontier data structure. Fig. 6 shows the DCL

program for BFS, which fetches neighbor (destination vertex)

ids and prefetches their distances. Compared to PageRank, BFS

has another level of indirection, shown in grey, to access the

frontier and fetch active vertex ids. Due to this extra indirection,

BFS has non-contiguous accesses to offsets.

Data compression can be added to DCL application pipelines

just like we saw in Sec. II-B. In general, compression oppor-

tunities exist whenever the application accesses contiguous

sequences of elements, i.e., after range fetch operators. For ex-

ample, in PageRank, we could compress neighbors and offsets

(or chunks of them), and in BFS, we could compress neigh-

bors and the frontier (but not offsets, which are accessed non-

contiguously). In this way, we can tailor the representation of

each data structure to the application’s specific access patterns,

maximizing the benefits of compression.

Push Push+
SpZip

UB UB+
SpZip

PHI PHI+
SpZip

0

2

4

6

Sp
ee

du
p 

ov
er

 P
us

h

PushPush+
SpZip

UB UB+
SpZip

PHI PHI+
SpZip

0.00

0.25

0.50

0.75

1.00

M
em

or
y 

tra
ffi

c
no

rm
al

ize
d 

to
 P

us
h

Updates
Destination
Vertex
Source
Vertex
Adjacency
Matrix

Fig. 7. Performance and memory traffic breakdown of BFS on uk-2005,
normalized to Push.

Push Push+
SpZip

UB UB+
SpZip

PHI PHI+
SpZip

0

2

4

6

Sp
ee

du
p 

ov
er

 P
us

h

PushPush+
SpZip

UB UB+
SpZip

PHI PHI+
SpZip

0.0

0.5

1.0

1.5

2.0

M
em

or
y 

tra
ffi

c
no

rm
al

ize
d 

to
 P

us
h 3.1

Updates
Destination
Vertex
Source
Vertex
Adjacency
Matrix

Fig. 8. Performance and traffic of BFS on uk-2005 with preprocessing,
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SpZip benefits: Fig. 7 reports the performance (left) and mem-

ory traffic (right) for different variants of the non-all-active

BFS, processing a large web graph on a 16-core system (see

Sec. IV for methodology). The two leftmost bars compare a

software-only Push implementation and the Push implemen-

tation enhanced with SpZip. SpZip is 1.7× faster than Push.

However, this speedup stems almost exclusively from acceler-

ating traversals, and compression barely helps: both variants

incur about the same memory traffic.

To see why, Fig. 7 breaks down traffic by data type.2 First,

scatter updates to destination vertex data dominate, con-

suming over 80% of traffic. Because these are accesses to single

elements, SpZip does not compress them. Second, most of the

remaining traffic is to the adjacency matrix, for which SpZip

compresses neighbor sets. However, this graph has neighbor

ids that are highly scattered, so compression barely helps.

Overall, SpZip outperforms Push because it relieves cores

from costly traversals and misses, effectively saturating memory

bandwidth. To improve performance further, we must reduce

memory traffic. To this end, we now discuss optimized exe-

cution strategies that improve locality and make compression

more effective.

D. Graph processing optimizations

Update batching (UB) [15, 36] also known as propagation

blocking [15] or DRAM-conscious clustering [36], improves

the spatial locality of Push algorithms by transforming the

cache misses from scatter updates, which often dominate traffic

(Fig. 7), into batches of sequential memory accesses.

Listing 3 shows an example UB application, serial PageRank.

UB splits execution into two phases, binning and accumula-

tion. In the binning phase, each source vertex generates updates

(contribs) for its neighbors from its vertex data. Instead of

directly applying these updates to destination vertices as Push

does, updates are buffered in bins (as {dst, contribs[src]}
tuples). Each bin collects updates destined to a cache-fitting

range of destination vertices. In the accumulation phase, the al-

gorithm applies updates bin by bin to update the vertex scores.

2This BFS is a different variant from the one in Listing 2: it builds the BFS
tree (Sec. IV), so it has source vertex data, as Fig. 7 shows.



1 def PageRankIter(Graph g, Array scores,
2 Array contribs):
3 # Binning phase
4 for src in range(g.numVertices):
5 for dst in g.neighs[g.offsets[src]:
6 g.offsets[src+1]]:
7 bId = dst / verticesPerBin
8 bins[bId].append({dst,contribs[src]})
9

10 # Accumulation phase
11 for bin in bins:
12 for {dst, contrib} in bin:
13 scores[dst] += contrib

Listing 3. Serial PageRank using Update Batching (UB).

UB reduces traffic thanks to spatial locality: though binned

updates are large and are spilled to main memory, each bin is

written sequentially, resulting in streaming writes that use full

cache lines, unlike scatter updates. In the accumulation phase,

these scatter updates still happen, but they mostly result in hits

because each bin is restricted to a cache-fitting slice of vertices.

The DCL pipeline for the binning phase of UB-based PageR-

ank (Listing 3) is the same as Fig. 5 except it does not prefetch

destination vertex data. The DCL pipeline for the accumulation

phase consists of one range fetch operator for the bins (and one

decompression operator after it if the bins are compressed).

Fig. 7 shows that UB reduces memory traffic significantly,

by 2.7×. Traffic is now dominated by sequential accesses to

updates, and destination vertex data traffic is small since

it enjoys perfect reuse. Overall, UB is 2.5× faster than Push.

More importantly, UB enables effective compression: each

bin is accessed sequentially, so bins can be compressed well,

reducing the dominant contribution to memory traffic. (We

will see how SpZip compresses bins in detail in Sec. III-C.)

Fig. 7 shows that UB+SpZip reduces update traffic by 1.6× and

overall traffic by 1.4× over UB. Since SpZip also handles UB’s

traversals, it is 2.4× faster than UB and 6.0× faster than Push.

PHI [46] builds on UB and further reduces traffic by adding

hardware support, and provides state-of-the-art data movement

reductions. PHI builds on the observation that the updates in

many algorithms are commutative and associative. PHI lever-

ages this to opportunistically coalesce updates to the same

destination vertex in the cache hierarchy before binning and

spilling them off-chip. Cores push updates to caches, which

buffer and coalesce them. Updates are binned lazily: when a

cache line with updates is evicted from the LLC, its updates

are written into bins. Bins are then spilled to main memory.

PHI and SpZip offer complementary ways to reduce data

movement. Fig. 7 shows that, on BFS, PHI and UB+SpZip

achieve similar traffic and performance. But PHI and SpZip can

be combined to yield even larger benefits: PHI+SpZip reduces

update traffic by a further 1.3× and improves performance

by 26%. Overall, PHI+SpZip is 7.4× faster than Push.

Preprocessing techniques reorder sparse data structures to im-

prove locality [31, 70, 74, 78, 79, 82]. In graph algorithms,

preprocessing reorders vertex ids in the adjacency matrix.

Preprocessing is beneficial only when the graph is reused

enough times to amortize preprocessing cost, which is often

much higher than the algorithm itself. Thus, prior work has pro-

posed lightweight and heavyweight preprocessing techniques.

Several lightweight techniques use degree sorting [10, 28, 79].

They group high-degree vertices, which are accessed more fre-

quently, improving spatial locality. Other lightweight techniques

use topological sorting, reordering vertices according to their

topology, e.g., through a BFS [21] or DFS [12, 74] traversal or-

der. These algorithms group vertices with many connections, im-

proving temporal and spatial locality. Heavyweight techniques

like GOrder [70] improve locality further, but use complex

algorithms that are orders-of-magnitude slower [10, 45].

Preprocessing improves locality and makes compression

more effective. Fig. 8 shows results for the same experiments

as in Fig. 7, but when the graph is preprocessed with DFS.

Preprocessing dramatically reduces Push’s destination vertex

traffic, as most updates happen to nearby data. By contrast, be-

cause UB does not exploit temporal locality, preprocessing does

not reduce memory traffic, making it far worse than Push. PHI

achieves similar memory traffic as Push but higher performance

thanks to hardware support.

The SpZip variants of each algorithm significantly improve

performance and reduce traffic by about 1.5× thanks to com-

pression. In both Push and PHI, the adjacency matrix now

dominates traffic. But while SpZip compression was ineffective

in the original graph, the preprocessed graph has high value

locality: since related vertices are placed nearby, each neighbor

set often has similar ids. Thus, SpZip reduces its size by 2.3×.

Overall, PHI+SpZip provides the highest speedups: 6.3× over

Push with preprocessing, and 7.4× without preprocessing.

These results show that the best algorithm variant to use

depends on the graph and available optimizations (e.g., whether

preprocessing is practical). We will also later see (Sec. V) that

compression favors topology-based preprocessing algorithms

because they improve value locality further than degree-sorting

preprocessing, which is more widely used without compression.

III. SPZIP DESIGN

A. SpZip overview

…

LLC

Main Memory

L2

Core

Fetcher Compressor

L2

Core

Fetcher Compressor

Fig. 9. SpZip architecture overview.

SpZip consists

of two key com-

ponents: fetchers

that traverse and

decompress data

structures and feed

them to cores, and compressors that compress new data before

they are stored off-chip. We implement SpZip in a multicore

system. Fig. 9 highlights SpZip’s additions and shows how

they fit into the system: each core has a fetcher, which issues

accesses to the core’s private L2 cache, and a compressor,

which issues accesses to the LLC.

Each core communicates with its fetcher and compressor

through queues: the input and output queues of these units

are exposed to the core. The core uses enqueue and dequeue

instructions to move data between queues and registers.

We first present SpZip’s fetcher (Sec. III-B) and compressor

(Sec. III-C), then discuss system-level issues (Sec. III-D), and

conclude by analyzing SpZip’s small area costs (Sec. III-E).



B. SpZip fetcher

The SpZip fetcher runs DCL programs to traverse and decom-

press data structures, as we saw in Sec. II. Each core’s fetcher

issues accesses to its L2 cache. This keeps data in compressed

form in the L2 and LLC, increasing their effective capacity.

To begin execution, the core loads a DCL program in the

fetcher, and enqueues some initial inputs to it. The fetcher then

runs decoupled from the core: it issues accesses autonomously

and runs the traversal and data decompression ahead of the

core, filling its output queues with data that the core can then

dequeue. Importantly, unlike prior indirect prefetchers [5, 6,

13, 73], SpZip does not monitor the core’s accesses to infer

which accesses to perform. This is simpler, more efficient, and

supports decompressing data in ways that prefetchers cannot.

However, it does require changes to programs.

We first discuss the microarchitecture of the fetcher, then

explain how to modify programs to use it. (Though we show

application code using SpZip directly for illustration purposes,

our implementation uses SpZip through a Ligra-style runtime,

and leaves application code unchanged—see Sec. III-D.)

Fetcher microarchitecture: The key challenge in implement-

ing the SpZip fetcher is how to implement programmability

efficiently. Prior fetch units [38, 40, 44] implemented either a

fixed-function pipeline, or provided some configurability by

disabling or configuring components within a fixed pipeline.

But SpZip requires a more flexible approach.

A possible fetcher implementation would be to adopt a re-

configurable design, with multiple fetch and decompression

operators and queues that can be wired through a configurable

interconnect to implement DCL programs. However, this is

costlier than needed. Instead, we observe that, when each op-

erator is implemented as a specialized unit with reasonable

throughput (e.g., a range fetcher or decompressor that can pro-

duce up to 32 bytes/cycle), operators have relatively low activity

factors: to consistently run ahead of cores, it suffices for one

operator to fire 33% of the cycles in our applications.

This observation leads us to a time-multiplexed fetcher design,

shown in Fig. 10, where operators and queues share the same

physical units. The fetcher has three types of components:

• The scratchpad stores the queues of the DCL program. Each

queue uses a region of the scratchpad, and is managed as a

circular buffer, with head and tail pointers as shown in Fig. 10.

• Two functional units (FUs), the access unit and the decom-

pression unit, implement the functionality needed by the

memory-access and decompression DCL operators.

• The scheduler chooses which operator to execute each cycle.

It keeps multiple operator contexts. Each context holds the

configuration and input/output queue ids of a single operator

in the DCL program. The scheduler tracks which operators

are ready to execute, and picks one each cycle.

This design achieves high throughput by exploiting dataflow

execution and by decoupling operators through queues: each

operator fires only when its input queue has an element to pro-

cess and its output queues have sufficient space, and operators

can run ahead and buffer results in queues, hiding memory and
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Fig. 10. SpZip programmable fetcher microarchitecture.

decompression latencies. This design supports any DCL pro-

gram with as many operators as contexts and as many queues

as the scratchpad can track (16 each in our implementation).

Access Unit (AU): The AU implements both memory-access

operators: indirections and range fetches. The AU is internally

decoupled to support many outstanding memory requests, as

shown in Fig. 10: the address generator (agen) issues a mem-

ory request for each indirection or range fetch, and the response

handler (resp) tracks of outstanding requests and writes data

to output queues as responses are received. Memory requests

are sent to the L2 cache, but they often miss, so the AU sup-

ports multiple outstanding requests (up to 8 cache lines in our

implementation) to hide memory latency.

Decompression Unit (DU): The DU implements decompres-

sion operators. Its implementation includes decompression logic

for all supported compression algorithms.

We use two algorithms in our design, delta encoding [57] and

Bit-Plane Compression (BPC) [35], because we observe that

no algorithm dominates. Our delta-encoding implementation

simply subtracts the previous and current inputs, and emits an N-

byte output if their delta (plus a small length prefix) fits within

N bytes (some prior work calls this a byte code [62]). BPC uses

a more sophisticated encoding but needs longer chunks (e.g.,

32 elements) to compress effectively. Thus, delta encoding is

preferable on short streams, like individual neighbor sets, and

BPC on longer chunks, like bins in Update Batching.

Scheduler: The scheduler decides which operator context to

execute and arbitrates reads and writes to the queues. It uses

queue occupancy to determine which operators are ready. An

operator is ready if its input queue has an element, its output

queues have sufficient free space, and its functional unit (FU) is

available (e.g., the AU may be filled with inflight requests). The

scheduler follows a round-robin policy among ready operators.

To issue an operation, the scheduler feeds the head of the input

queue to the FU, along with the context id. (Though contexts

are shown separately in Fig. 10, each context is specialized

to an FU, and tracks FU-specific information, e.g., the current

index for each range fetch.) The scheduler also arbitrates writes

to queues performed by the access and decompression units.

Queues and markers: Queues are held in the scratchpad. Each

queue is managed as a circular buffer, and tracked with the

usual pointers: min/max and head/tail. Queues take and serve

elements of various widths, as specified by their operators. For

example, a range fetch can consume 8, 16, 32, or 64-bit indexes.

Queues implement markers to support variable-length chunks:

each 32-bit word is tagged with a marker bit; if set, the word is



Range

For range fetch

id min max head tail

0 0 64 0 0

1 64 320 64 64

2 320 832 320 320

3 832 896 832 832

4 869 1408 896 896

5 1408 1920 1408 1408

type inQ outQs idxSz (B) elemSz (B) baseAddr curIdx rangeEnd

useEndAs

NextStart

marker 

value

range 0 1 8 8 contribs 0 0 No 0

range 0 3 8 4 offsets 0 0 No 0

range 3 4 4 4 cNeighs 0 0 Yes 1

indir 5 - 4 8 scores - - - -
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Fig. 11. DCL pipeline (top right) and fetcher configuration (queue configuration
and FU contexts) for Push PageRank with compressed neighbors.

1 def PageRankIter(Graph g, Array scores,
2 Array contribs):
3 spzip_fetcher_cfg(...) # load Fig.11 pipe
4 inQ = 0, contribsQ = 1, neighQ = 2
5 enqueue(inQ, {0, g.numVertices})
6 while contrib = dequeue(contribsQ)
7 is not marker:
8 while dst = dequeue(neighQ)
9 is not marker:

10 scores[dst] += contrib

Listing 4. Serial Push PageRank using SpZip fetcher.

interpreted as a marker instead of data. The range fetch operator

emits a marker after finishing each range, and the decompression

operator interprets each range as the end of a compressed chunk.

Each range fetch operator can specify a value associated with

each marker, and all operators have pass-through semantics for

markers: each marker at the input is copied to the output queues.

This lets the core infer the semantics of dequeued elements. For

example, in the BFS pipeline from Fig. 6, the core can identify

the end of each neighbor set thanks to markers produced by

the neighbor range fetch, and the end of each frontier range

thanks to markers produced by the earlier frontier range fetch.

Fetcher usage and API: To load a DCL program in the fetcher,

the core writes the configuration (sizes and locations) of all

queues, as well as the configuration of each operator context.

Fig. 11 shows the configuration for a variant of Fig. 5’s PageR-

ank pipeline where, in addition, neighbor sets are compressed.

This configuration is done rarely, through memory-mapped I/O.

Listing 4 shows pseudocode for an iteration of serial Push

PageRank (similar to Listing 1) using the DCL program from

Fig. 11. The spzip_fetcher_cfg(...) runtime function con-

figures the fetcher as described above, and enqueue() and

dequeue() translate to specialized instructions. The initial

enqueue starts a traversal of the full compressed graph (by

enqueueing the range {0, g.numVertices} to queue 0 in

Fig. 11). The code then dequeues contribs and neighbor ids,

and applies each source’s contrib to its neighbors’ scores. The

dequeue instruction reads the value and whether it is a marker,

and the code exits each loop upon finding a marker. (Our imple-

mentation uses x86, so the marker bit is stored in the overflow

flag; ISAs without flags can use a second output register in-

stead.)

C. SpZip compressor

The SpZip compressor is the dual of the fetcher: it com-

presses newly generated data before it is written back to main
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Fig. 12. SpZip compressor microarchitecture.

memory. The compressor shares many features with the fetcher:

it is a decoupled engine; the core communicates with it us-

ing queues, and configures it using memory-mapped I/O; it is

programmable; and it uses a similar time-multiplexed implemen-

tation. However, the compressor has two key differences. First,

it issues LLC accesses rather than L2 accesses. This avoids

polluting private caches with data that is unlikely to be reused

before being evicted, and lets the engine use the larger LLC to

buffer yet-to-be-compressed data. Second, compressors have a

different mix of operators, to compress and write data streams.

We focus our compressor design on handling either a single

stream (e.g., the frontier in BFS) or many streams (e.g., the

update bins in Update Batching). With simple extra functional

units, the compressor could produce all elements of compressed

sparse data structures (like the CSR with compressed rows from

Sec. II-B; the compressor can currently produce the rows, but

not the offsets, which a core would need to produce). But we

do not need this in the applications we study.

Compressor microarchitecture: Fig. 12 shows the design of

the compressor, which includes a scratchpad for local queues,

several functional units, and a scheduler, just like the fetcher.

The functional units include a compression unit (CU), a

stream writer unit (SWU), and a memory-backed queue unit

(MQU). The first two are used to compress a single stream, and

the last one uses (cached) memory to implement a large number

of queues. This is needed when compressing many streams so

that we can leverage the LLC to buffer them. We explain these

units through DCL pipelines for one and many streams.
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Fig. 13. DCL pipeline to compress a
single stream.

Compressing a single stream:

Fig. 13 shows the DCL

pipeline for compressing a

single stream, like the frontier

or a sequence of rows. The compression operator processes

the uncompressed input stream, and the stream writer writes

it sequentially to (cached) memory, starting at a configured

address, and tracks the length of the compressed stream. The

input stream uses markers to delimit the chunks to compress

(e.g., to separate rows or denote the end of the frontier).

Compressing many parallel streams: Fig. 14 shows the DCL

pipeline for compressing the bins in Update Batching (UB),

which is the most impactful use of on-the-fly compression in our

applications. Conceptually, each bin is a separate stream. But

UB needs many parallel streams, because each bin is limited to

a cache-fitting slice. For example, a graph with 32 GB of vertex

data and a 32 MB LLC needs 1024 bins. This would take 2048
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Fig. 14. DCL pipeline to compress UB bins (multiple streams).

queues in the fetcher if we followed the single-stream approach

in Fig. 13 (which uses two queues per stream). This would

demand a too-large queue scratchpad.

Instead, the memory-backed queue unit (MQU) implements

queues in conventional memory (without changing the inter-

nals of the cache): both the queue storage and its pointers

are kept in memory. The MQU interacts with memory through

conventional loads and stores (issued to the LLC in our imple-

mentation). The MQU context is simply the number of queues,

and the starting address of an array that holds min, tail, and max

pointers of each queue. The MQU interprets its input queue as

(queueId, value) tuples, and enqueues value to the queue

with queueId. This requires reading and writing the tail pointer,

and writing the value to memory. When an in-memory queue

fills up or the input is a marker, the MQU streams the queue

through its output (as the queueId followed by the contents of

the in-memory queue), and marks the queueId queue empty;

or, if MQU has no output queue, it quiesces and interrupts a

core (e.g., to allocate more space for the queue).

Fig. 14 begins with an MQU that manages one queue per bin.

These queues store uncompressed bin data, and their purpose

is to build large enough chunks (e.g., 32 updates per bin) that

can be compressed efficiently. Once a queue fills up, the chunk

is passed through the compressor from the first MQU. The

compressed chunk is then handled the second MQU, which

manages the compressed bins. Software allocates an initial

amount of space per bin (e.g., 2 MB), and allocates more space

on demand, when the bin fills up, using the interrupt mechanism.

With this approach, the first MQU manages a limited amount

of space that the LLC holds easily, whereas the second MQU

appends to the much larger compressed bins. Compressed bins

typically exceed the LLC’s capacity, so conventional evictions

displace them to main memory.

Compression optimizations for order-insensitive data: As de-

scribed in Sec. III-B, we implement delta-encoding and

BPC [35] compression. In addition, we find that in many cases

compressed data is often order-insensitive: the order in which it

is encoded is irrelevant. For instance, bins store sets of updates,

and the frontier stores the set of active vertices, so reordering

the elements in these streams does not affect semantics.

We leverage this by optionally sorting the elements of a

chunk (32 elements in our implementation) before compressing

it. This places similar values nearby, which improves compres-

sion ratios in both delta encoding and BPC.

Compressor usage and API: Like the fetcher, the compressor

is configured by writing its queue and operator contexts through

memory-mapped I/O. Listing 5 shows pseudocode for serial

UB PageRank. In the binning phase, the fetcher fetches and

decompresses contribs and neighbor ids (like in Listing 4), and

the compressor compresses each bin. In the accumulation phase,

1 def PageRankIter(Graph g, Array scores,
2 Array contribs):
3 spzip_fetcher_cfg(...) # Fig.11 w/o indir
4 spzip_comp_cfg(...) # Fig.14 pipe
5 inQ=0, contribsQ=1, neighQ=2, binsQ=8
6 enqueue(inQ, {0, g.numVertices})
7 # Binning phase
8 while contrib = dequeue(contribsQ)
9 is not marker:

10 while dst = dequeue(neighQ)
11 is not marker:
12 binId = dst / verticesPerBin
13 enqueue(binQ, {binId, {dst,contrib}})
14 # close bins & wait till they’re produced
15 for binId in range(numBins):
16 enqueue(binQ, {binId, endMarker})
17 spzip_comp_drain() # wait
18
19 # Accumulation phase
20 for cBin in compressedBins:
21 spzip_fetcher_cfg(...)# decompress cBin
22 spzip_comp_cfg(...) # Fig.13 pipe
23 enqueue(inQ, {0, cBin.size})
24 while {dst, contrib} = dequeue(binQ)
25 is not marker:
26 scores[dst] += contrib

Listing 5. Serial UB PageRank using SpZip compressor and fetcher.

the fetcher fetches each compressed bin, and the code applies

the updates in each bin to neighbor scores.

D. System-level integration

Using SpZip: While we have so far shown code that uses

SpZip explicitly, we do not expect application programmers

to write DCL programs directly. Instead, application code can

use specialized runtimes or compilers. In fact, we use a Ligra-

style graph processing framework (Sec. IV), and change only

framework code to use SpZip, not application code. The DCL

program is manually extracted via analyzing the data struc-

tures and their traversal pattern in the graph processing frame-

work. Moreover, domain-specific languages like TACO [37]

and GraphIt [18, 80] encode all the needed information to au-

tomatically generate DCL programs from high-level code.

Parallelism and load balancing: Although prior examples

show serial execution, we use SpZip in a parallel fashion. Our

runtime divides either the vertices (in all-active) or frontier (in

non-all-active algorithms) into chunks, and divides them among

threads. Threads then enqueue traversals to fetchers chunk by

chunk, and perform work-stealing of chunks to avoid load im-

balance. In Update Batching, in the binning phase, threads (and

their compressors) produce bins in parallel; in the accumulation

phase, each bin is also chunked and consumed in parallel by

multiple threads (and their fetchers).

Virtual memory: SpZip operates on virtual addresses. Like

prior indirect prefetchers and fetchers, each SpZip fetcher and

compressor use their core’s address translation hardware [5, 44,

73]. Specifically, fetcher and compressor use the core’s L2 TLB.

If a unit causes a page fault, it interrupts the core, so the OS

can handle the page fault. The unit stops issuing accesses after

a fault, and the OS reactivates it after the fault is handled.

Coherence and consistency: SpZip issues coherent memory

accesses, and does not affect coherence or consistency. But

SpZip engines operate autonomously, like separate threads,



without any synchronization other than through queues. This

suffices for SpZip to fully handle both read-only data (e.g.,

the adjacency matrix) and read-write data that is produced and

consumed in different phases (e.g., bins in UB and the frontier

in non-all-active algorithms). Some shared read-write data, like

destination vertex data in Push, incurs parallel read-modify-

writes that must happen atomically. In this case, the fetcher

does not serve this shared read-write data directly, though it still

prefetches it (as we saw in Sec. II-C), and leaves the atomics

to the core. These prefetches hide most of the cost of these

accesses, which are frequently served by main memory.

Context switches: Similar to prior fetchers and systems with

explicit queues [42, 44, 49], fetcher and compressor have archi-

tecturally visible state that must be saved and restored when a

thread is context-switched. If the OS deschedules a thread, it

needs to quiesce its fetcher and compressor, save their contexts,

and restore them when the thread is rescheduled. This needs

to be done only when switching to a different process, not on

exceptions or syscalls (just like these do not save FPU state).

E. Area analysis
TABLE I

SPZIP AREA BREAKDOWN.

Fetcher Area(µm2) Compressor Area (µm2)

AccU 10.1k MQU & SWU 5.8k

DecompU 22.5k CompU 25.0k

Scratchpad 6.8k Scratchpad 6.8k

Scheduler 7.9k Scheduler 7.9k

Total 47.3k Total 45.5k

We implement the

fetcher and compres-

sor in RTL and syn-

thesize them using

yosys [71] and the

45nm FreePDK45 li-

brary [48]. We use CACTI [11] to estimate SRAM area. Each

engine uses a 2 KB scratchpad for queues. Our BPC [35] imple-

mentation supports 32- or 64-bit elements, and uses a simple

byte-level symbol encoding for each bitplane.

Table I shows the area cost of each engine. Fetcher and

decompressor add minimal overheads, requiring 0.2% of the

area of a general-purpose core (the Intel Haswell core used in

the evaluated system, scaled to the same technology node).

IV. EXPERIMENTAL METHODOLOGY

Simulation infrastructure: We perform microarchitectural, ex-

ecution-driven simulation using zsim [59]. We simulate a 16-

core system with parameters given in Table II. The system

uses out-of-order cores modeled after and validated against In-

tel Haswell cores. Each core has private L1 and L2 caches, and

all cores share a banked 32 MB last-level cache. The system

has four memory controllers, like Haswell-EP systems [32].

Applications We use seven benchmarks. Three are all-active al-

gorithms: PageRank (PR) ranks vertices in a graph [53]; Degree

Counting (DC) computes the incoming degree of each vertex

and is often used in graph construction [14]; and Sparse Matrix-

Vector Multiplication (SP) is a key sparse linear algebra kernel.

Four are non-all-active: PageRank Delta (PRD), is an optimized

PR variant that only processes vertices with enough change

in their PageRank score each iteration; Breadth-First Search

(BFS) produces the breadth-first tree from a root vertex [14];

Connected Components (CC) partitions vertices of a graph into

disjoint subsets (or components) so that no edge crosses subsets

TABLE II
CONFIGURATION OF THE SIMULATED SYSTEM.

Cores 16 cores, x86-64 ISA, 3.5 GHz, Haswell-like OOO [59]

L1 caches 32 KB per core, 8-way set-associative, split D/I, 3-cycle latency

L2 cache 256 KB, core-private, 8-way set-associative, 6-cycle latency

L3 cache
32 MB, shared, 16 banks, 16-way hashed set-associative,
inclusive, 24-cycle bank latency, DRRIP replacement

Global NoC
4×4 mesh, 128-bit flits and links, X-Y routing, 1-cycle
pipelined routers, 1-cycle links

Coherence MESI, 64 B lines, in-cache directory, no silent drops

Memory 4 controllers, FR-FCFS, DDR3 1600 (12.8 GB/s per controller)

[20]; and Radii Estimation (RE) performs parallel BFS’s from

a few vertices to estimate the radius of each vertex [43].

TABLE III
INPUT DATASETS.

Graph Vertices(M) Edges(M) Source

arb 22 640 arabic-2005 [24]

ukl 39 936 uk-2005 [24]

twi 41 1468 Twitter followers [41]

it 41 1150 it-2004 [24]

web 118 1020 webbase-2001 [24]

nlp 27 760 nlpkkt240 [24]

Datasets: We evaluate

graph algorithms on

five large web and

social graphs shown in

Table III. For SpMV,

we use a matrix repre-

sentative of structured

optimization problems.

We evaluate preprocessed and non-preprocessed variants of

each input. Since several input graphs are already preprocessed,

for the non-preprocessed variants we randomize the vertex ids of

the input graph. Preprocessed variants use DFS by default [12],

and we also study the sensitivity to preprocessing techniques.

Graph algorithms run for several iterations. Since these graph

are large, to avoid long simulation times, we use iteration sam-

pling, simulating every 5th iteration and fast-forwarding others.

This is accurate since the characteristics of graph algorithms

change slowly over iterations. Even with iteration sampling,

we simulate over 100 billion instructions for the largest graph.

Schemes: We use three baselines: Push, Update Batching (UB),

and PHI. We use optimized implementations from the authors

of Propagation Blocking [15] for UB, and from PHI [46].

We enhance these strategies with SpZip. For Push, we com-

press the adjacency matrix, but not vertex data; for UB and

PHI, we compress all structures (adjacency matrix, update bins,

and vertex data); destination vertex data is compressed after

applying each bin in the accumulation phase. We compress the

adjacency matrix using delta encoding, and each application

uses the best of BPC [35] and delta encoding for the other

structures. To integrate PHI and SpZip, we change PHI so that,

when a line with updates is evicted from an LLC bank, we

send the line’s updates to the compressor in the same chip tile.

Framework: We implement all algorithms on a carefully op-

timized framework based on Ligra [61]. We modify the frame-

work’s code to implement all of the above schemes; application

code remains unchanged.

V. EVALUATION

A. SpZip improves performance and reduces memory traffic

Fig. 15 reports the performance (higher is better) and off-

chip memory traffic (lower is better) for all schemes without

and with DFS preprocessing. All results are normalized to Push.

Each bar groups shows results for all schemes on one appli-

cation, averaged across all inputs. The last group of each plot
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(d) Breakdown of main memory traffic by data type with DFS preprocessing.

Fig. 15. Per-application speedups and memory traffic breakdowns for all schemes. S:Push, T:Push+SpZip, U:UB, C:UB+SpZip, H:PHI, Z:PHI+SpZip. Normalized
to Push, averaged across all inputs.

(shaded darker) shows results across applications. Averages are

geometric means for speedups and arithmetic means for traffic.

Results without preprocessing: Fig. 15a shows that SpZip

improves performance for all schemes: SpZip accelerates Push

by gmean 1.6×, UB by 3.0×, and PHI by 1.5×. PHI+SpZip is

consistently the fastest technique: it is gmean 6.1× faster than

Push (up to 15.4× on DC), and 4.8× faster than UB, the best-

performing software-only scheme. If one does not wish to mod-

ify the cache hierarchy, which PHI does, UB+SpZip offers sim-

ilar speedups (PHI is gmean 8% faster) without PHI’s changes.

These results show SpZip is highly versatile and effective.

Fig. 15b shows that SpZip’s impact on off-chip traffic tracks

what we saw in Sec. II: Push+SpZip barely reduces traffic over

Push because compression is ineffective (except in SP, where

the input is more structured). However, SpZip reduces traffic

substantially over UB and PHI because their access patterns are

more compressible. Across benchmarks, Push and UB achieve

nearly the same traffic (UB is worse on RE and SP). UB+SpZip

reduces traffic by 1.9× on average over Push, PHI by 2.2×, and

PHI+SpZip by 3.3× (and up to 7.2× on DC). Fig. 15b shows

that SpZip’s data movement reductions stem primarily from

compressing updates, and secondarily from compressing vertex

data. Compression benefits all applications. Its benefits are more

muted on PR and PRD because they have floating-point values

with little value locality, making them harder to compress.

Overall, memory traffic reductions track speedups for

Push+SpZip, UB+SpZip, and PHI+SpZip, as well as for PHI.

This is because these schemes saturate memory bandwidth,

showing that SpZip effectively avoids core bottlenecks by of-

floading traversals. By contrast, Push and UB often do not

saturate memory bandwidth, as traversals bottleneck cores.

Results with DFS preprocessing: Preprocessing changes the

tradeoffs among techniques like we saw in Sec. II: Fig. 15c and

Fig. 15d shows that Push now outperforms UB, which is 41%

slower and incurs 3.1× more traffic. This is because preprocess-

ing improves locality for destination vertex data in Push, but

does not help UB, which streams all updates to memory even

when they have high locality. Despite its traffic gains, Push is

only 41% faster than UB due to the overheads of atomic updates

to shared vertex data. PHI’s traffic is similar to Push’s because

coalescing updates exploits temporal locality, and is 3.4× faster

than Push because it avoids synchronization overheads.

Regardless of these changes, SpZip substantially improves

performance across all techniques: SpZip accelerates Push by

gmean 1.5×, UB by 4.2×, and PHI by 1.8×. PHI+SpZip is

consistently the fastest technique: it is gmean 5.9× faster than

Push (up to 16.9× on DC). Despite UB being worse than Push,

UB+SpZip outperforms Push+SpZip because it avoids synchro-

nization overheads, as compression reduces the overhead of

streaming updates to memory. UB+SpZip is also close to PHI

(gmean 36% slower), making it a reasonable approach if im-

plementing PHI is not desirable.

Fig. 15d shows that SpZip’s compression now benefits all

techniques. In Push, compression significantly reduces adja-

cency matrix size and traffic, by 2.3× on average, because

neighbor sets now have similar ids. Thus, Push+SpZip reduces

total memory traffic by 1.4× over Push. UB and PHI also enjoy

the reductions in adjacency traffic, and in addition, see lower up-

date and vertex data traffic. Overall, UB+SpZip reduces traffic

by 2.1× over UB, and PHI+SpZip by 1.7× over PHI.

Results on individual inputs: Fig. 16 and Fig. 17 show re-

sults across all graph applications and inputs without and with

DFS preprocessing. While speedups change per input, the above

trends remain. First, PHI+SpZip is the fastest on all applications

and inputs. Without/with preprocessing, PHI+SpZip achieves

up to 17×/24× speedup (DC on arb) and up to 9.5×/6.2× traf-

fic reduction (DC on twi) over Push. Second, UB+SpZip and

PHI+SpZip yield consistent speedups and bandwidth savings

over Push, UB, and PHI. Third, UB+SpZip is nearly as com-

petitive as (and sometimes better than) PHI most of the time.
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Fig. 16. Per-input memory traffic (top) and performance (bottom) without preprocessing, normalized to Push.
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Fig. 17. Per-input memory traffic (top) and performance (bottom) with DFS preprocessing, normalized to Push.
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Fig. 18. Memory traffic breakdown of uk-2005 with
different preprocessing algorithms. H:PHI, Z:PHI+SpZip.
Normalized to PHI without preprocessing (None/H), av-
eraged across all graph applications.
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Fig. 19. SpZip compression factor analysis over PHI. +Adjacency Matrix: enables adjacency matrix
compression, +Bin: adds update compression, +Vertex: adds vertex compression. Averaged across
all inputs.

Without preprocessing, trends are similar across inputs. Pre-

processing benefits inputs differently: in some, preprocessing

uncovers plentiful structure, and Push enjoys good locality. But

other graphs, especially twi, have little community structure,

and preprocessing is less effective: Push suffers significant desti-

nation vertex data misses, the adjacency matrix compresses less

well, and UB and PHI are preferable because batching updates

is a better tradeoff, especially with SpZip’s compression.

B. Impact of preprocessing technique

We have so far used DFS preprocessing; we now study the ef-

fect of compression on preprocessing techniques. Fig. 18 shows

traffic breakdowns (lower is better) of graph uk-2005 for PHI

and PHI+SpZip without preprocessing and with four prepro-

cessing algorithms: degree sorting, BFS, DFS, and GOrder. The

results are averaged across all six graph applications.

Degree sorting is widely used [10, 28, 29, 79], and without

compression (PHI alone), it achieves similar memory traffic to

other preprocessing techniques. But with compression, degree

sorting has a 1.3× gain, whereas the benefits of BFS, DFS, and

GOrder increase to about 1.7×. This is because these algorithms

improve the compression ratio of the adjacency matrix, by

2.3× for BFS, and 2.4× for DFS and GOrder, vs. only 1.4×
for DegreeSort. This happens because topological sorting and

GOrder place highly connected vertices nearby, improving value

locality in neighbor sets: many neighbor ids have similar values,

easing compression. Since DFS and DegreeSort are similarly

lightweight [70, Table 9], and DFS nearly matches heavyweight

GOrder, we use DFS in other experiments.

C. Sensitivity studies

Impact of compression: Fig. 19 shows the impact of com-

pressing different data structures. Each bar group reports per-

formance for a single application, averaged across inputs like

in Fig. 15. Within each group, the leftmost bar is PHI, and the

other bars show how performance grows as more data structures

are compressed (and handled by SpZip): first the adjacency ma-



trix, then the update bins, and finally vertex data. The rightmost

bar, where all data structures are compressed, is PHI+SpZip.

As shown in Fig. 19, compressing each structure helps per-

formance. Without preprocessing, compressing the bins helps

the most overall, as they are the dominant contribution to traffic.

With preprocessing, compressing the adjacency matrix helps

the most overall, as it is the dominant contribution to traffic and

preprocessing makes it compressible. Nonetheless, compressing

vertex data also helps performance by reducing data movement,

especially in all-active applications where both source and des-

tination data are compressed, or in DC, where degree counts

are small and highly compressible integers.

We also evaluate the impact of reordering order-insensitive

data by running CC on UB. Across all inputs, sorting binned

updates in UB improves their compression ratio from 1.26×
to 1.55×. We see similar trends on other applications.
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Fig. 20. Effect of decoupled fetching vs.
compression.

Decoupled fetching vs.

compression: Fig. 20

compares the effect

of SpZip’s decoupled

fetching and compression,

showing that compression

is responsible for most

of SpZip’s benefits. Each

bar reports performance

averaged across all appli-

cations and inputs. The

middle bar (+Decou-

pled Fetching) uses

SpZip without any compression. Decoupling improves PHI’s

performance by a modest 9% and 14% without and with

preprocessing, respectively. By contrast, PHI+SpZip achieves

speedups of 1.5× and 1.8×. Since the system is already

memory bandwidth-bound, decoupling yields minor gains, and

compression is needed to improve performance further.
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Fig. 21. Sensitivity to
fetcher scratchpad size.

Sensitivity to queue sizes: Fig. 21

shows the performance of PHI+SpZip

on CC processing the uk-2005 graph

with different fetcher scratchpad sizes:

1 KB, the default 2 KB, and 4 KB.

Queues use the whole scratchpad in

all cases. When going from 1 KB to

2 KB, performance improves by 2.6%

(no preprocessing) and 10% (prepro-

cessing), as deeper queues enable more decoupling. But there

is negligible benefit from further decoupling: a 4 KB scratchpad

has nearly the same performance. This shows that our default

scratchpad size offers sufficient decoupling to hide latency, but

does not incur needless overheads.

D. Benefits of compressed memory hierarchies

Fig. 22 shows results for Push and UB on the same 16-

core system with a compressed memory hierarchy (CMH), con-

sisting of a compressed last-level cache and main memory.

This system uses a VSC [7] LLC with 2× the tags and the

Base-Delta-Immediate (BDI) [57] compression algorithm, and
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Fig. 22. Speedup and memory traffic of a compressed memory hierarchy
(CMH) over Push on a normal system, averaged across all inputs.

main memory is compressed using Linearly Compressed Pages

(LCP) [56]. LCP can reduce bandwidth by fetching multiple

compressed cache lines per DRAM access [56, Sec. 5.1]). Each

bar in Fig. 22 compares the performance and memory traffic of

an application over the baseline system without a compressed

hierarchy using Push. Results are averaged across all inputs.

Without preprocessing, CMH yields no speedups on Push

and accelerates UB by only 11%. Because Push is dominated

by compression-unfriendly scatter updates (Fig. 15b), CMH

does not reduce memory traffic and compression hurts access

latency; by contrast, SpZip’s prefetching boosts Push’s perfor-

mance. With preprocessing (which is more friendly to compres-

sion), CMH accelerates Push and UB by only 3% and 28% (vs.

1.5× and 4.2× in SpZip). Memory traffic reductions show that

CMH achieves much smaller compression ratios than SpZip,

since it does not exploit application semantics. For example, it

compresses fixed-size lines, which causes larger deltas across

neighbor sets. More importantly, these systems are not decou-

pled, so they are forced to use simple compression algorithms

and layouts to reduce decompression overhead. For example,

to support fast addressing, LCP compresses all lines in a page

to the same size. Thus, a few incompressible lines in the page

make LCP ineffective on the whole page.

By contrast, SpZip does not have these limitations, and im-

proves both performance and memory traffic by tailoring com-

pression to the access pattern and exploiting decoupling to hide

decompression latency.

VI. ADDITIONAL RELATED WORK

We now discuss additional related work not covered so far.

Accelerators for irregular applications: Prior work proposes

specialized accelerators for graph processing and sparse linear

algebra using ASICs [3, 31, 33, 47, 52, 54, 58, 64, 65, 76, 77, 81]

or FPGAs [22, 23, 34, 50, 51, 72]. Though we have prototyped

SpZip on a multicore, it would also benefit these accelerators,

in two ways. First, these accelerators do not compress data, so

SpZip would reduce memory traffic. Second, these accelera-

tors use fixed-function pipelines to fetch and write data, which

limits the data structures and algorithms they support. SpZip’s



programmability would enable them to support more formats

and workloads.

Memory hierarchy optimizations for irregular applications:

Prior work has proposed indirect prefetchers to handle indirec-

tions in irregular workloads [5, 6, 13, 73]. These prefetchers

are limited in the access patterns they handle. Concurrently

with SpZip, recent work has proposed programmable prefetch-

ers [68, 75] that overcome this problem, but they do not reduce

data movement, and only hide memory latency. As we have

seen, irregular applications often saturate memory bandwidth,

so improving performance requires reducing data movement.

HATS [44] is a specialized fetcher that performs locality-

aware graph traversals to reduce data movement. HATS

achieves some of the benefits of preprocessing by running

bounded-depth DFS traversals. HATS and SpZip are comple-

mentary: SpZip’s fetcher could be enhanced to perform locality-

aware traversals, and HATS does not perform compression.

GRASP [29] reduces data movement with a combination

of preprocessing and hardware support: it applies a variant of

degree-sorting (DBG) to segregate high-degree vertices, and

changes the replacement policy to prioritize them. OMEGA [2]

applies the same approach to a hybrid memory hierarchy, pin-

ning high-degree vertices to a scratchpad instead.

Graph compression: Prior work introduces compression algo-

rithms tailored to the adjacency matrix. These software tech-

niques mainly seek to reduce memory capacity, not bandwidth:

since the adjacency matrix is the largest structure, compression

enables in-memory processing of very large graphs. Ligra+ [62]

compresses neighbor sets with simple techniques. But soft-

ware decompression overheads limit its speedup to 14%. Web-

Graph [16, 17] achieves order-of-magnitude capacity savings,

but makes graph operations many times slower. SpZip could

adopt complex compression formats like WebGraph, though

maximizing performance requires handling data beyond the

adjacency matrix.

VII. CONCLUSION

We have presented SpZip, an architectural technique that

makes data compression practical for irregular algorithms.

SpZip targets the wide gap that exists between two extremes:

conventional compression algorithms that work only on long

sequential streams, and compressed memory hierarchies that

support random accesses but are access-pattern-unaware. In the

middle, there are many applications that access short but com-

pressible data chunks, of which irregular applications are a key

example. Since data accesses and (de)compression operations

are naturally interleaved, SpZip accelerates the traversal, decom-

pression, and compression of data structures. To achieve high

performance, these activities run in a decoupled fashion, hiding

both memory access and decompression latencies. To support

a wide range of access patterns, SpZip is programmable, and

uses a novel Dataflow Configuration Language to specify pro-

grams that traverse and generate compressed data. As a result,

SpZip achieves large performance gains and data movement

reductions on a wide set of irregular applications and optimized

execution strategies.
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